Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 13(1): 6335, 2022 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-36284097

RESUMEN

Synaptic functions are mediated and modulated by a coordinated choreography of protein conformational changes and interactions in response to intracellular calcium dynamics. Time-lapse Förster resonance energy transfer can be used to study the dynamics of both conformational changes and protein-protein interactions simultaneously under physiological conditions if two resonance energy transfer reactions can be multiplexed. Binary-FRET is a technique developed to independently monitor the dynamics of calcium-calmodulin dependent protein kinase-II catalytic-domain pair separation in the holoenzyme, and its role in establishing activity-dependent holoenzyme affinity for the NR2B binding fragment of the N-methyl-D-aspartate receptor. Here we show that a transient excited-state intermediate exists where paired catalytic-domains in the holoenzyme first separate prior to subsequent NR2B association. Additionally, at non-saturating free calcium concentrations, our multiplexed approach reveals that the holoenzyme exhibits a biochemical form of plasticity, calcium dependent adaptation of T-site ligand binding affinity.


Asunto(s)
Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina , Receptores de N-Metil-D-Aspartato , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Transferencia Resonante de Energía de Fluorescencia , Calcio/metabolismo , Ligandos , Unión Proteica , Fosforilación , Holoenzimas/metabolismo
2.
Neuropharmacology ; 205: 108916, 2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-34896118

RESUMEN

Several forms of endocannabinoid (eCB) signaling have been described in the dorsal lateral striatum (DLS), however most experimental protocols used to generate eCBs do not recapitulate the firing patterns of striatal-projecting pyramidal neurons in the cortex or firing patterns of striatal medium spiny neurons. Therefore, it is unclear if current models of eCB signaling in the DLS provide a reliable description of mechanisms engaged under physiological conditions. To address this uncertainty, we investigated mechanisms of eCB mobilization following brief synaptic stimulation that mimics in vivo patterns of neural activity in the DLS. To monitor eCB mobilization, the novel genetically encoded fluorescent eCB biosensor, GRABeCB2.0, was expressed presynaptically in corticostriatal afferents of C57BL6J mice and evoked eCB transients were measured in the DLS using a brain slice photometry technique. We found that brief bouts of synaptic stimulation induce long lasting eCB transients that were generated predominantly by 2-arachidonoylglycerol (2-AG) mobilization. Efficient 2-AG mobilization required coactivation of AMPA and NMDA ionotropic glutamate receptors and muscarinic M1 receptors. Dopamine D2 receptors expressed on cholinergic interneurons inhibited 2-AG mobilization by inhibiting acetylcholine release. Collectively, these data uncover unrecognized mechanisms underlying 2-AG mobilization in the DLS.


Asunto(s)
Acetilcolina/metabolismo , Ácidos Araquidónicos/metabolismo , Dopamina/metabolismo , Endocannabinoides/metabolismo , Glicéridos/metabolismo , Neostriado/metabolismo , Receptores Ionotrópicos de Glutamato/metabolismo , Receptores Muscarínicos/metabolismo , Animales , Técnicas Biosensibles , Femenino , Vectores Genéticos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Sinapsis
3.
Nat Biotechnol ; 40(5): 787-798, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-34764491

RESUMEN

Endocannabinoids (eCBs) are retrograde neuromodulators with important functions in a wide range of physiological processes, but their in vivo dynamics remain largely uncharacterized. Here we developed a genetically encoded eCB sensor called GRABeCB2.0. GRABeCB2.0 consists of a circular-permutated EGFP and the human CB1 cannabinoid receptor, providing cell membrane trafficking, second-resolution kinetics with high specificity for eCBs, and shows a robust fluorescence response at physiological eCB concentrations. Using GRABeCB2.0, we monitored evoked and spontaneous changes in eCB dynamics in cultured neurons and acute brain slices. We observed spontaneous compartmentalized eCB transients in cultured neurons and eCB transients from single axonal boutons in acute brain slices, suggesting constrained, localized eCB signaling. When GRABeCB2.0 was expressed in the mouse brain, we observed foot shock-elicited and running-triggered eCB signaling in the basolateral amygdala and hippocampus, respectively. In a mouse model of epilepsy, we observed a spreading wave of eCB release that followed a Ca2+ wave through the hippocampus. GRABeCB2.0 is a robust probe for eCB release in vivo.


