RESUMEN
Dopamine signalling modes differ in kinetics and spatial patterns of receptor activation1,2. How these modes contribute to motor function, motivation and learning has long been debated3-21. Here we show that action-potential-induced dopamine release is dispensable for movement initiation but supports reward-oriented behaviour. We generated mice with dopamine-neuron-specific knockout of the release site organizer protein RIM to disrupt action-potential-induced dopamine release. In these mice, rapid in vivo dopamine dynamics were strongly impaired, but baseline dopamine persisted and fully supported spontaneous movement. Conversely, reserpine-mediated dopamine depletion or blockade of dopamine receptors disrupted movement initiation. The dopamine precursor L-DOPA reversed reserpine-induced bradykinesia without restoring fast dopamine dynamics, a result that substantiated the conclusion that these dynamics are dispensable for movement initiation. In contrast to spontaneous movement, reward-oriented behaviour was impaired in dopamine-neuron-specific RIM knockout mice. In conditioned place preference and two-odour discrimination tasks, the mice effectively learned to distinguish the cues, which indicates that reward-based learning persists after RIM ablation. However, the performance vigour was reduced. During probabilistic cue-reward association, dopamine dynamics and conditioned responses assessed through anticipatory licking were disrupted. These results demonstrate that action-potential-induced dopamine release is dispensable for motor function and subsecond precision of movement initiation but promotes motivation and performance during reward-guided behaviours.
RESUMEN
BACKGROUND: The pathogenesis of memory impairment, a common complication of chronic neuropathic pain (CNP), has not been fully elucidated. Schwann cell (SC)-derived extracellular vesicles (EVs) contribute to remote organ injury. Here, we showed that SC-EVs may mediate pathological communication between SCs and hippocampal neurons in the context of CNP. METHODS: We used an adeno-associated virus harboring the SC-specific promoter Mpz and expressing the CD63-GFP gene to track SC-EVs transport. microRNA (miRNA) expression profiles of EVs and gain-of-function and loss-of-function regulatory experiments revealed that miR-142-5p was the main cargo of SC-EVs. Next, luciferase reporter gene and phenotyping experiments confirmed the direct targets of miR-142-5p. RESULTS: The contents and granule sizes of plasma EVs were significantly greater in rats with chronic sciatic nerve constriction injury (CCI)than in sham rats. Administration of the EV biogenesis inhibitor GW4869 ameliorated memory impairment in CCI rats and reversed CCI-associated dendritic spine damage. Notably, during CCI stress, SC-EVs could be transferred into the brain through the circulation and accumulate in the hippocampal CA1-CA3 regions. miR-142-5p was the main cargo wrapped in SC-EVs and mediated the development of CCI-associated memory impairment. Furthermore, α-actinin-4 (ACTN4), ELAV-like protein 4 (ELAVL4) and ubiquitin-specific peptidase 9 X-linked (USP9X) were demonstrated to be important downstream target genes for miR-142-5p-mediated regulation of dendritic spine damage in hippocampal neurons from CCI rats. CONCLUSION: Together, these findings suggest that SCs-EVs and/or their cargo miR-142-5p may be potential therapeutic targets for memory impairment associated with CNP.
Asunto(s)
Vesículas Extracelulares , MicroARNs , Neuralgia , Ratas , Animales , MicroARNs/metabolismo , Neuralgia/metabolismo , Neuronas/metabolismo , Células de Schwann/metabolismo , Vesículas Extracelulares/metabolismoRESUMEN
Chronic pain is often associated with cognitive decline, which could influence the quality of the patient's life. Recent studies have suggested that Toll-like receptor 3 (TLR3) is crucial for memory and learning. Nonetheless, the contribution of TLR3 to the pathogenesis of cognitive decline after chronic pain remains unclear. The level of TLR3 in hippocampal neurons increased in the chronic constriction injury (CCI) group than in the sham group in this study. Importantly, compared to the wild-type (WT) mice, TLR3 knockout (KO) mice and TLR3-specific neuronal knockdown mice both displayed improved cognitive function, reduced levels of inflammatory cytokines and neuronal apoptosis and attenuated injury to hippocampal neuroplasticity. Notably, extracellular RNAs (exRNAs), specifically double-stranded RNAs (dsRNAs), were increased in the sciatic nerve, serum, and hippocampus after CCI. The co-localization of dsRNA with TLR3 was also increased in hippocampal neurons. And the administration of poly (I:C), a dsRNA analog, elevated the levels of dsRNAs and TLR3 in the hippocampus, exacerbating hippocampus-dependent memory. In additon, the dsRNA/TLR3 inhibitor improved cognitive function after CCI. Together, our findings suggested that exRNAs, particularly dsRNAs, that were present in the condition of chronic neuropathic pain, activated TLR3, initiated downstream inflammatory and apoptotic signaling, caused damage to synaptic plasticity, and contributed to the etiology of cognitive impairment after chronic neuropathic pain.
