Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Am Chem Soc ; 146(37): 25578-25588, 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39231366

RESUMEN

Using a new hexanucleating anildophosphine ligand tBuLH3 (1,3,5-C6H9(NHC6H3-5-F-2-P(tBu)2)3), the all-monovalent [FeI3] compound (tBuL)Fe3 (1) was isolated and characterized by X-ray diffraction analysis, SQUID magnetometry, 57Fe Mössbauer spectroscopy, and cyclic voltammetry. The molecular structure of 1 reveals very close Fe-Fe distances of 2.3825(7), 2.4146(8), and 2.3913(8) Å which results in significant Fe-Fe interactions and a maximum high-spin S = 9/2 spin state as determined by SQUID magnetometry and further supported by quantum chemical calculations. Compound 1 mediates the multielectron, oxidative atom transfer from inorganic azide ([Bu4N][N3]), cyanate (Na[NCO]), and phosphonate (Na(dioxane)2.5[PCO]) to afford the [Fe3]-nitrido (N3-) and [Fe3]-phosphido (P3-) pnictides, (tBuL)Fe3(µ3-N) (2) and [(tBuL)Fe3(µ3-P)(CO)]- (3), respectively. Compounds 1-3 exhibit rich electrochemical behavior with three (for 1), four (for 2) and five (for 3) distinct redox events being observed in the cyclic voltammograms of these compounds. Finally, the all-monovalent 1 and the formally FeII/FeII/FeI compound 3, were investigated by alternating current (ac) SQUID magnetometry, revealing slow magnetic relaxation in both compounds, with 3 being found to be a unique example of a [Fe3]-phosphido single-molecule magnet having an energy barrier relaxation reversal of U = 30.7(6) cm-1 in the absence of an external magnetic field. This study demonstrates the utility of an all low-valent polynuclear cluster to perform multielectron redox chemistry and exemplifies the redox flexibility and unique physical properties that are present in the corresponding midvalent oxidation products.

2.
Angew Chem Int Ed Engl ; 62(50): e202313156, 2023 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-37830508

RESUMEN

Metalation of the polynucleating ligand F,tbs LH6 (1,3,5-C6 H9 (NC6 H3 -4-F-2-NSiMe2 t Bu)3 ) with two equivalents of Zn(N(SiMe3 )2 )2 affords the dinuclear product (F,tbs LH2 )Zn2 (1), which can be further deprotonated to yield (F,tbs L)Zn2 Li2 (OEt2 )4 (2). Transmetalation of 2 with NiCl2 (py)2 yields the heterometallic, trinuclear cluster (F,tbs L)Zn2 Ni(py) (3). Reduction of 3 with KC8 affords [KC222 ][(F,tbs L)Zn2 Ni] (4) which features a monovalent Ni centre. Addition of 1-adamantyl azide to 4 generates the bridging µ3 -nitrenoid adduct [K(THF)3 ][(F,tbs L)Zn2 Ni(µ3 -NAd)] (5). EPR spectroscopy reveals that the anionic cluster possesses a doublet ground state (S = 1 / 2 ${{ 1/2 }}$ ). Cyclic voltammetry of 5 reveals two fully reversible redox events. The dianionic nitrenoid [K2 (THF)9 ][(F,tbs L)Zn2 Ni(µ3 -NAd)] (6) was isolated and characterized while the neutral redox isomer was observed to undergo both intra- and intermolecular H-atom abstraction processes. Ni K-edge XAS studies suggest a divalent oxidation state for the Ni centres in both the monoanionic and dianionic [Zn2 Ni] nitrenoid complexes. However, DFT analysis suggests Ni-borne oxidation for 5.

3.
ACS Nano ; 16(3): 4479-4486, 2022 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-35274922

RESUMEN

Ligand-stabilized colloidal metallic nanoparticles are prized in science and technology for their electronic properties and tunable surface chemistry. However, little is known about the interplay between these two aspects of the particles. A particularly glaring absence concerns the density of electronic states, which is fundamental in explaining the electronic properties of solid-state materials. In part, this absence owes to the difficulty in the experimental determination of the parameter for colloidal systems. Herein, we demonstrate the density of electronic states for metallic colloidal particles can be determined from their magnetic susceptibility, measured using nuclear magnetic resonance spectroscopy. For this study, we use small alkanethiolate protected gold nanoparticles and demonstrate that changes in the surface chemistry, as subtle as changes in alkane chain length, can result inasmuch as a 3-fold change in the density of states at the Fermi level for these particles. This suggests that surface chemistry can be a powerful tool for controlling the electronic behavior of the materials to which they are attached, and suggests a paradigm that could be applied to other metallic systems, such as other metal nanoparticles, doped semiconductor systems, and even 2D metals. For all of these metallic systems, the Evans method can serve as a simple means to probe the density of states near the Fermi level.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...