Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Langmuir ; 23(20): 10034-9, 2007 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-17718526

RESUMEN

Poly(N-ethyl-4-vinylpyridinium bromide) (a polycation with a degree of polymerization of 1100) was adsorbed onto liposomes composed of egg lecithin with a 0.05-0.20 molar fraction (nu) of anionic headgroups provided by cardiolipin (a doubly anionic lipid). According to electrophoretic mobility data, this led to total charge neutralization of the liposomes, whereupon the liposomes adopted a positive charge as additional polymer continued to adsorb. Although the liposomes aggregated at the charge-neutralization point, they disassembled into individual liposomes after becoming positively charged. The degree of polymer adsorption was shown to reach a limit. Thus, by measuring the free polymer content in a liposome suspension, it was possible to determine the polymer concentration at which the liposome surface became saturated with polymer. Beyond this point, an electrostatic/steric barrier at the surface suppressed further adsorption. Dynamic light scattering studies of liposomes with and without adsorbed polymer allowed calculation of the polymer film thickness which ranged from 22 to 35 nm as the molar fraction of cardiolipin (nu) increased from 0.05 to 0.20. The greater the content on the anionic lipid in the bilayer, the thicker the polymer film. The maximum number of polymer molecules adsorbed onto the liposomes was estimated: 1-2 molecules for nu = 0.05; 3 molecules for nu = 0.1; 4- molecules for nu = 0.15; and 6 molecules for nu = 0.2. The polymer appears to lie on the liposome surface, rather than embedding into the bilayer, because addition of NaCl easily dislodges the polymer from the liposome into the bulk water.


Asunto(s)
Aniones/química , Cationes/química , Liposomas , Estructura Molecular , Luz , Dispersión de Radiación
2.
Biochemistry (Mosc) ; 66(2): 154-62, 2001 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-11255122

RESUMEN

The relationship between processes of thermal denaturation and heat-induced aggregation of tobacco mosaic virus (TMV) coat protein (CP) was studied. Judging from differential scanning calorimetry "melting" curves, TMV CP in the form of a trimer-pentamer mixture ("4S-protein") has very low thermal stability, with a transition temperature at about 40 degrees C. Thermally denatured TMV CP displayed high propensity for large (macroscopic) aggregate formation. TMV CP macroscopic aggregation was strongly dependent on the protein concentration and solution ionic strength. By varying phosphate buffer molarity, it was possible to merge or to separate the denaturation and aggregation processes. Using far-UV CD spectroscopy, it was found that on thermal denaturation TMV CP subunits are converted into an intermediate that retains about half of its initial alpha-helix content and possesses high heat stability. We suppose that this stable thermal denaturation intermediate is directly responsible for the formation of TMV CP macroscopic aggregates.


Asunto(s)
Proteínas de la Cápside , Proteínas Virales/química , Rastreo Diferencial de Calorimetría , Calor , Conformación Proteica , Desnaturalización Proteica , Espectrofotometría Ultravioleta , Proteínas Virales/aislamiento & purificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...