Asunto(s)
Dolor Crónico , Disfunción Cognitiva , Neuralgia , Ratones , Animales , Dolor Crónico/genética , Dolor Crónico/complicaciones , Receptor Toll-Like 3/genética , Neuralgia/genética , Neuralgia/patología , Disfunción Cognitiva/genética , Ratones Noqueados , ARN BicatenarioRESUMEN
BACKGROUND: Postoperative cognitive dysfunction (POCD) is a common neurological complication following anesthesia and surgery. Increasing evidence has demonstrated that neuroinflammation caused by systemic inflammatory responses during the perioperative period is a key factor in the occurrence of POCD. In addition, SMAD family member 7 (Smad7) has been confirmed to play vital roles in the pathogenesis and treatment of inflammatory diseases, such as inflammatory bowel disease. However, whether Smad7 participates in the regulatory process of neuroinflammation and apoptosis in the development of POCD is still unknown. METHODS: In this study, a POCD mouse model was constructed by unilateral nephrectomy under anesthesia, and cognitive function was assessed using the fear conditioning test and open field test. The expression of Smad7 at the mRNA and protein levels in the hippocampus 3 days after surgery was examined by qRT-PCR, western blot and immunofluorescence assays. Furthermore, to identify whether the elevation of Smad7 in the hippocampus after unilateral nephrectomy contributes to cognitive impairment, the expression of Smad7 in the hippocampal CA1 region was downregulated by crossing Smad7fl/fl conditional mutant mice and CaMKIIα-Cre line T29-1 transgenic mice or stereotaxic injection of shRNA-Smad7. Inflammation and apoptosis in the hippocampus were assessed by measuring the mRNA levels of typical inflammatory cytokines, including TNF-α, IL-1ß, IL-6, CCL2, CXCL1, and CXCL2, and the protein levels of apoptotic proteins, including Bax and Bcl2. In addition, apoptosis in the hippocampus postoperation was investigated by a terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining assay. Finally, western blotting was used to explore how Smad7 mediates inflammation and apoptosis postoperation. RESULTS: The results unequivocally revealed that elevated Smad7 in the hippocampal CA1 region significantly inhibited TGF-ß signal transduction by blocking Smad2/3 phosphorylation, which enhanced neuroinflammation and apoptosis in the hippocampus and further led to learning and memory impairment after surgery. CONCLUSIONS: Our results revealed that Smad7 contributes to cognitive impairment after surgery by enhancing neuroinflammation and apoptosis in the hippocampus and might serve as a promising therapeutic target for the treatment of memory impairment after anesthesia surgery.
