Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 167
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Chem Sci ; 15(24): 9016-9025, 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38903222

RESUMEN

Substitution of one metal catalyst for another is not as straightforward as simply justifying this change based on the availability and/or cost of the metals. Methodologies to properly assess options for reaction design, including multiple factors like a metal's availability, cost, or environmental indicators have not advanced at the pace needed, leaving decisions to be made along these lines more challenging. Isolated indicators can lead to conclusions being made in too hasty a fashion. Therefore, an extensive life cycle-like assessment was performed documenting that the commonly held view that methods using earth-abundant metals (and in this case study, Ni) are inherently green replacements for methods using palladium in cross-coupling reactions, and Suzuki-Miyaura couplings, in particular, is an incomplete analysis of the entire picture. This notion can be misleading, and unfortunately derives mainly from the standpoint of price, and to some degree, relative natural abundance associated with the impact of mining of each metal. A more accurate picture emerges when several additional reaction parameters involved in the compared couplings are considered. The analysis points to the major impact that use of organic solvents has in these couplings, while the metals themselves actually play subordinate roles in terms of CO2-release into the environment and hence, the overall carbon footprint (i.e., climate change). The conclusion is that a far more detailed analysis is required than that typically being utilized.

2.
J Org Chem ; 89(6): 3995-4000, 2024 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-38447077

RESUMEN

A very efficient four-step synthesis of the main fragment of Gilead's anti-HIV drug lenacapavir is described. The route showcases a 1,2-addition to an intermediate aldehyde using an organozinc halide derived from a commercially available difluorobenzyl Grignard reagent. This sets the stage for the oxidation of the resulting secondary alcohol to the desired ketone, which relies solely on catalytic amounts of TEMPO together with NaClO as the terminal oxidant, affording the targeted ketone in 67% overall yield.


Asunto(s)
Fármacos Anti-VIH , Indicadores y Reactivos , Aldehídos , Cetonas
3.
JACS Au ; 4(2): 680-689, 2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38425930

RESUMEN

Sustainable technology for constructing Pd-catalyzed C-N bonds involving aliphatic amines is reported. A catalytic system that relies on low levels of recyclable precious metal, a known and commercially available ligand, and a recyclable aqueous medium are combined, leading to a newly developed procedure. This new technology can be used in ocean water with equal effectiveness. Applications involving highly challenging reaction partners constituting late-stage functionalization are documented, as is a short but efficient synthesis of the drug naftopidil. Comparisons with existing aminations highlight the many advances being offered.

4.
ACS Sustain Chem Eng ; 12(5): 1997-2008, 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38333203

RESUMEN

A general protocol employing heterogeneous catalysis has been developed that enables ppm of Pd-catalyzed C-N cross-coupling reactions under aqueous micellar catalysis. A new nanoparticle catalyst containing specifically ligated Pd, in combination with nanoreactors composed of the designer surfactant Savie, a biodegradable amphiphile, catalyzes C-N bond formations in recyclable water. A variety of coupling partners, ranging from highly functionalized pharmaceutically relevant APIs to educts from the Merck Informer Library, readily participate under these environmentally responsible, sustainable reaction conditions. Other key features associated with this report include the low levels of residual Pd found in the products, the recyclability of the aqueous reaction medium, the use of ocean water as an alternative source of reaction medium, options for the use of pseudohalides as alternative reaction partners, and associated low E factors. In addition, an unprecedented 5-step, one-pot sequence is presented, featuring several of the most widely used transformations in the pharmaceutical industry, suggesting potential industrial applications.

5.
Org Lett ; 26(14): 2778-2783, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-37883080

RESUMEN

The influence of added surfactant to aqueous reaction mixtures containing various IREDs has been determined. Just the presence of a nonionic surfactant tends to increase both rates and extent of conversion to the targeted amines. The latter can be as much as >40% relative to buffer alone. Several tandem sequences featuring several steps that combine use of an IRED together with various types of chemocatalysis are also presented, highlighting the opportunities for utilizing chemoenzymatic catalysis, all in water.

