Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Plants (Basel) ; 13(6)2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38592751

RESUMEN

Panicle type is one of the important factors affecting rice (Oryza sativa L.) yield, and the identification of regulatory genes in panicle development can provide significant insights into the molecular network involved. This study identified a large and dense panicle 1 (ldp1) mutant produced from the Wuyunjing 7 (WYJ7) genotype, which displayed significant relative increases in panicle length, number of primary and secondary branches, number of grains per panicle, grain width, and grain yield per plant. Scanning electron microscopy results showed that the shoot apical meristem (SAM) of ldp1 was relatively larger at the bract stage (BM), with a significantly increased number of primary (PBM) and secondary branch (SBM) meristematic centers, indicating that the ldp1 mutation affects early stages in SAM development Comparative RNA-Seq analysis of meristem tissues from WYJ7 and ldp1 at the BM, PBM, and SBM developmental stages indicated that the number of differentially expressed genes (DEGs) were highest (1407) during the BM stage. Weighted gene coexpression network analysis (WGCNA) revealed that genes in one module (turquoise) are associated with the ldp1 phenotype and highly expressed during the BM stage, suggesting their roles in the identity transition and branch differentiation stages of rice inflorescences. Hub genes involved in auxin synthesis and transport pathways, such as OsAUX1, OsAUX4, and OsSAUR25, were identified. Moreover, GO and KEGG analysis of the DEGs in the turquoise module and the 1407 DEGs in the BM stage revealed that a majority of genes involved in tryptophan metabolism and auxin signaling pathway were differentially expressed between WYJ and ldp1. The genetic analysis indicated that the ldp1 phenotype is controlled by a recessive monogene (LDP1), which was mapped to a region between 16.9 and 18.1 Mb on chromosome seven. This study suggests that the ldp1 mutation may affect the expression of key genes in auxin synthesis and signal transduction, enhance the size of SAM, and thus affect panicle development. This study provides insights into the molecular regulatory network underlying rice panicle morphogenesis and lays an important foundation for further understanding the function and molecular mechanism of LDP1 during panicle development.

3.
Foods ; 12(2)2023 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-36673386

RESUMEN

Internally mildewed sunflower seeds, which cannot be recognized and discarded based on their appearance, pose a serious risk to human health. Thus, there is a need for a rapid non-destructive mildew grade discrimination method. Currently, few reports are available regarding this process. In this study, a method based on the combination of the near-infrared diffuse reflectance and near-infrared diffuse transmission (NIRr-NIRt) fusion spectra and a one-dimension convolutional neural network (1D-CNN) is proposed. The NIRr-NIRt fusion spectra can provide more complementary and comprehensive information, and therefore better discrimination accuracy, than a single spectrum. The first derivative (FD) preprocessing method could further improve the discrimination effect. By comparison against three conventional machine learning algorithms (artificial neural network (ANN), support vector machine (SVM), and K-nearest neighbor (KNN)), the 1D-CNN model based on the fusion spectra was found to perform the best. The mean prediction accuracy was 2.01%, 5.97%, and 10.55% higher than that of the ANN, SVM, and KNN models, respectively. These results indicate that the CNN model was able to precisely classify the mildew grades with a prediction accuracy of 97.60% and 94.04% for the training and test set, respectively. Thus, this study provides a non-destructive and rapid method for classifying the mildew grade of sunflower seeds with the potential to be applied in the quality control of sunflower seeds.