Asunto(s)
Anestesia , Disfunción Cognitiva , Hipocampo , Complicaciones Cognitivas Postoperatorias , Animales , Ratones , Anestesia/efectos adversos , Disfunción Cognitiva/etiología , Disfunción Cognitiva/genética , Disfunción Cognitiva/metabolismo , Hipocampo/metabolismo , Inflamación/metabolismo , Trastornos de la Memoria/metabolismo , Ratones Endogámicos C57BL , Enfermedades Neuroinflamatorias , Complicaciones Cognitivas Postoperatorias/etiología , Complicaciones Cognitivas Postoperatorias/genética , Complicaciones Cognitivas Postoperatorias/metabolismo , ARN Mensajero/metabolismo , Proteína smad7/genéticaRESUMEN
Chronic pain (CP) is an unpleasant sensory and emotional experience associated with, or resembling that associated with, actual or potential tissue damage lasting longer than 3 months. CP is the main reason why people seek medical care and exerts an enormous economic burden. Genome-wide expression analysis has revealed that diverse essential genetic elements are altered in CP patients. Although many possible mechanisms of CP have been revealed, we are still unable to meet all the analgesic needs of patients. In recent years, non-coding RNAs (ncRNAs) have been shown to play essential roles in peripheral neuropathy and axon regeneration, which is associated with CP occurrence and development. Multiple key ncRNAs have been identified in animal models of CP, such as microRNA-30c-5p, ciRS-7, and lncRNA MRAK009713. This review highlights different kinds of ncRNAs in the regulation of CP, which provides a more comprehensive understanding of the pathogenesis of the disease. It mainly focuses on the contributions of miRNAs, circRNAs, and lncRNAs to CP, specifically peripheral neuropathic pain (NP), diabetic NP, central NP associated with spinal cord injury, complex regional pain syndrome, inflammatory pain, and cancer-induced pain. In addition, we summarize some potential ncRNAs as novel biomarkers for CP and its complications. With an in-depth understanding of the mechanism of CP, ncRNAs may provide novel insight into CP and could become new therapeutic targets in the future.
RESUMEN
The cage nonunion may cause serious consequences, including recurrent pain, radiculopathy, and kyphotic deformity. The risk factors for nonunion following anterior cervical discectomy and fusion (ACDF) are controversial. The aim of the study is to investigate the risk factors for nonunion in cervical spondylotic cases after ACDF. We enrolled 58 and 692 cases in the nonunion and union group respectively and followed up the cases at least 6 months. Patient demographic information, surgical details, cervical sagittal parameters, and the serum vitamin D level were collected. A logistic regression was performed to determine the independent predictors for nonunion, which were used for establishing a nomogram. In order to estimate the reliability and the net benefit of nomogram, we applied a receiver operating characteristic curve analysis, calibration curves and plotted decision curves. Using the multivariate logistic regression, we found that age (odds ratio [OR]â =â 1.16, Pâ <â .001), smoking (ORâ =â 3.41, Pâ =â .001), angle of C2 to C7 (ORâ =â 1.53, Pâ <â .001), number of operated levels (2 levels, ORâ =â 0.42, Pâ =â .04; 3 levels, ORâ =â 1.32, Pâ =â .54), and serum vitamin D (ORâ =â 0.81, Pâ <â .001) were all significant predictors of nonunion (Table 3). The area under the curve of the model training cohort and validation cohort was 0.89 and 0.87, respectively. The calibration curves showed that the predicted outcome fitted well to the observed outcome in the training cohort (Pâ =â .102,) and validation cohort (Pâ =â .125). The decision curves showed the nomogram had more benefits than the All or None scheme if the threshold probability isâ >10% andâ <100% in training cohort and validation cohort. We found that age, smoking, angle of C2 to C7, number of operated levels, and serum vitamin D were all significant predictors of nonunion.
Asunto(s)
Vértebras Cervicales , Fusión Vertebral , Vértebras Cervicales/cirugía , Discectomía/efectos adversos , Humanos , Nomogramas , Reproducibilidad de los Resultados , Estudios Retrospectivos , Fusión Vertebral/efectos adversos , Resultado del Tratamiento , Vitamina DRESUMEN
Chronic neuropathic pain is commonly accompanied by cognitive impairment. However, the underlying mechanism in the occurrence of cognitive deficits under constant nociceptive irritation remains elusive. Herein, we established a chronic neuropathic pain model by chronic constriction injury (CCI) of the unilateral sciatic nerve in rats. Behavioral tests indicated that CCI rats with long-term nociceptive threshold decline developed significant dysfunction of working memory and recognitive memory starting at 14 days and lasting for at least 21 days. Afterward, circRNA expression profiles in the hippocampus of CCI and sham rats were analyzed via high-throughput sequencing to explore the potential key factors associated with cognitive impairment induced by ongoing nociception, which showed 76 differentially expressed circRNAs, 39 upregulated and 37 downregulated, in the CCI group. These differentially expressed circRNA host genes were validated to be primarily associated with inflammation and apoptotic signaling pathways according to GO/KEGG analysis and the circRNA-miRNA-mRNA network, which was also confirmed through the analysis of neuroinflammation and neuronal apoptosis. Consequently, we assumed that enhanced neuroinflammation and neuronal apoptosis might act as potential regulators of cognitive impairment induced by chronic neuropathic pain. The identification of the regulatory mechanism would provide promising clinical biomarkers or therapeutic targets in the diagnostic prediction and intervention treatment of memory deficits under neuropathic pain conditions.