Asunto(s)
Endocannabinoides , Neuronas , Animales , Encéfalo/metabolismo , Endocannabinoides/metabolismo , Hipocampo/fisiología , Ratones , Neuronas/metabolismo , Transducción de Señal
4.
Curr Protoc Neurosci ; 94(1): e108, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33232577

RESUMEN

Fluorescence lifetime microscopy (FLIM) and Förster's resonance energy transfer (FRET) are advanced optical tools that neuroscientists can employ to interrogate the structure and function of complex biological systems in vitro and in vivo using light. In neurobiology they are primarily used to study protein-protein interactions, to study conformational changes in protein complexes, and to monitor genetically encoded FRET-based biosensors. These methods are ideally suited to optically monitor changes in neurons that are triggered optogenetically. Utilization of this technique by neuroscientists has been limited, since a broad understanding of FLIM and FRET requires familiarity with the interactions of light and matter on a quantum mechanical level, and because the ultra-fast instrumentation used to measure fluorescent lifetimes and resonance energy transfer are more at home in a physics lab than in a biology lab. In this overview, we aim to help neuroscientists overcome these obstacles and thus feel more comfortable with the FLIM-FRET method. Our goal is to aid researchers in the neuroscience community to achieve a better understanding of the fundamentals of FLIM-FRET and encourage them to fully leverage its powerful ability as a research tool. Published 2020. U.S. Government.


Asunto(s)
Transferencia Resonante de Energía de Fluorescencia/métodos , Neurociencias/métodos , Dominios y Motivos de Interacción de Proteínas/fisiología , Animales , Transferencia Resonante de Energía de Fluorescencia/tendencias , Humanos , Microscopía Fluorescente/métodos , Microscopía Fluorescente/tendencias , Neurociencias/tendencias , Conformación Proteica
5.
Alcohol ; 82: 11-21, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31233806

RESUMEN

Chronic alcohol exposure is associated with increased reliance on behavioral strategies involving the dorsolateral striatum (DLS), including habitual or stimulus-response behaviors. Presynaptic G protein-coupled receptors (GPCRs) on cortical and thalamic inputs to the DLS inhibit glutamate release, and alcohol-induced disruption of presynaptic GPCR function represents a mechanism by which alcohol could disinhibit DLS neurons and thus bias toward use of DLS-dependent behaviors. Metabotropic glutamate receptor 2 (mGlu2) is a Gi/o-coupled GPCR that robustly modulates glutamate transmission in the DLS, inducing long-term depression (LTD) at both cortical and thalamic synapses. Loss of mGlu2 function has recently been associated with increased ethanol seeking and consumption, but the ability of alcohol to produce adaptations in mGlu2 function in the DLS has not been investigated. We exposed male C57Bl/6J mice to a 2-week chronic intermittent ethanol (CIE) paradigm followed by a brief withdrawal period, then used whole-cell patch clamp recordings of glutamatergic transmission in the striatum to assess CIE effects on mGlu2-mediated synaptic plasticity. We report that CIE differentially disrupts mGlu2-mediated long-term depression in the DLS vs. dorsomedial striatum (DMS). Interestingly, CIE-induced impairment of mGlu2-LTD in the dorsolateral striatum is only observed when alcohol exposure occurs during adolescence. Incubation of striatal slices from CIE-exposed adolescent mice with a positive allosteric modulator of mGlu2 fully rescues mGlu2-LTD. In contrast to the 2-week CIE paradigm, acute exposure of striatal slices to ethanol concentrations that mimic ethanol levels during CIE exposure fails to disrupt mGlu2-LTD. We did not observe a reduction of mGlu2 mRNA or protein levels following CIE exposure, suggesting that alcohol effects on mGlu2 occur at the functional level. Our findings contribute to growing evidence that adolescents are uniquely vulnerable to certain alcohol-induced neuroadaptations, and identify enhancement of mGlu2 activity as a strategy to reverse the effects of adolescent alcohol exposure on DLS physiology.


Asunto(s)
Consumo de Bebidas Alcohólicas/efectos adversos , Trastornos Relacionados con Alcohol/metabolismo , Cuerpo Estriado/efectos de los fármacos , Etanol/toxicidad , Ácido Glutámico/metabolismo , Depresión Sináptica a Largo Plazo/efectos de los fármacos , Receptores de Glutamato Metabotrópico/metabolismo , Transmisión Sináptica/efectos de los fármacos , Factores de Edad , Consumo de Bebidas Alcohólicas/metabolismo , Consumo de Bebidas Alcohólicas/fisiopatología , Trastornos Relacionados con Alcohol/genética , Trastornos Relacionados con Alcohol/fisiopatología , Animales , Cuerpo Estriado/metabolismo , Cuerpo Estriado/fisiopatología , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Receptores de Glutamato Metabotrópico/genética , Factores de Tiempo
6.
Front Neural Circuits ; 12: 68, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30254571