4.
Biotechnol Biofuels Bioprod ; 15(1): 111, 2022 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-36242043

RESUMEN

BACKGROUND: As one of the most important staple food crops, rice produces large of agronomic biomass residues that contain lots of secondary cell walls (SCWs). Membrane trafficking plays key roles in SCWs biosynthesis, but information association membrane trafficking and SCWs formation in plants is limited. RESULTS: In this study, we report the function characterization of a rice mutant, culm easily fragile 3 (cef3), that exhibits growth retardation and fragile culm phenotype with significantly altered cell wall composition and reduced secondary wall thickness. Map-based cloning revealed that CEF3 encodes a homologous protein of Arabidopsis STOMATAL CYTOKINESIS DEFECTIVE2 (SCD2). The saccharification assays revealed that CEF3 mutation can improve biomass enzymatic saccharification. Expression pattern analysis indicated that CEF3 is ubiquitously expressed in many organs at different developmental stages. Subcellular localization revealed that CEF3 is a Golgi-localized protein. The FM4-64 uptake assay revealed CEF3 is involved in endocytosis. Furthermore, mutation of CEF3 not only affected cellulose synthesis-related genes expression, but also altered the abundance of cellulose synthase catalytic subunit 9 (OsCESA9) in the PM and in the endomembrane systems. CONCLUSIONS: This study has demonstrated that CEF3 participates in the membrane trafficking that is essential for normal cellulose and other polysaccharides biosynthesis of the secondary cell wall, thereby manipulation of CEF3 could alter cellulose content and enhance biomass enzymatic saccharification in rice plants. Therefore, the study of the function of CEF3 can provide a strategy for genetic modification of SCWs in bioenergy crops.

5.
Front Plant Sci ; 13: 997624, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36176686

RESUMEN

Grain weight is a major determinant in rice yield, which is tightly associated with grain size. However, the underlying molecular mechanisms that control this trait remain unclear. Here, we report a rice (Oryza sativa) mutant, low grain weight (lgw), which shows that reduced grain length is caused by decreased cell elongation and proliferation. Map-based cloning revealed that all mutant phenotypes resulted from a nine-base pair (bp) deletion in LGW, which encodes the kinesin-like protein BRITTLE CULM12 (BC12). Protein sequence alignment analysis revealed that the mutation site was located at the nuclear localization signal (NLS) of LGW/BC12, resulting in the lgw protein not being located in the nucleus. LGW is preferentially expressed in both culms and roots, as well as in the early developing panicles. Overexpression of LGW increased the grain length, indicating that LGW is a positive regulator for regulating grain length. In addition, LGW/BC12 is directly bound to the promoter of GW7 and activates its expression. Elevating the GW7 expression levels in lgw plants rescued the small grain size phenotype. We conclude that LGW regulates grain development by directly binding to the GW7 promoter and activating its expression. Our findings revealed that LGW plays an important role in regulating grain size, and manipulation of this gene provides a new strategy for regulating grain weight in rice.

6.
Foods ; 11(17)2022 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-36076819

RESUMEN

The chemical composition of individual hybrid rice (F2) varieties varies owing to genetic differences between parental lines, and the effects of these differences on eating quality are unclear. In this study, based on a self-developed near-infrared spectroscopy platform, we explored these effects among a set of 143 hybrid indica rice varieties with different eating qualities. The single-grain amylose content (SGAC) and single-grain protein content (SGPC) models were established with coefficients of determination (R2) of 0.9064 and 0.8847, respectively, and the dispersion indicators (standard deviation, variance, extreme deviation, quartile deviation, and coefficient of variation) were proposed to analyze the variations in the SGAC and SGPC based on the predicted results. Our correlation analysis found that the higher the variation in the SGAC and SGPC, the lower the eating quality of the hybrid indica rice. Moreover, the addition of the dispersion indicators of the SGAC and SGPC improved the R2 of the eating quality model constructed using the composition-related physicochemical indicators (amylose content, protein content, alkali-spreading value, and gel consistency) from 0.657 to 0.850. Therefore, this new method proved to be useful for identifying high-eating-quality hybrid indica rice based on single near-infrared spectroscopy prior to processing and cooking.

7.
Microorganisms ; 10(7)2022 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-35889154

RESUMEN

Internally mildewed sunflower seeds pose a significant risk to human health. To control internal mildew, it is imperative to study its source in the main production area of China, which has been little investigated. Here, high-throughput sequencing was used to characterize the fungal and fungus-seed communities. Alpha diversity and ANOSIM analyses showed mildew did not alter the fungal compositions significantly. STAMP analysis showed that the sunflower seeds were most vulnerable to internal mildew during the field-planting stage. Alternaria was the predominant mildew-causing pathogen of sunflower seeds for consumption, which may originate from seed transmission and colonize at the seed-development stage. Finally, only a few seeds developed internal mildew with a worrisome level of Alternaria contamination in the humid field climate. NMDS analysis showed that climatic factors also played important roles in shaping microbial change during storage, with a relative humidity (RH) of 67% being the critical threshold in normal-temperature warehouses. Internal mildew never occurred below the RH threshold for the microbial community structure, which hardly changed after an average storage duration. The results indicated that a combination of field management to combat Alternaria, pretreatment with 5 KGy γ-irradiation and drying at the time of storage will minimize or prevent internal mildew. This work also provides an empirical framework for studies of mildewing in other shelled seeds.

