Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Science ; 383(6679): eadf6493, 2024 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-38207030

RESUMEN

Neutrophils are increasingly recognized as key players in the tumor immune response and are associated with poor clinical outcomes. Despite recent advances characterizing the diversity of neutrophil states in cancer, common trajectories and mechanisms governing the ontogeny and relationship between these neutrophil states remain undefined. Here, we demonstrate that immature and mature neutrophils that enter tumors undergo irreversible epigenetic, transcriptional, and proteomic modifications to converge into a distinct, terminally differentiated dcTRAIL-R1+ state. Reprogrammed dcTRAIL-R1+ neutrophils predominantly localize to a glycolytic and hypoxic niche at the tumor core and exert pro-angiogenic function that favors tumor growth. We found similar trajectories in neutrophils across multiple tumor types and in humans, suggesting that targeting this program may provide a means of enhancing certain cancer immunotherapies.


Asunto(s)
Reprogramación Celular , Neoplasias , Neovascularización Patológica , Neutrófilos , Humanos , Neoplasias/irrigación sanguínea , Neoplasias/inmunología , Neutrófilos/inmunología , Proteómica , Reprogramación Celular/genética , Reprogramación Celular/inmunología , Neovascularización Patológica/genética , Neovascularización Patológica/inmunología , Receptores del Ligando Inductor de Apoptosis Relacionado con TNF/inmunología , Epigénesis Genética , Hipoxia , Transcripción Genética
2.
Sci Adv ; 8(9): eabj4641, 2022 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-35245124

RESUMEN

Circulating Ly6Chi monocytes often undergo cellular death upon exhaustion of their antibacterial effector functions, which limits their capacity for subsequent macrophage differentiation. This shrouds the understanding on how the host replaces the tissue-resident macrophage niche effectively during bacterial invasion to avert infection morbidity. Here, we show that proliferating transitional premonocytes (TpMos), an immediate precursor of mature Ly6Chi monocytes (MatMos), were mobilized into the periphery in response to acute bacterial infection and sepsis. TpMos were less susceptible to apoptosis and served as the main source of macrophage replenishment when MatMos were vulnerable toward bacteria-induced cellular death. Furthermore, TpMo and its derived macrophages contributed to host defense by balancing the proinflammatory cytokine response of MatMos. Consequently, adoptive transfer of TpMos improved the survival outcome of lethal sepsis. Our findings hence highlight a protective role for TpMos during bacterial infections and their contribution toward monocyte-derived macrophage heterogeneity in distinct disease outcomes.


Asunto(s)
Infecciones Bacterianas , Sepsis , Animales , Citocinas , Humanos , Macrófagos , Ratones , Ratones Endogámicos C57BL , Monocitos
3.
Immunity ; 53(2): 303-318.e5, 2020 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-32579887

RESUMEN

Granulocyte-monocyte progenitors (GMPs) have been previously defined for their potential to generate various myeloid progenies such as neutrophils and monocytes. Although studies have proposed lineage heterogeneity within GMPs, it is unclear if committed progenitors already exist among these progenitors and how they may behave differently during inflammation. By combining single-cell transcriptomic and proteomic analyses, we identified the early committed progenitor within the GMPs responsible for the strict production of neutrophils, which we designate as proNeu1. Our dissection of the GMP hierarchy led us to further identify a previously unknown intermediate proNeu2 population. Similar populations could be detected in human samples. proNeu1s, but not proNeu2s, selectively expanded during the early phase of sepsis at the expense of monocytes. Collectively, our findings help shape the neutrophil maturation trajectory roadmap and challenge the current definition of GMPs.


Asunto(s)
Células Precursoras de Granulocitos/citología , Monocitos/citología , Mielopoyesis/fisiología , Neutrófilos/citología , Animales , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Análisis de la Célula Individual
4.
iScience ; 16: 524-534, 2019 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-31254530

RESUMEN

The significance of intracellular Ap4A levels over immune activity of dendritic cells (DCs) has been studied in Nudt2fl/fl/CD11c-cre mice. The transgenic mice have been generated by crossing floxed NUDT2 gene mice with DC marker CD11c recombinase (cre) mice. The DCs derived from these mice have higher levels of Ap4A (≈30-fold) compared with those derived from Nudt2+/+ mice. Interestingly, the elevated Ap4A in DCs has led them to possess higher motility and lower directional variability. In addition, the DCs are able to enhance immune protection indicated by the higher cross-presentation of antigen and priming of CD8+ OT-I T cells. Overall, the study denotes prominent impact of Ap4A over the functionality of DCs. The Nudt2fl/fl/CD11c-cre mice could serve as a useful tool to study the influence of Ap4A in the critical immune mechanisms of DCs.