6.
Chem Sci ; 14(46): 13503-13507, 2023 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-38033910

RESUMEN

Palladium-catalyzed reactions that involve functionalized substrates are oftentimes problematic. Those involving aryl or heteroaryl bromides that are either resistant to, or inefficient in such couplings present challenges that are difficult to overcome and may require development of an entirely new route, or worse, no opportunity to install the desired group using a standard coupling strategy. In this report, we describe a solution that allows for the in situ conversion of such bromo educts to transient iodide derivatives that can be made and used under environmentally responsible conditions, for subsequent reactions to highly functionalized, complex targets.

7.
Chem Sci ; 14(23): 6399-6407, 2023 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-37325157

RESUMEN

A 6-step synthesis of the antimalarial drug candidate MMV688533 is reported. Key transformations carried out under aqueous micellar conditions include two Sonogashira couplings and amide bond formation. Compared with the first-generation manufacturing process reported by Sanofi, the current route features ppm levels of palladium loading, less material input, less organic solvent, and no traditional amide coupling reagents. The overall yield is improved ten-fold, from 6.4% to 67%.

8.
Org Lett ; 25(23): 4308-4312, 2023 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-37278485

RESUMEN

Erdafitinib, an anticancer drug, was synthesized in a three-step two-pot sequence involving ppm levels of Pd catalyst run under aqueous micellar conditions enabled by a biodegradable surfactant. This process features both pot- and time-economies and eliminates egregious organic solvents and toxic reagents associated with existing routes.


Asunto(s)
Antineoplásicos , Agua , Solventes , Pirazoles , Antineoplásicos/farmacología
9.
Chem Sci ; 14(13): 3462-3469, 2023 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-37006678

RESUMEN

Technology for generating especially important amide and peptide bonds from carboxylic acids and amines that avoids traditional coupling reagents is described. The 1-pot processes developed rely on thioester formation, neat, using a simple dithiocarbamate, and are safe and green, and rely on Nature-inspired thioesters that are then converted to the targeted functionality.

10.
ACS Catal ; 13(5): 3179-3186, 2023 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-36910866

RESUMEN

A protocol has been developed that not only simplifies the preparation of nanoparticles (NPs) containing ppm levels of ligated palladium that affect heterogeneous catalysis but also ensures that they afford products of cross-couplings reproducibly due to the freshly prepared nature of each reagent. Four different types of couplings are studied: Suzuki-Miyaura, Sonogashira, Mizoroki-Heck, and Negishi reactions, all performed under mild aqueous micellar conditions. The simplified process relies on the initial formation of stable, storable Pd- and ligand-free NPs, to which is then added the appropriate amount of Pd(OAc)2 and ligand-matched to the desired type of coupling, in water.

11.
J Am Chem Soc ; 2023 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-36753354

RESUMEN

Savie is a biodegradable surfactant derived from vitamin E and polysarcosine (PSar) developed for use in organic synthesis in recyclable water. This includes homogeneous catalysis (including examples employing only ppm levels of catalyst), heterogeneous catalysis, and biocatalytic transformations, including a multistep chemoenzymatic sequence. Use of Savie frequently leads to significantly higher yields than do conventional surfactants, while obviating the need for waste-generating organic solvents.

12.
Chem Rev ; 123(9): 5262-5296, 2023 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-36473100

RESUMEN

Chemoenzymatic catalysis, by definition, involves the merging of sequential reactions using both chemocatalysis and biocatalysis, typically in a single reaction vessel. A major challenge, the solution to which, however, is associated with numerous advantages, is to run such one-pot processes in water: the majority of enzyme-catalyzed processes take place in water as Nature's reaction medium, thus enabling a broad synthetic diversity when using water due to the option to use virtually all types of enzymes. Furthermore, water is cheap, abundantly available, and environmentally friendly, thus making it, in principle, an ideal reaction medium. On the other hand, most chemocatalysis is routinely performed today in organic solvents (which might deactivate enzymes), thus appearing to make it difficult to combine such reactions with biocatalysis toward one-pot cascades in water. Several creative approaches and solutions that enable such combinations of chemo- and biocatalysis in water to be realized and applied to synthetic problems are presented herein, reflecting the state-of-the-art in this blossoming field. Coverage has been sectioned into three parts, after introductory remarks: (1) Chapter 2 focuses on historical developments that initiated this area of research; (2) Chapter 3 describes key developments post-initial discoveries that have advanced this field; and (3) Chapter 4 highlights the latest achievements that provide attractive solutions to the main question of compatibility between biocatalysis (used predominantly in aqueous media) and chemocatalysis (that remains predominantly performed in organic solvents), both Chapters covering mainly literature from ca. 2018 to the present. Chapters 5 and 6 provide a brief overview as to where the field stands, the challenges that lie ahead, and ultimately, the prognosis looking toward the future of chemoenzymatic catalysis in organic synthesis.


Asunto(s)
Agua , Biocatálisis , Solventes , Catálisis
13.
Org Lett ; 24(49): 9049-9053, 2022 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-36475781

RESUMEN

A newly devised route to the Pfizer drug nirmatrelvir is reported that reduces the overall sequence to a 1-pot process and relies on a commercially available, green coupling reagent, T3P. The overall yield of the targeted material, isolated as its MTBE solvate, is 64%.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Leucina , Antivirales/farmacología
14.
Commun Chem ; 5(1): 156, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36465589

RESUMEN

Pfizer's drug for the treatment of patients infected with COVID-19, Paxlovid, contains most notably nirmatrelvir, along with ritonavir. Worldwide demand is projected to be in the hundreds of metric tons per year, to be produced by several generic drug manufacturers. Here we show a 7-step, 3-pot synthesis of the antiviral nirmatrelvir, arriving at the targeted drug in 70% overall yield. Critical amide bond-forming steps utilize new green technology that completely avoids traditional peptide coupling reagents, as well as epimerization of stereocenters. Likewise, dehydration of a primary amide to the corresponding nitrile is performed and avoids use of the Burgess reagent and chlorinated solvents. DFT calculations for various conformers of nirmatrelvir predict that two rotamers about the tertiary amide would be present with an unusually high rotational barrier. Direct comparisons with the original literature procedures highlight both the anticipated decrease in cost and environmental footprint associated with this route, potentially expanding the availability of this important drug worldwide.

15.
ACS Sustain Chem Eng ; 10(50): 16896-16902, 2022 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-36569493

RESUMEN

An 11-step, 8-pot synthesis of the antimalarial drug tafenoquine succinate was achieved in 42% overall yield using commercially available starting materials. Compared to the previous manufacturing processes that utilize environmentally egregious organic solvents and toxic reagents, the current route features a far greener (as measured by Sheldon's E Factors) and likely more economically attractive sequence, potentially expanding the availability of this important drug worldwide.

16.
Angew Chem Int Ed Engl ; 61(39): e202209784, 2022 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-35921246

RESUMEN

New technology is reported that enables Negishi couplings to be run under sustainable, far greener conditions. Thus, ppm Pd-containing nanoparticles (NPs) have been developed that catalyze couplings in recyclable water under very mild conditions. These heterogeneous reactions involve loadings of Pd of typically only 2500 ppm (0.25 mol %). Highly functionalized aromatic and heteroaromatic bromides readily participate, including examples taken from the Merck Informer Library indicative of the functional group tolerance associated with these couplings. Direct comparisons with existing literature routes are made. Very low residual levels of Pd in newly formed products are to be expected, as determined by ICP-MS. The reagent involved has been extensively characterized via DLS, TEM, cryo-TEM, and EDX measurements.


Asunto(s)
Nanopartículas , Agua , Bromuros , Catálisis , Paladio
17.
Cannabis Cannabinoid Res ; 7(6): 777-789, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35787693