8.
Environ Sci Technol ; 56(14): 10062-10071, 2022 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-35762704

RESUMEN

Bacterial biosensors have great potential in contaminant detection for sensitivity, specificity, cost-effectiveness, and easy operation. However, the existing cadmium-responsive bacterial biosensors cannot meet the real-world detection requirements due to lack of sensitivity, specificity, and anti-interference capability. This study aimed to develop a bacterial biosensor for detecting the total and extractable cadmium in actual environmental samples. We constructed the cadmium-responsive biosensor with the regulatory element (cadmium resistance transcriptional regulatory, CadR) and the reporting element (GFP) and improved its performance by directed evolution. The mutant libraries of biosensors were generated by error-prone PCR and screened by continuous five-round fluorescence-activated cell sorting (FACS), and a bacteria variant epCadR5 with higher performance was finally isolated. Biosensor fluorescence intensity was measured by a microplate reader, and results showed that the evolved cadmium-responsive bacterial biosensor was of high sensitivity and specificity in detecting trace cadmium, with a detection limit of 0.45 µg/L, which is 6.8 times more specific to cadmium than that of the wild-type. Furthermore, microscopic qualitative analysis results showed that the bacteria could produce fluorescence response in a cadmium-contaminated soil matrix, and quantitative analysis results showed that the values of cadmium from epCadR5 bacteria were close to that from inductively coupled plasma-mass spectrometry. These results suggest that the biosensor may have a broad application prospect in the detection of cadmium-contaminated soil and water.


Asunto(s)
Técnicas Biosensibles , Cadmio , Bacterias , Técnicas Biosensibles/métodos , Suelo , Agua
9.
Anal Chim Acta ; 1193: 339384, 2022 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-35058010

RESUMEN

The data fusion method effectively fuses multiple complementary inputs for highly accurate analysis. The spectral signals collected by near-infrared diffuse reflectance (NIRr) and diffuse transmission (NIRt) contain various information on the physical structure and chemical composition of the sample. Thus, the data fusion method (for NIRr and NIRt) can be used to further improve the accuracy of the NIR quantitative analysis method. The NIR spectroscopic analysis of protein content (PC), amylose content (AC), and fat content (FC) of rice can be used to select high-quality rice varieties. The data obtained using the NIR spectroscopic analysis method for rice flour were used to optimize NIRr and NIRt data fusion and verify the feasibility of this method to achieve more accurate quantitative analysis. Two types of rice flour spectra, NIRr spectra and NIRt spectra, were processed by different pretreatment methods to obtain high-quality fused spectra. The combinations of different pretreatment methods and spectral ranges were subsequently used for the optimization and calibration of partial least square models. The results reveal that the models of the fused spectra processed by the first derivative [NIRr-NIRt (1 der)] exhibit optimal prediction accuracy. The root mean square errors of prediction (RMSEPs) of the optimal NIRr-NIRt (1 der) PC, AC, and FC models were 0.280, 1.240, and 0.165, respectively, which were lower than those of the NIRr and NIRt models. The results show that the fusion of NIRr and NIRt data can achieve accurate detection of rice flour constituents, indicating the method has potential for further development and application.


Asunto(s)
Oryza , Calibración , Harina/análisis , Análisis de los Mínimos Cuadrados , Espectroscopía Infrarroja Corta
10.
Rice (N Y) ; 14(1): 19, 2021 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-33595759

RESUMEN

BACKGROUND: Cellulose synthase (CESA) mutants have potential use in straw processing due to their lower cellulose content, but almost all of the mutants exhibit defective phenotypes in plant growth and development. Balancing normal plant growth with reduced cellulose content remains a challenge, as cellulose content and normal plant growth are typically negatively correlated with one another. RESULT: Here, the rice (Oryza sativa) semi-dominant brittle culm (sdbc) mutant Sdbc1, which harbors a substitution (D387N) at the first conserved aspartic acid residue of OsCESA9, exhibits lower cellulose content and reduced secondary wall thickness as well as enhanced biomass enzymatic saccharification compared with the wild type (WT). Further experiments indicated that the OsCESA9D387N mutation may compete with the wild-type OsCESA9 for interacting with OsCESA4 and OsCESA7, further forming non-functional or partially functional CSCs. The OsCESA9/OsCESA9D387N heterozygous plants increase salt tolerance through scavenging and detoxification of ROS and indirectly affecting related gene expression. They also improve rice straw return to the field due to their brittle culms and lower cellulose content without any negative effects in grain yield and lodging. CONCLUSION: Hence, OsCESA9D387N allele can improve rice salt tolerance and provide the prospect of the rice straw for biofuels and bioproducts due to its improved enzymatic saccharification.