RESUMEN

Cre-LoxP conditional knockout animals have become a prominent tool to understand gene function in discrete cell-types and neural circuits. However, this technology has significant limitations including off target cre-dependent recombination. The Rgs9cre strain has been used to generate a conditional knockout in striatal medium spiny neurons, but, as presented in the current study, off target recombination in the germline results in nonconditional deletion of LoxP alleles. Using a Rem2 conditional allele, germline deletion (GD) was observed in a sex dependent manner. When Cre and LoxP alleles were co-inherited from the female parent, 27 of 29 LoxP alleles were recombined, but when co-inherited from the male parent, 5 of 36 LoxP alleles were recombined. Rem2 expression measured by RT-qPCR confirmed nonconditional recombination in extrastriatal nuclei. Cre-LoxP is a powerful technique to modify genomic DNA (gDNA), however careful characterization of these mice is required to confirm control of conditional recombination.


Asunto(s)
Cuerpo Estriado , Proteínas de la Matriz Extracelular , Neuronas GABAérgicas , Eliminación de Gen , Mutación de Línea Germinal , Integrasas , Proteína-Lisina 6-Oxidasa , Proteínas RGS , Alelos , Animales , Ratones , Ratones Noqueados
7.
Brain Sci ; 7(12)2017 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-29186065

RESUMEN

Excessive alcohol consumption leads to neurodegeneration, which contributes to cognitive decline that is associated with alcohol use disorders (AUDs). The endocannabinoid system has been implicated in the development of AUDs, but little is known about how the neurotoxic effects of alcohol impact the endocannabinoid system. Therefore, the current study investigated the effects of neurotoxic, binge-like alcohol exposure on components of the endocannabinoid system and related N-acylethanolamines (NAEs), and then evaluated the efficacy of fatty acid amide hydrolase (FAAH) inhibition on attenuating alcohol-induced neurodegeneration. Male rats were administered alcohol according to a binge model, which resulted in a transient decrease in [³H]-CP-55,940 binding in the entorhinal cortex and hippocampus following two days, but not four days, of treatment. Furthermore, binge alcohol treatment did not change the tissue content of the three NAEs quantified, including the endocannabinoid and anandamide. In a separate study, the FAAH inhibitor, URB597 was administered to rats during alcohol treatment and neuroprotection was assessed by FluoroJade B (FJB) staining. The administration of URB597 during binge treatment did not significantly reduce FJB+ cells in the entorhinal cortex or hippocampus, however, a follow up "target engagement" study found that NAE augmentation by URB597 was impaired in alcohol intoxicated rats. Thus, potential alcohol induced alterations in URB597 pharmacodynamics may have contributed to the lack of neuroprotection by FAAH inhibition.

8.
Sci Rep ; 6: 25137, 2016 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-27118437

RESUMEN

Rem2 is a member of the RGK subfamily of RAS small GTPases. Rem2 inhibits high voltage activated calcium channels, is involved in synaptogenesis, and regulates dendritic morphology. Rem2 is the primary RGK protein expressed in the nervous system, but to date, the precise expression patterns of this protein are unknown. In this study, we characterized Rem2 expression in the mouse nervous system. In the CNS, Rem2 mRNA was detected in all regions examined, but was enriched in the striatum. An antibody specific for Rem2 was validated using a Rem2 knockout mouse model and used to show abundant expression in striatonigral and striatopallidal medium spiny neurons but not in several interneuron populations. In the PNS, Rem2 was abundant in a subpopulation of neurons in the trigeminal and dorsal root ganglia, but was absent in sympathetic neurons of superior cervical ganglia. Under basal conditions, Rem2 was subject to post-translational phosphorylation, likely at multiple residues. Further, Rem2 mRNA and protein expression peaked at postnatal week two, which corresponds to the period of robust neuronal maturation in rodents. This study will be useful for elucidating the functions of Rem2 in basal ganglia physiology.