RESUMEN
Background: Postoperative neurocognitive disorders (PNDs) is common among surgical patients, however, the effect of glucocorticoids for preventing PNDs is not clear. This review aims to evaluate the effect of glucocorticoids on the incidence of PNDs in adult patients undergoing surgery. Methods: The databases of PubMed/Medline, Embase, the Cochrane Library, and Web of science were searched for all available randomized controlled trials (RCTs) from inception to April 30, 2022. RCTs comparing the effect of glucocorticoids with placebo on the incidence of PNDs in adult surgical patients (≥18 years old) were eligible. Subgroup analyses and meta-regressions were performed to evaluate sources of clinical heterogeneity. The level of certainty for main outcomes were assessed by the Grading of Recommendations Assessment, Development and Evaluation (GRADE) methodology. Results: Eleven trials with a total of 10,703 patients were identified. Compared with the control group, glucocorticoids did not reduce the incidence of PNDs (RR: 0.84, 95% CI: 0.67 to 1.06, P = 0.13, GRADE = moderate). Secondary analyses for primary outcome did not change the result. In addition, the length of ICU stay was decreased in glucocorticoids group (RR: -13.58, 95% CI: -26.37 to -0.80, P = 0.04, GRADE = low). However, there were no significant differences between groups with regards to the incidence of postoperative infection (RR: 0.94, 95% CI: 0.84 to 1.06, P = 0.30, GRADE = moderate), blood glucose level (RR: 1.05, 95% CI: -0.09 to 2.19, P = 0.07, GRADE = low), duration of mechanical ventilation (RR: -2.44, 95% CI: -5.47 to 0.59, P = 0.14, GRADE = low), length of hospital stay (RR: -0.09, 95% CI: -0.27 to 0.09, P = 0.33, GRADE = moderate) and 30-day mortality (RR: 0.86, 95% CI: 0.70 to 1.06, P = 0.16, GRADE = moderate). Conclusions: This meta-analysis suggests that perioperative administration of glucocorticoids may not reduce the incidence of PNDs after surgery. The effect of glucocorticoids on decreased length of ICU stay needs further researches. Future high-quality trials using acknowledged criteria and validated diagnostic tools are needed to determine the influence of glucocorticoids on long-term PNDs. Systematic Review Registration: https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42022302262, identifier: CRD42022302262.
RESUMEN
Although nanomedicine has demonstrated great potential for combating drug resistance, its suboptimal recognition of malignant cells and limited transport across multiple biological obstacles seriously impede the efficacious accumulation of drugs in tumor lesions, which strikingly limits its application in the clinical therapy of drug-resistant triple-negative breast cancer (TNBC). Hence, a surface-variable drug delivery vehicle based on the modification of liposomes with a multifunctional peptide (named EMC) was fabricated in this work and used for encapsulating doxorubicin and the p-glycoprotein inhibitor tariquidar. This EMC peptide contains an EGFR-targeting bullet that was screened from a "one-bead one-compound" combinatorial library, an MMP-2-cleaved substrate, and a cell-penetrating segment. The EGFR-targeting sequence has been validated to possess excellent specificity and affinity for EGFR at both the cellular and molecular levels and could be unloaded from the EMC peptide by MMP-2 in the tumor microenvironment. This doxorubicin/tariquidar-coloaded and peptide-functionalized liposome (DT-pLip) exhibited superior efficacy in tumor growth inhibition to drug-resistant TNBC both in vitro and in vivo through EGFR targeting, osmotic enhancement in response to MMP-2, controllable release, and inhibited efflux. Consequently, our systematic studies indicated the potential of this liposome-based nanoplatform in the therapy of drug-resistant TNBC through targeting effects and tumor microenvironment-triggered penetration enhancement.
Asunto(s)
Resistencia a Antineoplásicos , Liposomas , Metaloproteinasa 2 de la Matriz , Neoplasias de la Mama Triple Negativas , Línea Celular Tumoral , Doxorrubicina/farmacología , Receptores ErbB/metabolismo , Humanos , Liposomas/uso terapéutico , Metaloproteinasa 2 de la Matriz/metabolismo , Péptidos/química , Péptidos/uso terapéutico , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/patología , Microambiente TumoralRESUMEN
Background: Chronic neuropathic pain is commonly associated with memory loss, which increases the risk of dementia, lowers life quality and spending. On the other hand, the molecular processes are unknown, and effective therapies have yet to be discovered. Long non-coding RNAs (lncRNAs) are emerging potential therapeutic targets for chronic pain, but their role in chronic pain-induced memory impairment is unknown. Methods: We established a CCI-induced memory impairment rat model. To investigate and validate the gene expression alterations in the hippocampus of CCI-induced memory impairment, we used RNA-Seq, bioinformatics analysis, qRT-PCR, western blot, immunostaining, Nissl staining, and Diaminobenzidine-enhanced Perls' stain. Results: CCI rats displayed long-term memory deficits in the Y maze and novel objective recognition tests, and chronic mechanical and thermal pain hypersensitivity in the hind paws. We found a total of 179 differentially expressed mRNAs (DEmRNAs) (81 downregulated and 98 upregulated) and 191 differentially expressed long noncoding RNAs (DElncRNAs) (87 downregulated and 105 upregulated) between the hippocampus CA1 of CCI-induced memory impairment model and the sham control, using RNA-Seq expression profiles. The most enriched pathways involving oxidation and iron metabolism were explored using a route and function pathway analysis of DEmRNAs and DElncRNAs. We also discovered that ATF3 was considerably overexpressed in the hippocampal CA1 area, and gene markers of ferroptosis, such as GPX4, SLC7A11, SLC1A5, and PTGS2, were dysregulated in the CCI-induced memory impairment paradigm. Furthermore, in the hippocampus CA1 of CCI-induced memory impairment, lipid peroxidation and iron overload were considerably enhanced. Fer-1 treatment reversed ferroptosis damage of CCI with memory impairment model. Finally, in CCI-induced memory impairment, a competing RNA network analysis of DElncRNAs and DEmRNAs was performed to investigate the putative regulatory link of DElncRNAs on DEmRNAs via miRNA sponging. Conclusion: Using RNA-Seq, we created a genome-wide profile of the whole hippocampus of a rat model of CCI-induced memory impairment. In the hippocampus, pathways and function analyses revealed numerous intriguing genes and pathways involved in ferroptosis and memory impairment in response to chronic pain stress. As a result, our research may aid in the identification of potential and effective treatments for CCI-induced memory impairment.
RESUMEN
Information flow in neurons proceeds by integrating inputs in dendrites, generating action potentials near the soma, and releasing neurotransmitters from nerve terminals in the axon. We found that in the striatum, acetylcholine-releasing neurons induce action potential firing in distal dopamine axons. Spontaneous activity of cholinergic neurons produced dopamine release that extended beyond acetylcholine-signaling domains, and traveling action potentials were readily recorded from dopamine axons in response to cholinergic activation. In freely moving mice, dopamine and acetylcholine covaried with movement direction. Local inhibition of nicotinic acetylcholine receptors impaired dopamine dynamics and affected movement. Our findings uncover an endogenous mechanism for action potential initiation independent of somatodendritic integration and establish that this mechanism segregates the control of dopamine signaling between axons and somata.
Asunto(s)
Potenciales de Acción , Axones , Neuronas Colinérgicas , Cuerpo Estriado , Dopamina , Transmisión Sináptica , Acetilcolina/metabolismo , Animales , Axones/fisiología , Neuronas Colinérgicas/metabolismo , Cuerpo Estriado/fisiología , Dopamina/metabolismo , Ratones , Receptores Nicotínicos/fisiologíaRESUMEN
Despite the importance of dopamine for striatal circuit function, mechanistic understanding of dopamine transmission remains incomplete. We recently showed that dopamine secretion relies on the presynaptic scaffolding protein RIM, indicating that it occurs at active zone-like sites similar to classical synaptic vesicle exocytosis. Here, we establish using a systematic gene knockout approach that Munc13 and Liprin-α, active zone proteins for vesicle priming and release site organization, are important for dopamine secretion. Furthermore, RIM zinc finger and C2B domains, which bind to Munc13 and Liprin-α, respectively, are needed to restore dopamine release after RIM ablation. In contrast, and different from typical synapses, the active zone scaffolds RIM-BP and ELKS, and RIM domains that bind to them, are expendable. Hence, dopamine release necessitates priming and release site scaffolding by RIM, Munc13, and Liprin-α, but other active zone proteins are dispensable. Our work establishes that efficient release site architecture mediates fast dopamine exocytosis.
Asunto(s)
Dopamina , Transmisión Sináptica , Cuerpo Estriado , Dopamina/metabolismo , Exocitosis , Sinapsis/metabolismoRESUMEN
Dopamine is a prototypical neuromodulator that controls circuit function through G protein-coupled receptor signalling. Neuromodulators are volume transmitters, with release followed by diffusion for widespread receptor activation on many target cells. Yet, we are only beginning to understand the specific organization of dopamine transmission in space and time. Although some roles of dopamine are mediated by slow and diffuse signalling, recent studies suggest that certain dopamine functions necessitate spatiotemporal precision. Here, we review the literature describing dopamine signalling in the striatum, including its release mechanisms and receptor organization. We then propose the domain-overlap model, in which release and receptors are arranged relative to one another in micrometre-scale structures. This architecture is different from both point-to-point synaptic transmission and the widespread organization that is often proposed for neuromodulation. It enables the activation of receptor subsets that are within micrometre-scale domains of release sites during baseline activity and broader receptor activation with domain overlap when firing is synchronized across dopamine neuron populations. This signalling structure, together with the properties of dopamine release, may explain how switches in firing modes support broad and dynamic roles for dopamine and may lead to distinct pathway modulation.
Asunto(s)
Cuerpo Estriado/fisiología , Dopamina/fisiología , Animales , Calcio/metabolismo , Neuronas Dopaminérgicas/fisiología , Ácido Glutámico/metabolismo , Modelos Neurológicos , Transmisión Sináptica/fisiología , Factores de Tiempo , Ácido gamma-Aminobutírico/metabolismoRESUMEN
Objective: Postoperative cognitive dysfunction (POCD) is a common and severe complication of cardiovascular surgery. Lymphocyte-to-monocyte ratio (LMR) has been reported to be an independent predictor of lots of diseases associated with inflammation, but the association between the LMR and POCD is not clear. The present study aimed to investigate the potential value of LMR level to predict POCD in patients undergoing cardiovascular surgery. Methods: A prospective observational study was performed on the patients diagnosed with heart diseases undergoing cardiovascular surgeries with cardiopulmonary bypass. The leukocyte counts were measured by blood routine examination preoperatively. Then we calculated the LMR by dividing the lymphocyte count by the monocyte count. Neurocognitive functions were assessed 1 day before and 7 days after surgery. Perioperative factors were recorded to explore the relationship between LMR and POCD. Results: In total, 75 patients finished the whole study, while 34 patients developed POCD. The preoperative LMR level in the POCD group was higher than that in the non-POCD group. A cutoff value of 4.855 was identified to predict POCD occurrence according to ROC curve. The perioperative dynamic change of LMR level in the POCD group was higher than those in the non-POCD group. A cutoff value of 2.255 was identified to predict POCD occurrence according to ROC curve and the dynamic LMR change had similar varying trend with preoperative LMR level. Conclusions: The dynamic change of LMR level in the peripheral blood is associated with occurrence of POCD, and preoperative LMR level seems to be a prognostic biomarker of postoperative cognitive dysfunction in patients after cardiovascular surgery.
RESUMEN
Multifunctional nanoplatforms for imaging-guided synergistic antitumor treatment are highly desirable in biomedical applications. However, anticancer treatment is largely affected by the pre-existing hypoxic tumor microenvironment (TME), which not only causes the resistance of the tumors to photodynamic therapy (PDT), but also promotes tumorigenesis and tumor progression. Here, a continuous O2 self-enriched nanoplatform is constructed for multimodal imaging-guided synergistic phototherapy based on octahedral gold nanoshells (GNSs), which are constructed by a more facile and straightforward one-step method using platinum (Pt) nanozyme-decorated metal-organic frameworks (MOF) as the inner template. The Pt-decorated MOF@GNSs (PtMGs) are further functionalized with human serum albumin-chelated gadolinium (HSA-Gd, HGd) and loaded with indocyanine green (ICG) (ICG-PtMGs@HGd) to achieve a synergistic PDT/PTT effect and fluorescence (FL)/multispectral optoacoustic tomography (MSOT)/X-ray computed tomography (CT)/magnetic resonance (MR) imaging. The Pt-decorated nanoplatform endows remarkable catalase-like behavior and facilitates the continuous decomposition of the endogenous H2O2 into O2 to enhance the PDT effect under hypoxic TME. HSA modification enhances the biocompatibility and tumor-targeting ability of the nanocomposites. This TME-responsive and O2 self-supplement nanoparticle holds great potential as a multifunctional theranostic nanoplatform for the multimodal imaging-guided synergistic phototherapy of solid tumors.
RESUMEN
BACKGROUND: Postoperative cognitive dysfunction (POCD) is one of the severe complications after surgery, inducing low life quality and high mortality, especially in elderly patients. However, the underlying molecular mechanism of POCD remains largely unknown, and the ideal biomarker for clinical diagnosis and prognosis is lacking. Circular RNAs (circRNAs), as a unique class of non-coding RNAs, were characterized by its stability and conservativeness, serving as novel biomarkers in various diseases. Nevertheless, the role of circRNAs in the occurrence of POCD remains elusive. METHODS: To investigate the differentially expressed circRNAs in the serum of POCD patients and its potential role in the development of POCD, we performed a circRNA microarray to screen the differentially expressed circRNAs in the serum samples from three patients of the POCD group and three paired patients of the non-POCD group. Subsequently, quantitative real-time polymerase chain reaction analysis (qRT-PCR) was utilized to verify the microarray data with the serum samples from 10 paired patients. Cytoscape software was used to construct the circRNA-miRNA-mRNA network for circRNAs with different expression levels as well as the target genes. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses showed the biological functions of the differentially expressed circRNAs target genes. RESULTS: In total, we have analyzed 10,198 circRNAs through the microarray. Compared with the non-POCD patient group, there were 210 differentially expressed circRNAs with 133 upregulated and 77 downregulated in the POCD group (≥2-fold differential expression, P ≤ 0.05). The qRT-PCR confirmed 10 circRNAs with different expressed levels, and the results were consistent with the microarray findings. Among them, hsa_circRNA_001145, hsa_circRNA_101138, and hsa_circRNA_061570 had the highest magnitude of change. The GO analysis showed that the differentially expressed circRNAs were associated with the regulation of the developmental process, cell-to-cell adhesion, and nervous system development. The KEGG analysis showed that the target genes of circRNAs were enriched in the MAPK signaling pathway and RAS signaling pathway. According to the targetscan7.1 and mirdbV5 databases, the circRNA-miRNA-mRNA network was constructed, and these results provided a vital landscape of circRNA expression profile in POCD. CONCLUSIONS: Our study provides an essential perspective for the differential expression of circRNAs in POCD patients. Further studies need to be performed to explore their potential therapeutic roles in the development of POCD.
RESUMEN
Cardiac arrest (CA) is the leading cause of death around the world. Survivors after CA and cardiopulmonary resuscitation (CPR) develop moderate to severe cognitive impairment up to 60% at 3 months. Accumulating evidence demonstrated that long non-coding RNAs (lncRNAs) played a pivotal role in ischemic brain injury. This study aimed to identify potential key lncRNAs associated with early cognitive deficits after CA/CPR. LncRNA and mRNA expression profiles of the hippocampus in CA/CPR or sham group were analyzed via high-throughput RNA sequencing, which exhibited 1920 lncRNAs and 1162 mRNAs were differentially expressed. These differentially expressed genes were confirmed to be primarily associated with inflammatory or apoptotic signaling pathways through GO and KEGG pathway enrichment analysis and coding-noncoding co-expression network analysis. Among which, five key pairs of lncRNA-mRNA were further analyzed by qRT-PCR and western blot. We found that the lncRNANONMMUT113601.1 and mRNA Shc1, an inflammation and apoptosis-associated gene, exhibited the most significant changes in hippocampus of CA/CPR mice. Furthermore, we found that the correlations between this lncRNA and mRNA mainly happened in neurons of hippocampus by in situ hybridization. These results suggested that the critical pairs of lncRNA-mRNA may act as essential regulators in early cognitive deficits after resuscitation.
Asunto(s)
Reanimación Cardiopulmonar/psicología , Disfunción Cognitiva/etiología , Disfunción Cognitiva/genética , Paro Cardíaco/complicaciones , ARN Largo no Codificante/química , ARN Mensajero/química , Análisis de Secuencia de ARN/métodos , Animales , Apoptosis , Reanimación Cardiopulmonar/efectos adversos , Femenino , Secuenciación de Nucleótidos de Alto Rendimiento , Hipocampo/metabolismo , Ratones , Tasa de SupervivenciaRESUMEN
Presynaptic CaV2 channels are essential for Ca2+-triggered exocytosis. In addition, there are two competing models for their roles in synapse structure. First, Ca2+ channels or Ca2+ entry may control synapse assembly. Second, active zone proteins may scaffold CaV2s to presynaptic release sites, and synapse structure is CaV2 independent. Here, we ablated all three CaV2s using conditional knockout in cultured hippocampal neurons or at the calyx of Held, which abolished evoked exocytosis. Compellingly, synapse and active zone structure, vesicle docking, and transsynaptic nano-organization were unimpaired. Similarly, long-term blockade of action potentials and Ca2+ entry did not disrupt active zone assembly. Although CaV2 knockout impaired the localization of ß subunits, α2δ-1 localized normally. Rescue with CaV2 restored exocytosis, and CaV2 active zone targeting depended on the intracellular C-terminus. We conclude that synapse assembly is independent of CaV2s or Ca2+ entry through them. Instead, active zone proteins recruit and anchor CaV2s via CaV2 C-termini.
Asunto(s)
Canales de Calcio/metabolismo , Terminales Presinápticos/metabolismo , Sinapsis/metabolismo , Transmisión Sináptica/fisiología , Animales , Calcio/metabolismo , Canales de Calcio/genética , Exocitosis/fisiología , Ratones Noqueados , Neuronas/metabolismo , Vesículas Sinápticas/metabolismoRESUMEN
Dopamine powerfully controls neural circuits through neuromodulation. In the vertebrate striatum, dopamine adjusts cellular functions to regulate behaviors across broad time scales, but how the dopamine secretory system is built to support fast and slow neuromodulation is not known. Here, we set out to identify Ca2+-triggering mechanisms for dopamine release. We find that synchronous dopamine secretion is abolished in acute brain slices of conditional knockout mice in which Synaptotagmin-1 is removed from dopamine neurons. This indicates that Synaptotagmin-1 is the Ca2+ sensor for fast dopamine release. Remarkably, dopamine release induced by strong depolarization and asynchronous release during stimulus trains are unaffected by Synaptotagmin-1 knockout. Microdialysis further reveals that these modes and action potential-independent release provide significant amounts of extracellular dopamine in vivo. We propose that the molecular machinery for dopamine secretion has evolved to support fast and slow signaling modes, with fast release requiring the Ca2+ sensor Synaptotagmin-1.