11.
Science ; 367(6478)2020 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-32029600

RESUMEN

Because environmentally degrading inorganic fertilizer use underlies current worldwide cereal yields, future agricultural sustainability demands enhanced nitrogen use efficiency. We found that genome-wide promotion of histone H3 lysine 27 trimethylation (H3K27me3) enables nitrogen-induced stimulation of rice tillering: APETALA2-domain transcription factor NGR5 (NITROGEN-MEDIATED TILLER GROWTH RESPONSE 5) facilitates nitrogen-dependent recruitment of polycomb repressive complex 2 to repress branching-inhibitory genes via H3K27me3 modification. NGR5 is a target of gibberellin receptor GIBBERELLIN INSENSITIVE DWARF1 (GID1)-promoted proteasomal destruction. DELLA proteins (characterized by the presence of a conserved aspartate-glutamate-leucine-leucine-alanine motif) competitively inhibit the GID1-NGR5 interaction and explain increased tillering of green revolution varieties. Increased NGR5 activity consequently uncouples tillering from nitrogen regulation, boosting rice yield at low nitrogen fertilization levels. NGR5 thus enables enhanced nitrogen use efficiency for improved future agricultural sustainability and food security.


Asunto(s)
Cromatina/metabolismo , Histonas/metabolismo , Nitrógeno/metabolismo , Oryza/metabolismo , Proteínas PII Reguladoras del Nitrógeno/metabolismo , Proteínas de Plantas/metabolismo , Agricultura , Grano Comestible/genética , Fertilizantes , Giberelinas/metabolismo , Metilación , Oryza/genética , Proteínas PII Reguladoras del Nitrógeno/genética , Proteínas de Plantas/genética , Complejo de la Endopetidasa Proteasomal/metabolismo
12.
Spectrochim Acta A Mol Biomol Spectrosc ; 230: 118053, 2020 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-31986430

RESUMEN

Considering that the spectral signals vary among different instruments, calibration transfer is required for further popularization and application of the near-infrared spectroscopy (NIRS). To achieve good calibration transfer results, spectral variables with stable and consistent signals between instruments and containing the target component information should be selected. In this study, a correlation-analysis-based wavelength selection method (CAWS) is proposed for calibration transfer. This method relies on the selection of wavelengths at which the spectral responses of master and slave instruments are well correlated (high absolute values of Pearson's correlation coefficient (|Ri|)). The proposed CAWS method was applied to two available datasets, corn and rice bran, and its calibration transfer performances were compared with other wavelength selection methods. The effects of pretreatment methods and calibration transfer algorithms were also assessed. The CAWS optimized models obtained lower root mean square errors of prediction (RMSEPtrans) after calibration transfer, suggesting that the proposed method is capable of effectively improving the efficiency of calibration transfer. Combinations of this method with other wavelength selection methods and calibration transfer algorithms may further enhance the efficiency of calibration transfer, and thus should be thoroughly investigated.