Asunto(s)
Ganglios Basales/metabolismo , Proteínas de Unión al GTP Monoméricas/genética , Proteínas de Unión al GTP Monoméricas/metabolismo , Animales , Regulación del Desarrollo de la Expresión Génica , Técnicas de Inactivación de Genes , Ratones , Sistema Nervioso/metabolismo , Fosforilación , Procesamiento Proteico-Postraduccional , Ganglio del Trigémino/metabolismo
9.
J Pharm Anal ; 4(4): 234-241, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25506470

RESUMEN

Reported concentrations for endocannabinoids and related lipids in biological tissues can vary greatly; therefore, methods used to quantify these compounds need to be validated. This report describes a method to quantify anandamide (AEA), oleoylethanolamide (OEA) and palmitoylethanolamide (PEA) from rodent brain tissue. Analytes were extracted using acetonitrile without further sample clean up, resolved on a C18 reverse-phase column using a gradient mobile phase and detected using electrospray ionization in positive selected ion monitoring mode on a single quadrupole mass spectrometer. The method produced high recovery rates for AEA, OEA and PEA, ranging from 98.1% to 106.2%, 98.5% to 102.2% and 85.4% to 89.5%, respectively. The method resulted in adequate sensitivity with a lower limit of quantification for AEA, OEA and PEA of 1.4 ng/mL, 0.6 ng/mL and 0.5 ng/mL, respectively. The method was reproducible as intraday and interday accuracies and precisions were under 15%. This method was suitable for quantifying AEA, OEA and PEA from rat brain following pharmacological inhibition of fatty acid amide hydrolase.

10.
Artículo en Inglés | MEDLINE | ID: mdl-24842804

RESUMEN

Adult neurogenesis is now widely accepted as an important contributor to hippocampal integrity and function but also dysfunction when adult neurogenesis is affected in neuropsychiatric diseases such as alcohol use disorders. Excessive alcohol consumption, the defining characteristic of alcohol use disorders, results in a variety of cognitive and behavioral impairments related wholly or in part to hippocampal structure and function. Recent preclinical work has shown that adult neurogenesis may be one route by which alcohol produces hippocampal neuropathology. Alcohol is a pharmacologically promiscuous drug capable of interfering with adult neurogenesis through multiple mechanisms. This review will discuss the primary mechanisms underlying alcohol-induced changes in adult hippocampal neurogenesis including alcohol's effects on neurotransmitters, CREB and its downstream effectors, and the neurogenic niche.


Asunto(s)
Depresores del Sistema Nervioso Central/farmacología , Etanol/farmacología , Hipocampo/efectos de los fármacos , Neurogénesis/efectos de los fármacos , Trastornos Relacionados con Alcohol/fisiopatología , Animales , Hipocampo/crecimiento & desarrollo , Hipocampo/fisiopatología , Humanos , Neurogénesis/fisiología
11.
Pharmacol Biochem Behav ; 111: 120-7, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24012796

RESUMEN

Excessive alcohol consumption, characteristic of alcohol use disorders, results in neurodegeneration and behavioral and cognitive impairments that are hypothesized to contribute to the chronic and relapsing nature of alcoholism. Therefore, the current study aimed to advance the preclinical development of transdermal delivery of cannabidiol (CBD) for the treatment of alcohol-induced neurodegeneration. In Experiment 1, 1.0%, 2.5% and 5.0% CBD gels were evaluated for neuroprotection. The 5.0% CBD gel resulted in a 48.8% reduction in neurodegeneration in the entorhinal cortex assessed by Fluoro-Jade B (FJB), which trended to statistical significance (p=0.069). Treatment with the 5.0% CBD gel resulted in day 3 CBD plasma concentrations of ~100.0 ng/mL so this level was used as a target concentration for development of an optimized gel formulation. Experiment 2 tested a next generation 2.5% CBD gel formulation, which was compared to CBD administration by intraperitoneal injection (IP; 40.0 mg/kg/day). This experiment found similar magnitudes of neuroprotection following both routes of administration; transdermal CBD decreased FJB+ cells in the entorhinal cortex by 56.1% (p<0.05), while IP CBD resulted in a 50.6% (p<0.05) reduction in FJB+ cells. These results demonstrate the feasibility of using CBD transdermal delivery systems for the treatment of alcohol-induced neurodegeneration.