5.
Blood Sci ; 1(1): 102-112, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35402788

RESUMEN

Neutrophils are essential immune cells that defend the host against pathogenic microbial agents. Neutrophils are produced in the bone marrow and are retained there through CXCR4-CXCL12 signaling. However, patients with the Warts, Hypogammaglobulinemia, Infections, and Myelokathexis (WHIM) syndrome are prone to infections due to increased accumulation of neutrophils in the bone marrow leading to low numbers of circulating neutrophils. How neutrophils accumulate in the bone marrow in this condition is poorly understood. To better understand factors involved in neutrophil accumulation in the bone marrow, neutrophils from wildtype and WHIM mouse models were characterized in their response to CXCL12 stimulation. WHIM neutrophils were found to exert stronger traction forces, formed significantly more lamellipodia-type protrusions and migrated with increased speed and displacement upon CXCL12 stimulation as compared to wildtype cells. Migration speed of WHIM neutrophils showed a larger initial increase upon CXCL12 stimulation, which decayed over a longer time period as compared to wildtype cells. We proposed a computational model based on the chemotactic behavior of neutrophils that indicated increased CXCL12 sensitivity and prolonged CXCR4 internalization adaptation time in WHIM neutrophils as being responsible for increased accumulation in the bone marrow. These findings provide a mechanistic understanding of bone marrow neutrophil accumulation in WHIM condition and novel insights into restoring neutrophil regulation in WHIM patients.

6.
Immunity ; 48(2): 364-379.e8, 2018 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-29466759

RESUMEN

Neutrophils are specialized innate cells that require constant replenishment from proliferative bone marrow (BM) precursors as a result of their short half-life. Although it is established that neutrophils are derived from the granulocyte-macrophage progenitor (GMP), the differentiation pathways from GMP to functional mature neutrophils are poorly defined. Using mass cytometry (CyTOF) and cell-cycle-based analysis, we identified three neutrophil subsets within the BM: a committed proliferative neutrophil precursor (preNeu) which differentiates into non-proliferating immature neutrophils and mature neutrophils. Transcriptomic profiling and functional analysis revealed that preNeu require the C/EBPε transcription factor for their generation from the GMP, and their proliferative program is substituted by a gain of migratory and effector function as they mature. preNeus expand under microbial and tumoral stress, and immature neutrophils are recruited to the periphery of tumor-bearing mice. In summary, our study identifies specialized BM granulocytic populations that ensure supply under homeostasis and stress responses.


Asunto(s)
Células de la Médula Ósea/fisiología , Neutrófilos/fisiología , Animales , Células de la Médula Ósea/inmunología , Proteínas Potenciadoras de Unión a CCAAT/fisiología , Linaje de la Célula , Movimiento Celular , Proliferación Celular , Células Cultivadas , Perfilación de la Expresión Génica , Humanos , Ratones , Neoplasias Experimentales/inmunología , Neutrófilos/inmunología
7.
J Exp Med ; 213(11): 2293-2314, 2016 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-27811056

RESUMEN

It is well established that Ly6Chi monocytes develop from common monocyte progenitors (cMoPs) and reside in the bone marrow (BM) until they are mobilized into the circulation. In our study, we found that BM Ly6Chi monocytes are not a homogenous population, as current data would suggest. Using computational analysis approaches to interpret multidimensional datasets, we demonstrate that BM Ly6Chi monocytes consist of two distinct subpopulations (CXCR4hi and CXCR4lo subpopulations) in both mice and humans. Transcriptome studies and in vivo assays revealed functional differences between the two subpopulations. Notably, the CXCR4hi subset proliferates and is immobilized in the BM for the replenishment of functionally mature CXCR4lo monocytes. We propose that the CXCR4hi subset represents a transitional premonocyte population, and that this sequential step of maturation from cMoPs serves to maintain a stable pool of BM monocytes. Additionally, reduced CXCR4 expression on monocytes, upon their exit into the circulation, does not reflect its diminished role in monocyte biology. Specifically, CXCR4 regulates monocyte peripheral cellular activities by governing their circadian oscillations and pulmonary margination, which contributes toward lung injury and sepsis mortality. Together, our study demonstrates the multifaceted role of CXCR4 in defining BM monocyte heterogeneity and in regulating their function in peripheral tissues.