13.
Ecotoxicol Environ Saf ; 186: 109795, 2019 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-31648160

RESUMEN

Excessive cadmium (Cd) in rice grains is of great concern worldwide, particularly in southern China where heavy metal pollution in the soil is widespread. Much work has been done regarding the key genes responsible for Cd absorption, transport, and accumulation in rice, but little is known about the differences of Cd accumulation between indica and japonica rice cultivars during the reproductive stage. Furthermore, physiological parameters, such as nonstructural carbohydrate content, involved in Cd accumulation have not been fully elucidated. We studied several indica and japonica cultivars under three different Cd treatment levels and harvested them at different periods after heading. Differences in Cd accumulation between subspecies mainly were generated during the reproductive stage. An increase in the Cd pollution level caused the average absorption rate of Cd in the aerial parts of the indica cultivars in the reproductive stage to be 6.17, 4.52, and 3.89 times greater than that of the japonica cultivars across the three Cd treatments. The contribution of Cd absorption by shoots to Cd accumulation at the pre- or postheading stages was 33.8% and 66.2% in indica, and 44.9% and 55.1% in japonica. We found a significant negative correlation between Cd content in the rice grains and the content of nonstructural carbohydrates in the sheath (P < 0.05). Cd translocation from sheath to grain occurred along with sugar transfer in the indica cultivars. The Cd content of the indica cultivar grain was 1.84-4.14 times higher than that of the japonica cultivars (P < 0.05). The japonica cultivars thus met the cereal Cd limits of China (0.2 mg kg-1) under low and moderate soil Cd pollution. These findings are helpful for the selection of proper cultivars and field management practices to alleviate Cd exposure risk in rice production.


Asunto(s)
Cadmio/metabolismo , Oryza/clasificación , Oryza/metabolismo , Contaminantes del Suelo/metabolismo , China , Grano Comestible/genética , Grano Comestible/metabolismo , Metales Pesados/análisis , Oryza/genética , Brotes de la Planta/genética , Brotes de la Planta/metabolismo , Especificidad de la Especie , Azúcares/metabolismo
14.
Spectrochim Acta A Mol Biomol Spectrosc ; 220: 117098, 2019 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-31129498

RESUMEN

Single kernel near-infrared spectroscopy (SKNIRS) could aid in the quality screening of early-generation seeds, to improve the efficiency of seed breeding. However, the application of SKNIRS is limited due to the irregular physical characteristics, the heterogeneous constituent distributions of individual seeds, and the insufficient detection accuracy of the reference method. The reported near-infrared detection results of single seeds are often less accurate than those of dehusked seeds and seed flour. In this paper, a calibration transfer-optimized single kernel near-infrared spectroscopic method is proposed. This method aims to accurately detect the chemical composition of single seeds by using the calibration model of the corresponding dehusked seeds or seed flour. The proposed method was applied to the analysis of the protein content of a single rice kernel. The near-infrared transmission spectra of three forms of rice (single rice kernel (SRK), single brown rice kernel (SBK) and rice flour (RF)) of 201 individual rice seeds and the corresponding protein content values were obtained. By comparing different pretreatment methods and spectral ranges, the spectral range 950-1250 nm, the standard normal variate transformation (SNV) pretreatment, and 9 PLS factors were selected to construct the optimal partial least squares (PLS) regression models. Then, the protein content of single rice kernels were determined through two different methods: (i) the direct method, in which single rice kernels were analyzed using the single rice kernel model directly; and (ii) the proposed method, in which the spectra of single rice kernels were transferred into the spectra of single brown rice kernels and rice flours with a calibration transfer algorithm, spectral space transformation (SST), and were analyzed by the respective calibration models. The external validation coefficient correlation (R) value of the direct method was 0.971, and the R values of the proposed method were 0.962 (SBK) and 0.975 (RF). The root mean square error of prediction (RMSEP) value of the direct method was 0.423, and the RMSEP of the proposed method were 0.480 (SBK) and 0.401 (RF). In addition, the transfer results among the spectra of three forms of rice were compared. By comparison, the results of the proposed method are fairly close to the results of the direct method. The results indicate that the spectra generated from one individual rice seed can be transferred freely among the three forms by means of calibration transfer. The proposed method is a promising way to overcome the challenges associated with analyzing individual seeds and to improve SKNIRS.


Asunto(s)
Oryza/química , Proteínas de Plantas/análisis , Semillas/química , Espectroscopía Infrarroja Corta/métodos , Algoritmos , Calibración , Harina/análisis , Análisis Multivariante , Proteínas de Plantas/química , Reproducibilidad de los Resultados , Espectroscopía Infrarroja Corta/normas
15.
Rice (N Y) ; 11(1): 36, 2018 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-29855737

RESUMEN

BACKGROUND: As one of the most important staple food crops, rice produces huge agronomic biomass residues that contain lots of secondary cell walls (SCWs) comprising cellulose, hemicelluloses and lignin. The transcriptional regulation mechanism underlying SCWs biosynthesis remains elusive. RESULTS: In this study, we isolated a NAC family transcription factor (TF), OsSND2 through yeast one-hybrid screening using the secondary wall NAC-binding element (SNBE) on the promoter region of OsMYB61 which is known transcription factor for regulation of SCWs biosynthesis as bait. We used an electrophoretic mobility shift assay (EMSA) and chromatin immunoprecipitation analysis (ChIP) to further confirm that OsSND2 can directly bind to the promoter of OsMYB61 both in vitro and in vivo. OsSND2, a close homolog of AtSND2, is localized in the nucleus and has transcriptional activation activity. Expression pattern analysis indicated that OsSND2 was mainly expressed in internodes and panicles. Overexpression of OsSND2 resulted in rolled leaf, increased cellulose content and up-regulated expression of SCWs related genes. The knockout of OsSND2 using CRISPR/Cas9 system decreased cellulose content and down-regulated the expression of SCWs related genes. Furthermore, OsSND2 can also directly bind to the promoters of other MYB family TFs by transactivation analysis in yeast cells and rice protoplasts. Altogether, our findings suggest that OsSND2 may function as a master regulator to mediate SCWs biosynthesis. CONCLUSION: OsSND2 was identified as a positive regulator of cellulose biosynthesis in rice. An increase in the expression level of this gene can improve the SCWs cellulose content. Therefore, the study of the function of OsSND2 can provide a strategy for manipulating plant biomass production.

16.
Plant Mol Biol ; 89(4-5): 385-401, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26350403

RESUMEN

Although the main genes in rice involved in the biosynthesis of secondary wall components have been characterized, the molecular mechanism underlying coordinated regulation of genes expression is not clear. In this study, we reported a new rice variety, cef1, showed the culm easily fragile (CEF) without other concomitant phenotypes. The CEF1 gene encodes a MYB family transcription factor OsMYB103L, was cloned based on map-based approach. Bioinformatics analyses indicated that CEF1 belongs to the R2R3-MYB subfamily and highly similar to Arabidopsis AtMYB103. Expression pattern analysis indicated that CEF1 is mainly expressed in internodes and panicles. Biochemical assays demonstrated that OsMYB103L is a nuclear protein and shows high transcriptional activation activity at C-terminus. OsMYB103L mediates cellulose biosynthesis and secondary walls formation mainly through directly binding the CESA4, CESA7, CESA9 and BC1 promoters and regulating their expression. OsMYB103L may also function as a master switch to regulate the expression of several downstream TFs, which involved in secondary cell wall biosynthesis. Furthermore, OsMYB103L physically interacts with SLENDER RICE1 (SLR1), a DELLA repressor of GA signaling, and involved in GA-mediated regulation of cellulose synthesis pathway. Our findings revealed that OsMYB103L plays an important role in GA-regulating secondary cell wall synthesis, and the manipulation of this gene provide a new strategy to help the straw decay in soil.


Asunto(s)
Pared Celular/metabolismo , Genes de Plantas , Giberelinas/metabolismo , Oryza/genética , Oryza/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Celulosa/biosíntesis , Mapeo Cromosómico , Clonación Molecular , Regulación de la Expresión Génica de las Plantas , Fenotipo , Reguladores del Crecimiento de las Plantas/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estructura Terciaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Transducción de Señal , Factores de Transcripción/química , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Técnicas del Sistema de Dos Híbridos
17.
PLoS One ; 10(5): e0126154, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25954944

RESUMEN

Substantial increases in grain yield of cereal crops are required to feed a growing human population. Here we show that a natural variant of SEMIDWARF AND HIGH-TILLERING (SDT) increases harvest index and grain productivity in rice. Gain-of-function sdt mutation has a shortened polyadenylation tail on the OsmiR156h microRNA precursor, which cause the up-regulation of OsmiR156h. The plants carrying the semidominant sdt allele exhibit reduced plant height, enhanced lodging resistance, increased tiller numbers per plant, and resulting in an increased grain yield. We also show that combining the sdt allele with the OsSPL14WFP allele can be effective in simultaneously improving tillering capacity and panicle branching, thereby leading to higher harvest index and grain yield. Most importantly, pyramiding of the sdt allele and the green revolution gene sd1 enhances grain yield by about 20% in hybrid rice breeding. Our results suggest that the manipulation of the polyadenylation status of OsmiR156 represents a novel strategy for improving the yield potential of rice over what is currently achievable.


Asunto(s)
MicroARNs/metabolismo , Oryza/genética , Alelos , Secuencia de Bases , Clonación Molecular , Grano Comestible/crecimiento & desarrollo , MicroARNs/química , Oryza/crecimiento & desarrollo , Oryza/metabolismo , Fenotipo , Fitomejoramiento , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/crecimiento & desarrollo , Plantas Modificadas Genéticamente/metabolismo , Poliadenilación , Alineación de Secuencia , Regulación hacia Arriba
18.
Genet Mol Biol ; 37(2): 406-13, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25071406

RESUMEN

Spotted leaf mutant belongs to a class of mutants that can produce necrotic lesions spontaneously in plants without any attack by pathogens. These mutants have no beneficial effect on plant productivity but provide a unique opportunity to study programmed cell death in plant defense responses. A novel rice spotted leaf mutant (spl30) was isolated through low-energy heavy ion irradiation. Lesion expression was sensitive to light and humidity. The spl30 mutant caused a decrease in chlorophyll and soluble protein content, with marked accumulation of reactive oxygen species (ROS) around the lesions. In addition, the spl30 mutant significantly enhanced resistance to rice bacterial blight (X. oryzae pv. oryzae) from China (C1-C7). The use of SSR markers showed that the spl30 gene was located between markers XSN2 and XSN4. The genetic distance between the spl30 gene and XSN2 and between spl30 and XSN4 was 1.7 cM and 0.2 cM, respectively. The spl30 gene is a new gene involved in lesion production and may be related to programmed cell death in rice. The ability of this mutant to confer broad resistance to bacterial blight provides a model for studying the interaction between plants and pathogenic bacteria.

19.
PLoS One ; 9(6): e100246, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24945975

RESUMEN

Although paramagnetic contrast agents have a wide range of applications in medical studies involving magnetic resonance imaging (MRI), these agents are seldom used to enhance MRI images of plant root systems. To extend the application of MRI contrast agents to plant research and to develop related techniques to study root systems, we examined the applicability of the MRI contrast agent Gd-DTPA to the imaging of rice roots. Specifically, we examined the biological effects of various concentrations of Gd-DTPA on rice growth and MRI images. Analysis of electrical conductivity and plant height demonstrated that 5 mmol Gd-DTPA had little impact on rice in the short-term. The results of signal intensity and spin-lattice relaxation time (T1) analysis suggested that 5 mmol Gd-DTPA was the appropriate concentration for enhancing MRI signals. In addition, examination of the long-term effects of Gd-DTPA on plant height showed that levels of this compound up to 5 mmol had little impact on rice growth and (to some extent) increased the biomass of rice.


Asunto(s)
Medios de Contraste/farmacología , Gadolinio DTPA/farmacología , Espectroscopía de Resonancia Magnética , Oryza/anatomía & histología , Desarrollo de la Planta/efectos de los fármacos , Raíces de Plantas/anatomía & histología , Permeabilidad de la Membrana Celular/efectos de los fármacos , Medios de Cultivo/química , Conductividad Eléctrica , Gadolinio/análisis , Oryza/efectos de los fármacos , Raíces de Plantas/efectos de los fármacos , Procesamiento de Señales Asistido por Computador , Factores de Tiempo
20.
Guang Pu Xue Yu Guang Pu Fen Xi ; 34(1): 73-7, 2014 Jan.
Artículo en Chino | MEDLINE | ID: mdl-24783536

RESUMEN

In the present study, a new approach to fast determining the content of urea, biuret and moisture in compound fertilizer composed of urea, ammonium dihydrogenphosphate and potassium chloride was proposed by using near infrared diffuse reflectance spectroscopy. After preprocessing the original spectrum, partial least squares (PLS) models of urea, biuret and moisture were built with the R2 values of 0.9861, 0.9770 and 0.9713 respectively, the root mean square errors of cross validation were 2.59, 0.38, 0.132 respectively. And the prediction correlation factors were 0.9733, 0.9215 and 0.9679 respectively. The authors detected six kinds of compound fertilizer in market for the model verification, the correlation factors were 0.9237, 0.9786 and 0.9874 respectively. The data implied that the new method can be used for situ quality control in the production process of compound fertilizer.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...