Asunto(s)
Trastornos Relacionados con Alcohol/tratamiento farmacológico , Cannabidiol/administración & dosificación , Modelos Animales de Enfermedad , Enfermedades Neurodegenerativas/etiología , Administración Cutánea , Trastornos Relacionados con Alcohol/complicaciones , Animales , Cannabidiol/uso terapéutico , Masculino , Enfermedades Neurodegenerativas/tratamiento farmacológico , Ratas , Ratas Sprague-Dawley
12.
J Neurotrauma ; 29(7): 1455-68, 2012 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-22352953

RESUMEN

Compensatory neural plasticity occurs in both hemispheres following unilateral cortical damage incurred by seizures, stroke, and focal lesions. Plasticity is thought to play a role in recovery of function, and is important for the utility of rehabilitation strategies. Such effects have not been well described in models of traumatic brain injury (TBI). We examined changes in immunoreactivity for neural structural and plasticity-relevant proteins in the area surrounding a controlled cortical impact (CCI) to the forelimb sensorimotor cortex (FL-SMC), and in the contralateral homotopic cortex over time (3-28 days). CCI resulted in considerable motor deficits in the forelimb contralateral to injury, and increased reliance on the ipsilateral forelimb. The density of dendritic processes, visualized with immunostaining for microtubule-associated protein-2 (MAP-2), were bilaterally decreased at all time points. Synaptophysin (SYN) immunoreactivity increased transiently in the injured hemisphere, but this reflected an atypical labeling pattern, and it was unchanged in the contralateral hemisphere compared to uninjured controls. The lack of compensatory neuronal structural plasticity in the contralateral homotopic cortex, despite behavioral asymmetries, is in contrast to previous findings in stroke models. In the cortex surrounding the injury (but not the contralateral cortex), decreases in dendrites were accompanied by neurodegeneration, as indicated by Fluoro-Jade B (FJB) staining, and increased expression of the growth-inhibitory protein Nogo-A. These studies indicate that, following unilateral CCI, the cortex undergoes neuronal structural degradation in both hemispheres out to 28 days post-injury, which may be indicative of compromised compensatory plasticity. This is likely to be an important consideration in designing therapeutic strategies aimed at enhancing plasticity following TBI.


Asunto(s)
Lesiones Encefálicas/patología , Lesiones Encefálicas/fisiopatología , Dendritas/fisiología , Corteza Motora/patología , Corteza Motora/fisiopatología , Corteza Somatosensorial/patología , Corteza Somatosensorial/fisiopatología , Animales , Dendritas/patología , Modelos Animales de Enfermedad , Miembro Anterior/inervación , Miembro Anterior/patología , Masculino , Plasticidad Neuronal/fisiología , Ratas , Ratas Long-Evans
13.
Alcohol ; 44(1): 39-56, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-20113873

RESUMEN

This review discusses the contributions of a newly considered form of plasticity, the ongoing production of new neurons from neural stem cells, or adult neurogenesis, within the context of neuropathologies that occur with excessive alcohol intake in the adolescents. Neural stem cells and adult neurogenesis are now thought to contribute to the structural integrity of the hippocampus, a limbic system region involved in learning, memory, behavioral control, and mood. In adolescents with alcohol use disorders (AUDs), the hippocampus appears to be particularly vulnerable to the neurodegenerative effects of alcohol, but the role of neural stem cells and adult neurogenesis in alcoholic neuropathology has only recently been considered. This review encompasses a brief overview of neural stem cells and the processes involved in adult neurogenesis, how neural stem cells are affected by alcohol, and possible differences in the neurogenic niche between adults and adolescents. Specifically, what is known about developmental differences in adult neurogenesis between the adult and adolescent is gleaned from the literature, as well as how alcohol affects this process differently among the age groups. Finally, this review suggests differences that may exist in the neurogenic niche between adults and adolescents and how these differences may contribute to the susceptibility of the adolescent hippocampus to damage. However, many more studies are needed to discern whether these developmental differences contribute to the vulnerability of the adolescent to developing an AUD.


Asunto(s)
Células Madre Adultas/efectos de los fármacos , Consumo de Bebidas Alcohólicas/efectos adversos , Trastornos del Sistema Nervioso Inducidos por Alcohol/etiología , Depresores del Sistema Nervioso Central/efectos adversos , Etanol/efectos adversos , Hipocampo/efectos de los fármacos , Neurogénesis/efectos de los fármacos , Neuronas/efectos de los fármacos , Adolescente , Desarrollo del Adolescente/efectos de los fármacos , Adulto , Células Madre Adultas/patología , Factores de Edad , Consumo de Bebidas Alcohólicas/patología , Consumo de Bebidas Alcohólicas/fisiopatología , Trastornos del Sistema Nervioso Inducidos por Alcohol/patología , Trastornos del Sistema Nervioso Inducidos por Alcohol/fisiopatología , Diferenciación Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Hipocampo/crecimiento & desarrollo , Hipocampo/patología , Hipocampo/fisiopatología , Humanos , Neuronas/patología , Factores de Riesgo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...