Asunto(s)
Células de la Médula Ósea/citología , Diferenciación Celular , Monocitos/citología , Receptores CXCR4/metabolismo , Animales , Antígenos Ly/metabolismo , Células de la Médula Ósea/efectos de los fármacos , Células de la Médula Ósea/metabolismo , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/genética , Ritmo Circadiano/genética , Endotoxinas/toxicidad , Femenino , Perfilación de la Expresión Génica , Pulmón/irrigación sanguínea , Pulmón/efectos de los fármacos , Pulmón/metabolismo , Pulmón/patología , Ratones Endogámicos C57BL , Monocitos/efectos de los fármacos , Monocitos/metabolismo
8.
J Immunol ; 197(10): 3771-3781, 2016 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-27733553

RESUMEN

Previous studies have highlighted the importance of lung-draining lymph nodes in the respiratory allergic immune response, whereas the lung parenchymal immune system has been largely neglected. We describe a new in vivo model of respiratory sensitization to Blomia tropicalis, the principal asthma allergen in the tropics, in which the immune response is focused on the lung parenchyma by transfer of Th2 cells from a novel TCR transgenic mouse, specific for the major B. tropicalis allergen Blo t 5, that targets the lung rather than the draining lymph nodes. Transfer of highly polarized transgenic CD4 effector Th2 cells, termed BT-II, followed by repeated inhalation of Blo t 5 expands these cells in the lung >100-fold, and subsequent Blo t 5 challenge induced decreased body temperature, reduction in movement, and a fall in specific lung compliance unseen in conventional mouse asthma models following a physiological allergen challenge. These mice exhibit lung eosinophilia; smooth muscle cell, collagen, and goblet cell hyperplasia; hyper IgE syndrome; mucus plugging; and extensive inducible BALT. In addition, there is a fall in total lung volume and forced expiratory volume at 100 ms. These pathophysiological changes were substantially reduced and, in some cases, completely abolished by administration of neutralizing mAbs specific for IL-4 and IL-13 on weeks 1, 2, and 3. This IL-4/IL-13-dependent inducible BALT model will be useful for investigating the pathophysiological mechanisms that underlie asthma and the development of more effective drugs for treating severe asthma.


Asunto(s)
Acaridae/inmunología , Alérgenos/inmunología , Asma/inmunología , Interleucina-13/inmunología , Interleucina-4/inmunología , Pulmón/inmunología , Tejido Linfoide/inmunología , Células Th2/inmunología , Traslado Adoptivo , Alérgenos/administración & dosificación , Animales , Asma/fisiopatología , Hiperreactividad Bronquial/inmunología , Hiperreactividad Bronquial/fisiopatología , Líquido del Lavado Bronquioalveolar/inmunología , Linfocitos T CD4-Positivos/inmunología , Modelos Animales de Enfermedad , Inmunoglobulina E , Interleucina-13/administración & dosificación , Interleucina-4/administración & dosificación , Pulmón/citología , Pulmón/patología , Ganglios Linfáticos/inmunología , Ratones , Ratones Transgénicos , Eosinofilia Pulmonar/inmunología , Receptores de Antígenos de Linfocitos T/inmunología
9.
J Immunol ; 194(8): 3890-900, 2015 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-25732728

RESUMEN

Little is known about the cellular mechanisms of innate immunity against dengue virus (DV) infection. Specifically, the γδ T cell response to DV has not been characterized in detail. In this article, we demonstrate that markers of activation, proliferation, and degranulation are upregulated on γδ T cells in PBMC isolated from individuals with acute dengue fever. Primary γδ T cells responded rapidly in vitro to autologous DV-infected dendritic cells by secreting IFN-γ and upregulating CD107a. The anti-DV IFN-γ response is regulated by type I IFN and IL-18 in a TCR-independent manner, and IFN-γ secreting γδ T cells predominantly expressed IL-18Rα. Antagonizing the ATP-dependent P2X7 receptor pathway of inflammasome activation significantly inhibited the anti-DV IFN-γ response of γδ T cells. Overnight priming with IL-18 produced effector γδ T cells with significantly increased ability to lyse autologous DV-infected dendritic cells. Monocytes were identified as accessory cells that augmented the anti-DV IFN-γ response of γδ T cells. Lack of monocytes in culture is associated with lower IL-18 levels in culture supernatant and diminished production of IFN-γ by γδ T cells, whereas addition of exogenous IL-18 restored the IFN-γ response of γδ T cells in monocyte-depleted cocultures with DV-infected DC. Our results indicate that primary γδ T cells contribute to the immune response during DV infection by providing an early source of IFN-γ, as well as by killing DV-infected cells, and suggest that monocytes participate as accessory cells that sense DV infection and amplify the cellular immune response against this virus in an IL-18-dependent manner.


Asunto(s)
Células Dendríticas/inmunología , Virus del Dengue/inmunología , Dengue/inmunología , Interleucina-18/inmunología , Receptores de Antígenos de Linfocitos T gamma-delta/inmunología , Linfocitos T/inmunología , Adulto , Técnicas de Cocultivo , Células Dendríticas/patología , Dengue/patología , Femenino , Humanos , Interferón Tipo I , Interferón gamma/inmunología , Subunidad alfa del Receptor de Interleucina-18/inmunología , Proteína 1 de la Membrana Asociada a los Lisosomas/inmunología , Masculino , Monocitos/inmunología , Monocitos/patología , Receptores Purinérgicos P2X7/inmunología , Linfocitos T/patología
10.
J Immunol ; 193(10): 5065-75, 2014 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-25320280

RESUMEN

Clinical studies have suggested the importance of the NK cell response against dengue virus (DenV), an arboviral infection that afflicts >50 million individuals each year. However, a comprehensive understanding of the NK cell response against dengue-infected cells is lacking. To characterize cell-contact mechanisms and soluble factors that contribute to the antidengue response, primary human NK cells were cocultured with autologous DenV-infected monocyte-derived dendritic cells (DC). NK cells responded by cytokine production and the lysis of target cells. Notably, in the absence of significant monokine production by DenV-infected DC, it was the combination of type I IFNs and TNF-α produced by DenV-infected DC that was important for stimulating the IFN-γ and cytotoxic responses of NK cells. Cell-bound factors enhanced NK cell IFN-γ production. In particular, reduced HLA class I expression was observed on DenV-infected DC, and IFN-γ production was enhanced in licensed/educated NK cell subsets. NK-DC cell contact was also identified as a requirement for a cytotoxic response, and there was evidence for both perforin/granzyme as well as Fas/Fas ligand-dependent pathways of killing by NK cells. In summary, our results have uncovered a previously unappreciated role for the combined effect of type I IFNs, TNF-α, and cell surface receptor-ligand interactions in triggering the antidengue response of primary human NK cells.


Asunto(s)
Células Dendríticas/inmunología , Virus del Dengue/inmunología , Antígenos de Histocompatibilidad Clase I/inmunología , Interferón Tipo I/inmunología , Células Asesinas Naturales/inmunología , Factor de Necrosis Tumoral alfa/inmunología , Comunicación Celular/inmunología , Técnicas de Cocultivo , Citotoxicidad Inmunológica , Células Dendríticas/virología , Proteína Ligando Fas/genética , Proteína Ligando Fas/inmunología , Regulación de la Expresión Génica , Granzimas/genética , Granzimas/inmunología , Antígenos de Histocompatibilidad Clase I/genética , Humanos , Evasión Inmune , Interferón Tipo I/genética , Células Asesinas Naturales/virología , Perforina/genética , Perforina/inmunología , Transducción de Señal , Factor de Necrosis Tumoral alfa/genética , Receptor fas/genética , Receptor fas/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA