Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.813
Filtrar
1.
Environ Pollut ; 351: 124083, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38697244

RESUMEN

Widespread use of tetracycline (TC) results in its persistent residue and bioaccumulation in aquatic environments, posing a high toxicity to non-target organisms. In this study, a bimetal-doped composite material Ag3PO4/MIL-101(Fe,Cu) has been designed for the treatment of TC in aqueous solutions. As the molar ratio of Fe/Cu in composite is 1:1, the obtained material AP/MFe1Cu1 is placed in an aqueous environment under visible light irradiation in the presence of 3 mM peroxydisulfate (PDS), which forms a photo-Fenton-like catalytic system that can completely degrade TC (10 mg/L) within 60 min. Further, the degradation rate constant (0.0668 min-1) is 5.66 and 7.34 times higher than that of AP/MFe and AP/MCu, respectively, demonstrating a significant advantage over single metal-doped catalysts. DFT calculations confirm the strong adsorption capacity and activation advantage of PDS on the composite surface. Therefore, the continuous photogenerated electrons (e-) accelerate the activation of PDS and the production of SO4•-, resulting in the stripping of abundant photogenerated h + for TC oxidation. Meanwhile, the internal circulation of FeⅢ/FeⅡ and CuⅡ/CuⅢ in composite also greatly enhances the photo-Fenton-like catalytic stability. According to the competitive dynamic experiments, SO4•- have the greatest contribution to TC degradation (58.93%), followed by 1O2 (23.80%). The degradation intermediates (products) identified by high-performance liquid chromatography-mass spectrometry (HPLC/MS) technique indicate the involvement of various processes in TC degradation, such as dehydroxylation, deamination, N-demethylation, and ring opening. Furthermore, as the reaction proceeds, the toxicity of the intermediates produced during TC degradation gradually decreases, which can ensure the safety of the aquatic ecosystem. Overall, this work reveals the synergy mechanism of PDS catalysis and photocatalysis, as well as provides technical support for removal of TC-contaminated wastewater.

2.
Chem Sci ; 15(18): 6891-6896, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38725498

RESUMEN

Birefringent materials are of great significance to the development of modern optical technology; however, research on halide birefringent crystals with a wide transparent range remains limited. In this work, mercuric bromide (HgBr2) has been investigated for the first time as a promising birefringent material with a wide transparent window spanning from ultraviolet (UV) to far-infrared (far-IR) spectral regions (0.34-22.9 µm). HgBr2 has an exceptionally large birefringence (Δn, 0.235 @ 546 nm), which is 19.6 times that of commercial MgF2. The ordered linear motif [Br-Hg-Br] with high polarizability anisotropy within the molecule is the inherent source of excellent birefringence, making it an efficient building block for birefringent materials. In addition, HgBr2 can be easily grown under mild conditions and remain stable in air for prolonged periods. Studying the birefringent properties of HgBr2 crystals would provide new ideas for future exploration of wide-spectrum birefringent materials.

3.
Heliyon ; 10(9): e30523, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38726205

RESUMEN

Alzheimer's disease (AD) is a common neurodegenerative disease in the elderly, the exact pathogenesis of which remains incompletely understood, and effective preventive and therapeutic drugs are currently lacking. Cholesterol plays a vital role in cell membrane formation and neurotransmitter synthesis, and its abnormal metabolism is associated with the onset of AD. With the continuous advancement of imaging techniques and molecular biology methods, researchers can more accurately explore the relationship between cholesterol metabolism and AD. Elevated cholesterol levels may lead to vascular dysfunction, thereby affecting neuronal function. Additionally, abnormal cholesterol metabolism may affect the metabolism of ß-amyloid protein, thereby promoting the onset of AD. Brain cholesterol levels are regulated by multiple factors. This review aims to deepen the understanding of the subtle relationship between cholesterol homeostasis and AD, and to introduce the latest advances in cholesterol-regulating AD treatment strategies, thereby inspiring readers to contemplate deeply on this complex relationship. Although there are still many unresolved important issues regarding the risk of brain cholesterol and AD, and some studies may have opposite conclusions, further research is needed to enrich our understanding. However, these findings are expected to deepen our understanding of the pathogenesis of AD and provide important insights for the future development of AD treatment strategies targeting brain cholesterol homeostasis.

4.
J Am Chem Soc ; 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38728105

RESUMEN

The transformation of carbon dioxide (CO2) into functional materials has garnered considerable worldwide interest. Metal-organic frameworks (MOFs), as a distinctive class of materials, have made great contributions to CO2 capture and conversion. However, facile conversion of CO2 to stable porous MOFs for CO2 utilization remains unexplored. Herein, we present a facile methodology of using CO2 to synthesize stable zirconium-based MOFs. Two zirconium-based MOFs CO2-Zr-DEP and CO2-Zr-DEDP with face-centered cubic topology were obtained via a sequential desilylation-carboxylation-coordination reaction. The MOFs exhibit excellent crystallinity, as verified through powder X-ray diffraction and high-resolution transmission electron microscopy analyses. They also have notable porosity with high surface area (SBET up to 3688 m2 g-1) and good CO2 adsorption capacity (up to 12.5 wt %). The resulting MOFs have abundant alkyne functional moieties, confirmed through 13C cross-polarization/magic angle spinning nuclear magnetic resonance and Fourier transform infrared spectra. Leveraging the catalytic prowess of Ag(I) in diverse CO2-involved reactions, we incorporated Ag(I) into zirconium-based MOFs, capitalizing on their interactions with carbon-carbon π-bonds of alkynes, thereby forming a heterogeneous catalyst. This catalyst demonstrates outstanding efficiency in catalyzing the conversion of CO2 and propargylic alcohols into cyclic carbonates, achieving >99% yield at room temperature and atmospheric pressure conditions. Thus, this work provides a dual CO2 utilization strategy, encompassing the synthesis of CO2-based MOFs (20-24 wt % from CO2) and their subsequent application in CO2 capture and conversion processes. This approach significantly enhances overall CO2 utilization.

5.
Discov Oncol ; 15(1): 151, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38727789

RESUMEN

Heat shock protein 90α (Hsp90α), an important molecular chaperone, plays a crucial role in regulating the activity of various intracellular signaling pathways and maintaining the stability of various signaling transduction proteins. In cancer, the expression level of Hsp90α is often significantly upregulated and is recognized as one of the key factors in cancer cell survival and proliferation. Cell death can help achieve numerous purposes, such as preventing aging, removing damaged or infected cells, facilitating embryonic development and tissue repair, and modulating immune response. The expression of Hsp90α is closely associated with specific modes of cell death including apoptosis, necrotic apoptosis, and autophagy-dependent cell death, etc. This review discusses the new results on the relationship between expression of Hsp90α and cell death in cancer. Hsp90α is frequently overexpressed in cancer and promotes cancer cell growth, survival, and resistance to treatment by regulating cell death, rendering it a promising target for cancer therapy.

6.
Chem Biol Interact ; 396: 111038, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38719169

RESUMEN

Peritoneal metastasis is an important cause of high mortality and poor prognosis in colorectal cancer (CRC) patients. Therefore, the development of compounds with unique anti-CRC Peritoneal metastasis activities is urgently needed to improve the survival of CRC patients. Hydroxygenkwanin (HGK),a natural flavonoid compound, have been shown to display anti-inflammatory, antioxidant, antitumor, and immunoregulatory effects. Here, we employed CRC peritoneal metastasis mouse model with MC38 cells to examine the antitumor activity of HGK. The result showed that HGK not only inhibited peritoneal metastasis, but also significantly increased the proportion of M1-like macrophages while decreasing the proportion of M2-like macrophages within the tumor microenvironment (TME). Furthermore, we demonstrated that the inhibitory effect of HGK on peritoneal metastasis of CRC depended on macrophages in vitro and in vivo. Moreover, we revealed that HGK promoted the polarization of TAMs into M1-like macrophages and inhibited their polarization into M2-like macrophages in a LPS- or IL-4-induced bone marrow-derived macrophages (BMDMs) model and co-culture system. Finally, we also investigated the regulatory mechanism of HGK on TAMs polarization that HGK may active p-STAT5, p-NF-κB signaling in M1-like macrophages and inhibit p-STAT6, JMJD3, PPARγ expression in M2-like macrophages. Taken together, our findings suggest that HGK is a natural candidate for effective prevention of peritoneal metastasis in colorectal cancer, which provides a potential strategy for clinical treatment of colorectal cancer.

7.
Cell Rep Med ; : 101558, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38733986

RESUMEN

The investigation of the mechanisms behind p53 mutations in acute myeloid leukemia (AML) has been limited by the lack of suitable mouse models, which historically have resulted in lymphoma rather than leukemia. This study introduces two new AML mouse models. One model induces mutant p53 and Mdm2 haploinsufficiency in early development, showing the role of Mdm2 in myeloid-biased hematopoiesis and AML predisposition, independent of p53. The second model mimics clonal hematopoiesis by inducing mutant p53 in adult hematopoietic stem cells, demonstrating that the timing of p53 mutation determines AML vs. lymphoma development. In this context, age-related changes in hematopoietic stem cells (HSCs) collaborate with mutant p53 to predispose toward myeloid transformation rather than lymphoma development. Our study unveils new insights into the cooperative impact of HSC age, Trp53 mutations, and Mdm2 haploinsufficiency on clonal hematopoiesis and the development of myeloid malignancies.

8.
Adv Healthc Mater ; : e2401438, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38744050

RESUMEN

Brachytherapy stands as an essential clinical approach for combating locally advanced tumors. Here, an injectable brachytherapy hydrogel is developed for the treatment of both local and metastatic tumor. Fe-tannins nanoparticles are efficiently and stably radiolabeled with clinical used therapeutic radionuclides (such as 131I, 90Y, 177Lu and 225Ac) without a chelator, and then chemically cross-linked with 4-ArmPEG-SH to form brachytherapy hydrogel. Upon intratumoral administration, magnetic resonance imaging (MRI) signal from ferric ions embedded within the hydrogel directly correlates with the retention dosage of radionuclides, which can real-time monitor radionuclides emitting short-range rays in vivo without penetration limitation during brachytherapy. The hydrogel's design ensures the long-term tumor retention of therapeutic radionuclides, leading to the effective eradication of local tumor. Furthermore, the radiolabeled hydrogel is integrated with an adjuvant to synergize with immune checkpoint blocking therapy, thereby activating potent anti-tumor immune responses and inhibiting metastatic tumor growth. Therefore, this work presents an imageable brachytherapy hydrogel for real-time monitoring therapeutic process, and expands the indications of brachytherapy from treatment of localized tumors to metastatic tumors. This article is protected by copyright. All rights reserved.

9.
Biomaterials ; 309: 122608, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38744189

RESUMEN

Necroptotic immunogenic cell death (ICD) can activate the human immune system to treat the metastasis and recurrence of triple-negative breast cancer (TNBC). However, developing the necroptotic inducer and precisely delivering it to the tumor site is the key issue. Herein, we reported that the combination of shikonin (SHK) and chitosan silver nanoparticles (Chi-Ag NPs) effectively induced ICD by triggering necroptosis in 4T1 cells. Moreover, to address the lack of selectivity of drugs for in vivo application, we developed an MUC1 aptamer-targeted nanocomplex (MUC1@Chi-Ag@CPB@SHK, abbreviated as MUC1@ACS) for co-delivering SHK and Chi-Ag NPs. The accumulation of MUC1@ACS NPs at the tumor site showed a 6.02-fold increase compared to the free drug. Subsequently, upon reaching the tumor site, the acid-responsive release of SHK and Chi-Ag NPs from MUC1@ACS NPs cooperatively induced necroptosis in tumor cells by upregulating the expression of RIPK3, p-RIPK3, and tetrameric MLKL, thereby effectively triggering ICD. The sequential maturation of dendritic cells (DCs) subsequently enhanced the infiltration of CD8+ and CD4+ T cells in tumors, while inhibiting regulatory T cells (Treg cells), resulting in the effective treatment of primary and distal tumor growth and the inhibition of TNBC metastasis. This work highlights the importance of nanoparticles in mediating drug interactions during necroptotic ICD.

10.
Neuropharmacology ; : 109988, 2024 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-38744401

RESUMEN

Neuropathic pain (NP) is usually treated with analgesics and symptomatic therapy with poor efficacy and numerous side effects, highlighting the urgent need for effective treatment strategies. Recent studies have reported an important role for peroxisome proliferator-activated receptor alpha (PPARα) in regulating metabolism as well as inflammatory responses. Through pain behavioral assessment, we found that activation of PPARα prevented chronic constriction injury (CCI)-induced mechanical allodynia and thermal hyperalgesia. In addition, PPARα ameliorated inflammatory cell infiltration at the injury site and decreased microglial activation, NOD-like receptor protein 3 (NLRP3) inflammasome production, and spinal dendritic spine density, as well as improved serum and spinal cord metabolic levels in mice. Administration of PPARα antagonists eliminates the analgesic effect of PPARα agonists. PPARα relieves NP by inhibiting neuroinflammation and functional synaptic plasticity as well as modulating metabolic mechanisms, suggesting that PPARα may be a potential molecular target for NP alleviation. However, the effects of PPARα on neuroinflammation and synaptic plasticity should be further explored.

11.
Cell Death Dis ; 15(5): 332, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38740744

RESUMEN

Ovarian cancer (OV) poses a significant challenge in clinical settings due to its difficulty in early diagnosis and treatment resistance. FOXP4, belonging to the FOXP subfamily, plays a pivotal role in various biological processes including cancer, cell cycle regulation, and embryonic development. However, the specific role and importance of FOXP4 in OV have remained unclear. Our research showed that FOXP4 is highly expressed in OV tissues, with its elevated levels correlating with poor prognosis. We further explored FOXP4's function through RNA sequencing and functional analysis in FOXP4-deficient cells, revealing its critical role in activating the Wnt signaling pathway. This activation exacerbates the malignant phenotype in OV. Mechanistically, FOXP4 directly induces the expression of protein tyrosine kinase 7 (PTK7), a Wnt-binding receptor tyrosine pseudokinase, which causes abnormal activation of the Wnt signaling pathway. Disrupting the FOXP4-Wnt feedback loop by inactivating the Wnt signaling pathway or reducing FOXP4 expression resulted in the reduction of the malignant phenotype of OV cells, while restoring PTK7 expression reversed this effect. In conclusion, our findings underscore the significance of the FOXP4-induced Wnt pathway activation in OV, suggesting the therapeutic potential of targeting this pathway in OV treatment.


Asunto(s)
Factores de Transcripción Forkhead , Neoplasias Ováricas , Proteínas Tirosina Quinasas Receptoras , Vía de Señalización Wnt , Humanos , Femenino , Neoplasias Ováricas/patología , Neoplasias Ováricas/metabolismo , Neoplasias Ováricas/genética , Factores de Transcripción Forkhead/metabolismo , Factores de Transcripción Forkhead/genética , Proteínas Tirosina Quinasas Receptoras/metabolismo , Proteínas Tirosina Quinasas Receptoras/genética , Línea Celular Tumoral , Animales , Moléculas de Adhesión Celular/metabolismo , Moléculas de Adhesión Celular/genética , beta Catenina/metabolismo , Regulación Neoplásica de la Expresión Génica , Ratones , Ratones Desnudos , Proliferación Celular
12.
PLoS One ; 19(5): e0302100, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38718066

RESUMEN

BACKGROUND: M-type phospholipase A2 receptor (PLA2R) is a major auto-antigen of primary membranous nephropathy(PMN). Anti-PLA2R antibody levels are closely associated with disease severity and therapeutic effectiveness. Analysis of PLA2R antigen epitope reactivity may have a greater predictive value for remission compared with total PLA2R-antibody level. This study aims to elucidate the relationship between domain-specific antibody levels and clinical outcomes of PMN. METHODS: This retrospective analysis included 87 patients with PLA2R-associated PMN. Among them, 40 and 47 were treated with rituximab (RTX) and cyclophosphamide (CTX) regimen, respectively. The quantitative detection of -immunoglobulin G (IgG)/-IgG4 targeting PLA2R and its epitope levels in the serum of patients with PMN were obtained through time-resolved fluorescence immunoassays and served as biomarkers in evaluating the treatment effectiveness. A predictive PMN remission possibility nomogram was developed using multivariate logistic regression analysis. Discrimination in the prediction model was assessed using the area under the receiver operating characteristic curve (AUC-ROC).Bootstrap ROC was used to evaluate the performance of the prediction model. RESULTS: After a 6-month treatment period, the remission rates of proteinuria, including complete remission and partial remission in the RTX and CTX groups, were 70% and 70.21% (P = 0.983), respectively. However, there was a significant difference in immunological remission in the PLA2R-IgG4 between the RTX and CTX groups (21.43% vs. 61.90%, P = 0.019). Furthermore, we found differences in PLA2R-CysR-IgG4(P = 0.030), PLA2R-CTLD1-IgG4(P = 0.005), PLA2R-CTLD678-IgG4(P = 0.003), and epitope spreading (P = 0.023) between responders and non-responders in the CTX group. Multivariate logistic analysis showed that higher levels of urinary protein (odds ratio [OR], 0.49; 95% confidence interval [CI], 0.26-0.95; P = 0.035) and higher levels of PLA2R-CTLD1-IgG4 (OR, 0.79; 95%CI,0.62-0.99; P = 0.041) were independent risk factors for early remission. A multivariate model for estimating the possibility of early remission in patients with PMN is presented as a nomogram. The AUC-ROC of our model was 0.721 (95%CI, 0.601-0.840), in consistency with the results obtained with internal validation, for which the AUC-ROC was 0.711 (95%CI, 0.587-0.824), thus, demonstrating robustness. CONCLUSIONS: Cyclophosphamide can induce immunological remission earlier than rituximab at the span of 6 months. The PLA2R-CTLD1-IgG4 has a better predict value than total PLA2R-IgG for remission of proteinuria at the 6th month.


Asunto(s)
Autoanticuerpos , Glomerulonefritis Membranosa , Receptores de Fosfolipasa A2 , Inducción de Remisión , Rituximab , Humanos , Glomerulonefritis Membranosa/tratamiento farmacológico , Glomerulonefritis Membranosa/inmunología , Glomerulonefritis Membranosa/sangre , Receptores de Fosfolipasa A2/inmunología , Masculino , Femenino , Estudios Retrospectivos , Persona de Mediana Edad , Rituximab/uso terapéutico , Autoanticuerpos/sangre , Autoanticuerpos/inmunología , Adulto , Inmunoglobulina G/sangre , Inmunoglobulina G/inmunología , Ciclofosfamida/uso terapéutico , Anciano , Curva ROC , Resultado del Tratamiento
13.
J Dent Educ ; 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38722295

RESUMEN

OBJECTIVE: The integration of curriculum is an important approach for enhancing medical education and facilitating interdisciplinary connections among students. This study aimed to develop a new morphological integrated teaching mode for undergraduate stomatology education by combining stomatological pathology and radiology courses with instructional media. METHODS: In total, 63 undergraduates were included in this study and divided into three groups: traditional (Group T; the control group) and two experimental groups: KoPa WiFi EDU (Group K), and KoPa WiFi EDU-cone beam computed tomography (CBCT) (Group K-C). All participants attended a 2-h lecture on periapical cysts and completed the first theoretical test. Subsequently, they underwent a 4-h experimental training session on the pathology and radiology of periapical cysts using different teaching methods. Following the training, participants completed the second theoretical test and underwent the first image-reading skill evaluation. After a 3-month period, participants completed the third theoretical test and underwent the second image-reading skill evaluation. The effectiveness of the teaching methods was assessed by analyzing the differences in theoretical test and experimental skill evaluation scores. RESULTS: There were no significant differences in the first theoretical outcomes among three groups (p > 0.05). However, the second theoretical scores, the first objective evaluation scores, and the first subjective evaluation scores were significantly higher in the integrated teaching mode (3D teaching mode with the KoPa WiFi EDU and CBCT: 89.29 ± 4.55, 81.00 ± 8.15, and 61.57 ± 5.52, respectively; 2D teaching mode with the KoPa WiFi EDU system: 80.43 ± 3.41, 73.00 ± 8.01, and 55.67 ± 5.66, respectively) than in the traditional teaching mode (72.57 ± 3.84, 69.38 ± 4.91, and 48.67 ± 5.54, respectively) (p < 0.05). Moreover, the long-term teaching effect of the integrated mode was better than that of the traditional mode (p < 0.05). CONCLUSIONS: The morphology-based integrated teaching mode combining pathology and radiology aroused student enthusiasm for learning, and resulted in enhanced learning outcomes in dental experimental education.

14.
Phytomedicine ; 129: 155654, 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38723525

RESUMEN

BACKGROUND: Wenqingyin (WQY), an ancient Chinese medicinal agent, has been extensively used in treating infectious ailments throughout history. However, the anti-sepsis mechanism remains unknown. PURPOSE: This study investigated the diverse mechanisms of WQY in mitigating sepsis-induced acute lung injury (ALI). Additionally, the effects of WQY were validated using biological experiments. METHODS: This study combined UHPLC-Orbitrap-HRMS analysis and network pharmacology to predict the potential anti-sepsis mechanism of WQY. Sepsis-induced ALI models were established in vivo via intraperitoneal lipopolysaccharide (LPS) administration and in vitro by LPS-stimulated RAW 264.7 macrophages. Various techniques, including hematoxylin-eosin staining, TUNEL, qPCR, and ELISA, were used to assess lung damage and quantify inflammatory cytokines. Inflammatory cell infiltration was visualized through immunohistochemistry. Hub targets and signaling pathways were identified using Western blotting, immunohistochemistry, and immunofluorescence staining. RESULTS: Seventy-five active components and 237 associated targets were acquired, with 145 of these targets overlapping with processes related to sepsis. Based on the comprehensive protein-protein interaction network analysis, JUN, AKT1, TP53, IL-6, HSP90AA1, CASP3, VEGFA, IL-1ß, RELA, and EGFR may be targets of WQY for sepsis. Analysis of the Kyoto Gene and Genome Encyclopedia revealed that WQY is implicated in the advanced glycation end products/receptor for advanced glycation end products (AGE/RAGE) signaling pathway. In vivo, WQY alleviated sepsis-induced ALI, suppressing proinflammatory cytokines and inhibiting macrophage/neutrophil infiltration. In vitro, WQY reduced TNF-α, IL-6, and IL-1ß in LPS-induced RAW 264.7 macrophages. Furthermore, we verified that WQY protected against sepsis-induced ALI by regulating the RAGE pathway for the first time. Baicalin, coptisine, and paeoniflorin may be the effective components of WQY that inhibit RAGE. CONCLUSION: The primary mechanism of WQY in combating sepsis-induced ALI involves controlling RAGE levels and the PI3K/AKT pathway, suppressing inflammation, and mitigating lung damage. This study establishes a scientific foundation for understanding the mechanism of WQY and its clinical use in treating sepsis.

15.
Artículo en Inglés | MEDLINE | ID: mdl-38727409

RESUMEN

BACKGROUND: Vascular tumorous thrombosis is a crucial pathological feature of malignant tumors that is closely associated with lymph node metastasis and is considered a form of tumor micrometastasis. Two downregulated genes, catenin alpha 3 (CTNNA3) and FERM and PDZ domain-containing 4 (FRMPD4), were selected by analyzing the differential expression of vascular tumorous thrombus in colon adenocarcinoma and paracancerous tissues. Further investigation revealed their potential role in the development of vascular tumorous thrombosis in colon adenocarcinomas. MATERIALS AND METHODS: Candidate genes for vascular tumorous thrombosis in colon adenocarcinoma were screened using GSE127069, and pan-cancer verification and immune infiltration analysis were performed. The relationship between gene expression and vascular tumorous thrombosis was analyzed based on the level of gene mutations using cBioPortal. Finally, the collected clinical samples were used to verify expression. RESULTS: CTNNA3 and FRMPD4 were expressed at low levels in the vascular tumorous thrombosis of colon adenocarcinoma and positively correlated with microsatellite instability. They are also closely related to the immune microenvironment and the infiltration of immune cell subtypes. Based on gene mutation analysis, gene deletion is suggested to be related to vascular invasion indicators. Finally, protein and messenger ribonucleic acid (mRNA) expression of CTNNA3 and FRMPD4 were downregulated in the vascular tumorous thrombosis samples of colon adenocarcinoma compared to normal glands from paracancerous tissues. CONCLUSION: Our study suggests that CTNNA3 and FRMPD4 could be promising biomarkers for vascular tumorous thrombosis in colon adenocarcinoma, potentially enabling the identification of micrometastases in this type of cancer. These findings suggest a novel strategy for the detection and management of colon adenocarcinomas.

16.
Nat Commun ; 15(1): 3668, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38693122

RESUMEN

Mechanoluminescence, featuring light emission triggered by mechanical stimuli, holds immense promise for diverse applications. However, most organic Mechanoluminescence materials suffer from short-lived luminescence, limiting their practical applications. Herein, we report isostructural doping as a valuable strategy to address this challenge. By strategically modifying the host matrices with specific functional groups and simultaneously engineering guest molecules with structurally analogous features for isostructural doping, we have successfully achieved diverse multicolor and high-efficiency persistent mechanoluminescence materials with ultralong lifetimes. The underlying persistent mechanoluminescence mechanism and the universality of the isostructural doping strategy are also clearly elucidated and verified. Moreover, stress sensing devices are fabricated to show their promising prospects in high-resolution optical storage, pressure-sensitive displays, and stress monitoring. This work may facilitate the development of highly efficient organic persistent mechanoluminescence materials, expanding the horizons of next-generation smart luminescent technologies.