RESUMEN

Background: An oral route of administration for tetrahydrocannabinol (Δ9-THC) and cannabidiol (CBD) eliminates the harmful effects of smoking and has potential for efficacious cannabis delivery for therapeutic and recreational applications. We investigated the pharmacokinetics of CBD, Δ9-THC, 11-OH-THC, and 11-nor-9-carboxy-Δ9-THC (THC-COOH) in a novel oral delivery system, Solutech™, compared to medium-chain triglyceride-diluted cannabis oil (MCT-oil) in a healthy population. Materials and Methods: Thirty-two participants were randomized and divided into two study arms employing a comparator-controlled, parallel-study design. To evaluate the pharmacokinetics of Δ9-THC, CBD, 11-OH-THC, and THC-COOH, blood was collected at pre-dose (t=0) and 10, 20, 30, and 45, min and 1, 1.5, 2, 2.5, 3, 4, 5, 6, 8, 12, 24, and 48 h post-dose after a single dose of Solutech (10.0 mg Δ9-THC, 9.76 mg CBD) or MCT (10.0 mg Δ9-THC, 9.92 mg CBD). Heart rate and blood pressure were measured at 0.5, 1, 2, 4, 6, 8, 12, 24, and 48 h. Relationships between cannabis use history, body mass index, sex, and pharmacokinetic parameters were investigated. Safety was assessed before and at 48 h post-acute dose. Results: Acute consumption of Solutech provided a significantly greater maximum concentration (Cmax), larger elimination and absorption rate constants, faster time to Cmax and lag time, and half-life for all analytes compared to MCT-oil (p<0.001). In addition, cannabis use history had a significant influence on the pharmacokinetic parameters of CBD, Δ9-THC, 11-OH-THC, and THC-COOH. On average, participants with later age of first use had higher Δ9-THC, CBD, and THC-COOH Cmax and later time-to-Cmax and half-life for Δ9-THC, CBD, THC-COOH, and 11-OH-THC than those with earlier age of first use (p≤0.032). Those with more years of recreational cannabis use had higher area under the curve for Δ9-THC and CBD, Cmax for CBD, and longer 11-OH-THC half-life than those with less (p≤0.048). Conclusion: This study demonstrated that consumption of Solutech enhanced most pharmacokinetics parameters measured compared to MCT-oil. Participant's cannabis use history, including their age of first use and number of years using cannabis significantly impacted pharmacokinetic parameters investigated. Acute consumption of both products was found to be safe and well tolerated. The results suggest that Solutech may optimize bioavailability from cannabis formulations.


Asunto(s)
Cannabidiol , Cannabis , Humanos , Dronabinol , Fumar , Proyectos de Investigación
18.
Org Lett ; 24(18): 3342-3346, 2022 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-35504038

RESUMEN

Two routes to the antimalarial drug Pyronaridine are described. The first is a linear sequence that includes a two-step, one-pot transformation in an aqueous surfactant medium, leading to an overall yield of 87%. Alternatively, a convergent route utilizes a telescoped three-step sequence involving an initial neat reaction, followed by two steps performed under aqueous micellar catalysis conditions affording Pyronaridine in 95% overall yield. Comparisons to existing literature performed exclusively in organic solvents reveal a 5-fold decrease in environmental impact as measured by E Factors.


Asunto(s)
Antimaláricos , Análisis Costo-Beneficio , Naftiridinas
19.
Chem Sci ; 13(5): 1440-1445, 2022 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-35222928

RESUMEN

Esterification in an aqueous micellar medium is catalyzed by a commercially available lipase in the absence of any co-factors. The presence of only 2 wt% designer surfactant, TPGS-750-M, assists in a 100% selective enzymatic process in which only primary alcohols participate (in a 1 : 1 ratio with carboxylic acid). An unexpected finding is also disclosed where the simple additive, PhCF3 (1 equiv. vs. substrate), appears to significantly extend the scope of usable acid/alcohol combinations. Taken together, several chemo- and bio-catalyzed 1-pot, multi-step reactions can now be performed in water.

20.
Org Lett ; 23(20): 8114-8118, 2021 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-34613746

RESUMEN

Commercially available Pd/C can be used as a catalyst for nitro group reductions with only 0.4 mol % Pd loading. The reaction can be performed using either silane as a transfer hydrogenating agent or simply a hydrogen balloon (∼1 atm pressure). With this technology, a series of nitro compounds was reduced to the desired amines in high chemical yields. Both the catalyst and surfactant were recycled several times without loss of reactivity.


Asunto(s)
Aminas/química , Nitrocompuestos/síntesis química , Catálisis , Hidrogenación , Estructura Molecular , Nitrocompuestos/química , Preparaciones Farmacéuticas , Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...