18.
Bioinformatics ; 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38715444

RESUMEN

MOTIVATION: Exploring potential associations between diseases can help in understanding pathological mechanisms of diseases and facilitating the discovery of candidate biomarkers and drug targets, thereby promoting disease diagnosis and treatment. Some computational methods have been proposed for measuring disease similarity. However, these methods describe diseases without considering their latent multi-molecule regulation and valuable supervision signal, resulting in limited biological interpretability and efficiency to capture association patterns. RESULTS: In this study, we propose a new computational method named DiSMVC. Different from existing predictors, DiSMVC designs a supervised graph collaborative framework to measure disease similarity. Multiple bio-entity associations related to genes and miRNAs are integrated via cross-view graph contrastive learning to extract informative disease representation, and then association pattern joint learning is implemented to compute disease similarity by incorporating phenotype-annotated disease associations. The experimental results show that DiSMVC can draw discriminative characteristics for disease pairs, and outperform other state-of-the-art methods. As a result, DiSMVC is a promising method for predicting disease associations with molecular interpretability. AVAILABILITY: Datasets and source codes are available at https://github.com/Biohang/DiSMVC. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.

19.
Plant Physiol ; 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38717740

RESUMEN

The circadian system plays a pivotal role in facilitating the ability of crop plants to respond and adapt to fluctuations in their immediate environment effectively. Despite the increasing comprehension of PSEUDO-RESPONSE REGULATORs (PRRs) and their involvement in the regulation of diverse biological processes, including circadian rhythms, photoperiodic control of flowering, and responses to abiotic stress, the transcriptional networks associated with these factors in soybean (Glycine max (L.) Merr.) remain incompletely characterized. In this study, we provide empirical evidence highlighting the significance of GmPRR3b as a crucial mediator in regulating the circadian clock, drought stress response, and abscisic acid (ABA) signaling pathway in soybeans. A comprehensive analysis of DNA affinity purification sequencing and transcriptome data identified 795 putative target genes directly regulated by GmPRR3b. Among them, a total of 570 exhibited a significant correlation with the response to drought, and eight genes were involved in both the biosynthesis and signaling pathways of ABA. Notably, GmPRR3b played a pivotal role in the negative regulation of the drought response in soybeans by suppressing the expression of abscisic acid responsive element-binding factor 3 (GmABF3). Additionally, the overexpression of GmABF3 exhibited an increased ability to tolerate drought conditions, and it also restored the hypersensitive phenotype of the GmPRR3b overexpressor. Consistently, studies on the manipulation of GmPRR3b gene expression and genome editing in plants revealed contrasting reactions to drought stress. The findings of our study collectively provide compelling evidence that emphasizes the significant contribution of the GmPRR3b-GmABF3 module in enhancing drought tolerance in soybean plants. Moreover, the transcriptional network of GmPRR3b provides valuable insights into the intricate interactions between this gene and the fundamental biological processes associated with plant adaptation to diverse environmental conditions.

20.
Front Pharmacol ; 15: 1348280, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38698813

RESUMEN

Cardiovascular diseases pose a serious threat to human health. The onset of cardiovascular diseases involves the comprehensive effects of multiple genes and environmental factors, and multiple signaling pathways are involved in regulating the occurrence and development of cardiovascular diseases. The Hippo pathway is a highly conserved signaling pathway involved in the regulation of cell proliferation, apoptosis, and differentiation. Recently, it has been widely studied in the fields of cardiovascular disease, cancer, and cell regeneration. Non-coding RNA (ncRNAs), which are important small molecules for the regulation of gene expression in cells, can directly target genes and have diverse regulatory functions. Recent studies have found that ncRNAs interact with Hippo pathway components to regulate myocardial fibrosis, cardiomyocyte proliferation, apoptosis, and hypertrophy and play an important role in cardiovascular disease. In this review, we describe the mode of action of ncRNAs in regulating the Hippo pathway, provide new ideas for further research, and identify molecules involved in the mechanism of action of ncRNAs and the Hippo pathway as potential therapeutic targets, with the aim of finding new modes of action for the treatment and prevention of cardiovascular diseases.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA