RESUMEN
Though the portfolio of medicines that are extending and improving the lives of patients continues to grow, drug discovery and development remains a challenging business on its best day. Safety liabilities are a significant contributor to development attrition where the costliest liabilities to both drug developers and patients emerge in late development or post-marketing. Animal studies are an important and influential contributor to the current drug discovery and development paradigm intending to provide evidence that a novel drug candidate can be used safely and effectively in human volunteers and patients. However, translational gaps-such as toxicity in patients not predicted by animal studies-have prompted efforts to improve their effectiveness, especially in safety assessment. More holistic monitoring and "digitalization" of animal studies has the potential to enrich study outcomes leading to datasets that are more computationally accessible, translationally relevant, replicable, and technically efficient. Continuous monitoring of animal behavior and physiology enables longitudinal assessment of drug effects, detection of effects during the animal's sleep and wake cycles and the opportunity to detect health or welfare events earlier. Automated measures can also mitigate human biases and reduce subjectivity. Reinventing a conservative, standardized, and traditional paradigm like drug safety assessment requires the collaboration and contributions of a broad and multi-disciplinary stakeholder group. In this perspective, we review the current state of the field and discuss opportunities to improve current approaches by more fully leveraging the power of sensor technologies, artificial intelligence (AI), and animal behavior in a home cage environment.
RESUMEN
CRISPR/Cas9 is a promising RNA-guided genome editing technology, which consists of a Cas9 nuclease and a single-guide RNA (sgRNA). So far, a number of sgRNA prediction softwares have been developed. However, they were usually designed for protein-coding genes without considering that long non-coding RNA (lncRNA) genes may have different characteristics. In this study, we first evaluated the performances of a series of known sgRNA-designing tools in the context of both coding and non-coding datasets. Meanwhile, we analyzed the underpinnings of their varied performances on the sgRNA's specificity for lncRNA including nucleic acid sequence, genome location and editing mechanism preference. Furthermore, we introduce a support vector machine-based machine learning algorithm named CRISPRlnc, which aims to model both CRISPR knock-out (CRISPRko) and CRISPR inhibition (CRISPRi) mechanisms to predict the on-target activity of targets. CRISPRlnc combined the paired-sgRNA design and off-target analysis to achieve one-stop design of CRISPR/Cas9 sgRNAs for non-coding genes. Performance comparison on multiple datasets showed that CRISPRlnc was far superior to existing methods for both CRISPRko and CRISPRi mechanisms during the lncRNA-specific sgRNA design. To maximize the availability of CRISPRlnc, we developed a web server (http://predict.crisprlnc.cc) and made it available for download on GitHub.
Asunto(s)
ARN Guía de Sistemas CRISPR-Cas , ARN Largo no Codificante , Sistemas CRISPR-Cas , ARN Largo no Codificante/genética , Edición Génica , Aprendizaje AutomáticoRESUMEN
Objective: Argatroban is a highly promising drug for the treatment of acute ischemic stroke (AIS), but there is currently insufficient strong evidence regarding the efficacy and safety of using Argatroban in the treatment of AIS. Therefore, we conducted a systematic review and meta-analysis to evaluate the effectiveness and safety of Argatroban in the treatment of AIS. Methods: Articles on PubMed, Embase and the Cochrane Library databases were searched from these websites' inceptions to 2th February 2023. Randomized controlled trials and observational studies on Argatroban therapy for acute ischemic stroke were included. Meta-analyses were conducted using a random-effects model. Results: Fourteen studies involving 10,315 patients were included in the meta-analysis. The results showed a significant reduction in the rate of early neurological deterioration (END) in the Argatroban group compared with the control group (OR = 0.47, 95% CI: 0.31-0.73, I2 = 15.17%). The rates of adverse events were no significant difference between the two groups (ICH: OR = 1.02, 95% CI: 0.68-1.51, I2 = 0.00%; major extracranial bleeding: OR = 1.22, 95% CI: 1.01-1.48, I2 = 0.00%; mortality: OR = 1.16, 95% CI: 0.84-1.59, I2 = 0.00%). However, the rates of mRS score of 0-1 (OR = 1.38, 95% CI: 0.71-2.67, I2 = 77.56%) and mRS score of 0-2 (OR = 1.18, 95% CI: 0.98-1.42, I2 = 0.00%) during the 90 days did not significantly improved in the Argatroban group. Subgroup analyses showed that the rate of END (OR = 0.41, 95% CI: 0.26-0.65, I2 = 2.77%) and mRS score of 0-2 (OR = 1.38, 95% CI: 1.06-1.81, I2 = 0.00%) had significantly improved when the intervention group adopted Argatroban plus Antiplatelet. Conclusion: Argatroban can improve neurological deterioration, with a low incidence of adverse events such as bleeding and death, and general analysis showed no improvement in mRS. However, subgroup analysis suggests that compared to mono-antiplatelet therapy, combination therapy of Argatroban combined with antiplatelet therapy significantly reduced the incidence of END and improved mRS scores. After using Argatroban, there was no increase in the risk and mortality of intracranial hemorrhage and other bleeding sites.
RESUMEN
Anti-neutrophil cytoplasmic antibody (ANCA)-associated vasculitis (AAV) is a group of autoimmune diseases. This study aimed to investigate the clinical significance of changes in interleukin-18 (IL-18) and neutrophil/lymphocyte ratio (NLR) in the pathogenesis of AAV and the impact of NLR on the prognosis of patients. The clinical data of 52 AAV patients (AAV group) who met the conditions of hospitalization, 30 patients with mild mesangial proliferative glomerulonephritis (disease controls), and 30 healthy volunteers (normal controls) in Nephrology Department of Liuzhou People's Hospital from May 2020 to August 2022 were selected. A total of 52 AAV patients were divided into active phase (>15 points) and remission phase (≤15 points) based on the Birmingham vasculitis activity score (BVAS). Serum IL-18 level was detected by enzyme-linked immunosorbent assay in three groups. Pearson product moment correlation analysis was performed to investigate the correlation between serum IL-18 levels and clinical laboratory indicators, and receiver operating characteristic (ROC) curve analysis was performed on serum IL-18, C-reactive protein (CRP), erythrocyte sedimentation rate (ESR) levels, and NLR in AAV patients. The levels of serum creatinine, parathyroid hormone, ß2-microglobulin (ß2-MG), ESR, CRP, and IL-18 in active stage of AAV were significantly higher than those in remission stage of AAV. Moreover, the serum IL-18 level of active AAV patients was significantly higher than that of disease control group (P < 0.05). The levels of eGFR, hemoglobin, and complement C3 were significantly lower than those during the remission (P < 0.05). Pearson product moment correlation analysis showed that serum IL-18 level in AAV patients was positively correlated with BVAS score and ESR level. The area under the curve of serum IL-18, NLR, CRP, ESR levels evaluated by ROC curve was 0.921, 0.899, 0.83, and 0.75, respectively. Kaplan-Meier survival curve showed that the cumulative survival rate of patients in low NLR group was significantly higher than that in high NLR group (68.36 vs 42.89%), with significant difference (Log-Rank = 6.745, P = 0.025 < 0.05). IL-18 may be adopted as one of the important biological markers to judge the disease of AAV, and the cumulative survival rate of patients with high NLR is low, which may be applied as an indicator to evaluate the poor prognosis of patients with AAV.
RESUMEN
Adeno-associated virus (AAV)-based vectors are commonly used for delivering transgenes in gene therapy studies, but they are also known to cause dorsal root ganglia (DRG) and peripheral nerve toxicities in animals. However, the functional implications of these pathologic findings and their time course remain unclear. At 2, 4, 6, and 8 weeks following a single dose of an AAV9 vector carrying human frataxin transgene in rats, non-standard functional assessments, including von Frey filament, electrophysiology, and Rotarod tests, were conducted longitudinally to measure allodynia, nerve conduction velocity, and coordination, respectively. Additionally, DRGs, peripheral nerves, brain and spinal cord were evaluated histologically and circulating neurofilament light chain (NfL) was quantified at 1, 2, 4, and 8 weeks, respectively. At 2 and 4 weeks after dosing, minimal-to-moderate nerve fiber degeneration and neuronal degeneration were observed in the DRGs in some of the AAV9 vector-dosed animals. At 8 weeks, nerve fiber degeneration was observed in DRGs, with or without neuronal degeneration, and in sciatic nerves of all AAV9 vector-dosed animals. NfL values were higher in AAV9 vector-treated animals at weeks 4 and 8 compared with controls. However, there were no significant differences in the three functional endpoints evaluated between the AAV9 vector- and vehicle-dosed animals, or in a longitudinal comparison between baseline (predose), 4, and 8 week values in the AAV9 vector-dose animals. These findings demonstrate that there is no detectable functional consequence to the minimal-to-moderate neurodegeneration observed with our AAV9 vector treatment in rats, suggesting a functional tolerance or reserve for loss of DRG neurons after systemic administration of AAV9 vector.
Asunto(s)
Ganglios Espinales , Enfermedades del Sistema Nervioso Periférico , Humanos , Ratas , Animales , Ganglios Espinales/patología , Fibras Nerviosas , Nervio Ciático , Enfermedades del Sistema Nervioso Periférico/genética , Enfermedades del Sistema Nervioso Periférico/patología , NeuronasRESUMEN
The milestone of compound leaf development is the generation of separate leaflet primordia during the early stages, which involves two linked but distinct morphogenetic events: leaflet initiation and boundary establishment for leaflet separation. Although some progress in understanding the regulatory pathways for each event have been made, it is unclear how they are intrinsically coordinated. Here, we identify the PINNATE-LIKE PENTAFOLIATA2 (PINNA2) gene encoding a newly identified GRAS transcription factor in Medicago truncatula. PINNA2 transcripts are preferentially detected at organ boundaries. Its loss-of-function mutations convert trifoliate leaves into a pinnate pentafoliate pattern. PINNA2 directly binds to the promoter region of the LEAFY orthologue SINGLE LEAFLET1 (SGL1), which encodes a key positive regulator of leaflet initiation, and downregulates its expression. Further analysis revealed that PINNA2 synergizes with two other repressors of SGL1 expression, the BEL1-like homeodomain protein PINNA1 and the C2H2 zinc finger protein PALMATE-LIKE PENTAFOLIATA1 (PALM1), to precisely define the spatiotemporal expression of SGL1 in compound leaf primordia, thereby maintaining a proper pattern of leaflet initiation. Moreover, we showed that the enriched expression of PINNA2 at the leaflet-to-leaflet boundaries is positively regulated by the boundary-specific gene MtNAM, which is essential for leaflet boundary formation. Together, these results unveil a pivotal role of the boundary-expressed transcription factor PINNA2 in regulating leaflet initiation, providing molecular insights into the coordination of intricate developmental processes underlying compound leaf pattern formation.
Asunto(s)
Regulación de la Expresión Génica de las Plantas , Medicago truncatula , Hojas de la Planta , Medicago truncatula/genética , Medicago truncatula/crecimiento & desarrollo , Medicago truncatula/metabolismo , Morfogénesis/genética , Hojas de la Planta/genética , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Regiones Promotoras Genéticas/genética , Factores de Transcripción/metabolismo , Factores de Transcripción/genéticaRESUMEN
A microgroove type Mach-Zehnder interferometer (MZI) for gas pressure and magnetic field measurements was prepared using a femtosecond laser pulse in a single mode fiber. Due to the interference light passing through the microgroove, changing the refractive index (RI) of the medium in the microgroove will change the optical path difference between the two channels, leading to significant drift of the MZI transmission spectrum, thus achieving the measurement of environmental parameters. When the gas pressure inside the microgroove changes, the RI of the air changes, achieving the measurement of environmental gas pressure. When the microgroove is filled with magnetic fluid, changes in the environmental magnetic field will cause changes in the RI of the magnetic fluid, thus achieving measurement of the magnetic field. The experimental results show that the gas pressure sensitivity of the sensor is -5.03 nm/MPa, and the temperature cross-sensitivity is only 1.31 kPa/°C. This sensor achieves a magnetic field sensitivity of -0.3505 nm/mT in the magnetic field range of 6.4-13.6 mT. The sensor is small in size and easy to manufacture, making it a good choice for measuring air pressure and magnetic field.
RESUMEN
Plant organ size is an important agronomic trait tightly related to crop yield. However, the molecular mechanisms underlying organ size regulation remain largely unexplored in legumes. We previously characterized a key regulator F-box protein MINI ORGAN1 (MIO1)/SMALL LEAF AND BUSHY1 (SLB1), which controls plant organ size in the model legume Medicago truncatula. In order to further dissect the molecular mechanism, MIO1 was used as the bait to screen its interacting proteins from a yeast library. Subsequently, a KIX protein, designated MtKIX8, was identified from the candidate list. The interaction between MIO1 and MtKIX8 was confirmed further by Y2H, BiFC, split-luciferase complementation and pull-down assays. Phylogenetic analyses indicated that MtKIX8 is highly homologous to Arabidopsis KIX8, which negatively regulates organ size. Moreover, loss-of-function of MtKIX8 led to enlarged leaves and seeds, while ectopic expression of MtKIX8 in Arabidopsis resulted in decreased cotyledon area and seed weight. Quantitative reverse-transcription PCR and in situ hybridization showed that MtKIX8 is expressed in most developing organs. We also found that MtKIX8 serves as a crucial molecular adaptor, facilitating interactions with BIG SEEDS1 (BS1) and MtTOPLESS (MtTPL) proteins in M. truncatula. Overall, our results suggest that the MIO1-MtKIX8 module plays a significant and conserved role in the regulation of plant organ size. This module could be a good target for molecular breeding in legume crops and forages.
Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Medicago truncatula , Medicago truncatula/genética , Proteínas de Plantas/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Tamaño de los Órganos , Filogenia , Regulación de la Expresión Génica de las Plantas , Proteínas de Arabidopsis/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismoRESUMEN
Perennial monocarpic mass flowering represents as a key developmental innovation in flowering time diversity in several biological and economical essential families, such as the woody bamboos and the shrubby Strobilanthes. However, molecular and genetic mechanisms underlying this important biodiversity remain poorly investigated. Here, we generated a full-length transcriptome resource incorporated into the BlueOmics database (http://blueomics.iflora.cn) for two Strobilanthes species, which feature contrasting flowering time behaviors. Using about 112 and 104 Gb Iso-seq reads together with ~185 and ~75 Gb strand-specific RNA seq data, we annotated 80 971 and 79 985 non-redundant full-length transcripts for the perennial polycarpic Strobilanthes tetrasperma and the perennial monocarpic Strobilanthes biocullata, respectively. In S. tetrasperma, we identified 8794 transcripts showing spatiotemporal expression in nine tissues. In leaves and shoot apical meristems at two developmental stages, 977 and 1121 transcripts were differentially accumulated in S. tetrasperma and S. biocullata, respectively. Interestingly, among the 33 transcription factors showing differential expression in S. tetrasperma but without differential expression in S. biocullata, three were involved potentially in the photoperiod and circadian-clock pathway of flowering time regulation (FAR1 RELATED SEQUENCE 12, FRS12; NUCLEAR FACTOR Y A1, NFYA1; PSEUDO-RESPONSE REGULATOR 5, PRR5), hence provides an important clue in deciphering the flowering diversity mechanisms. Our data serve as a key resource for further dissection of molecular and genetic mechanisms underpinning key biological innovations, here, the perennial monocarpic mass flowering.
Asunto(s)
Flores , Transcriptoma , Humanos , Transcriptoma/genética , Flores/genética , Flores/metabolismo , Perfilación de la Expresión Génica , Hojas de la Planta/metabolismo , RNA-Seq , Regulación de la Expresión Génica de las Plantas/genéticaRESUMEN
Introduction: Wistar Han rats are a preferred strain of rodents for general toxicology and safety pharmacology studies in drug development. In some of these studies, visual functional tests that assess for retinal toxicity are included as an additional endpoint. Although the influence of gender on human retinal function has been documented for more than 6 decades, preclinically it is still uncertain if there are differences in retinal function between naïve male and female Wistar Han rats. Methods: In this study, sex-related differences in the retinal function were quantified by analyzing electroretinography (ERG) in 7-9-week-old (n = 52 males and 51 females) and 21-23-week-old Wistar Han rats (n = 48 males and 51 females). Optokinetic tracking response, brainstem auditory evoked potential, ultrasonic vocalization and histology were tested and evaluated in a subset of animals to investigate the potential compensation mechanisms of spontaneous blindness. Results/Discussion: Absence of scotopic and photopic ERG responses was found in 13% of 7-9-week-old (7/52) and 19% of 21-23-week-old males (9/48), but none of female rats (0/51). The averaged amplitudes of rod- and cone-mediated ERG b-wave responses obtained from males were significantly smaller than the amplitudes of the same responses from age-matched females (-43% and -26%, respectively) at 7-9 weeks of age. There was no difference in the retinal and brain morphology, brainstem auditory responses, or ultrasonic vocalizations between the animals with normal and abnormal ERGs at 21-23 weeks of age. In summary, male Wistar Han rats had altered retinal responses, including a complete lack of responses to test flash stimuli (i.e., blindness), when compared with female rats at 7-9 and 21-23 weeks of age. Therefore, sex differences should be considered when using Wistar Han rats in toxicity and safety pharmacology studies with regards to data interpretation of retinal functional assessments.
RESUMEN
An ultra-sensitive sensor, based on two Fabry-Perot interferometers (FPIs), has been realized for temperature and pressure sensing. A polydimethylsiloxane (PDMS)-based FPI1 was used as a sensing cavity, and a closed capillary-based FPI2 was used as a reference cavity for its insensitivity to both temperature and pressure. The two FPIs were connected in series to obtain a cascaded FPIs sensor, showing a clear spectral envelope. The temperature and pressure sensitivities of the proposed sensor reach up to 16.51â nm/°C and 100.18â nm/MPa, which are 25.4 and 21.6 times, respectively, larger than these of the PDMS-based FPI1, showing a great Vernier effect.
RESUMEN
This study proposed an all-fiber Fabry-Perot interferometer (FPI) strain sensor with two miniature bubble cavities. The device was fabricated by writing two axial, mutually close short-line structures via femtosecond laser pulse illumination to induce a refractive index modified area in the core of a single-mode fiber (SMF). Subsequently, the gap between the two short lines was discharged with a fusion splicer, resulting in the formation of two adjacent bubbles simultaneously in a standard SMF. When measured directly, the strain sensitivity of dual air cavities is 2.4 pm/µÎµ, the same as that of a single bubble. The measurement range for a single bubble is 802.14 µÎµ, while the measurement range for a double bubble is 1734.15 µÎµ. Analysis of the envelope shows that the device possesses a strain sensitivity of up to 32.3 pm/µÎµ, which is 13.5 times higher than that of a single air cavity. Moreover, with a maximum temperature sensitivity of only 0.91 pm/°C, the temperature cross sensitivity could be neglected. As the device is based on the internal structure inside the optical fiber, its robustness could be guarantee. The device is simple to prepare, highly sensitive, and has wide application prospects in the field of strain measurement.
RESUMEN
Salicylic acid (SA) plays important roles in different aspects of plant development, including root growth, where auxin is also a major player by means of its asymmetric distribution. However, the mechanism underlying the effect of SA on the development of rice roots remains poorly understood. Here, we show that SA inhibits rice root growth by interfering with auxin transport associated with the OsPIN3t- and clathrin-mediated gene regulatory network (GRN). SA inhibits root growth as well as Brefeldin A-sensitive trafficking through a non-canonical SA signaling mechanism. Transcriptome analysis of rice seedlings treated with SA revealed that the OsPIN3t auxin transporter is at the center of a GRN involving the coat protein clathrin. The root growth and endocytic trafficking in both the pin3t and clathrin heavy chain mutants were SA insensitivity. SA inhibitory effect on the endocytosis of OsPIN3t was dependent on clathrin; however, the root growth and endocytic trafficking mediated by tyrphostin A23 (TyrA23) were independent of the pin3t mutant under SA treatment. These data reveal that SA affects rice root growth through the convergence of transcriptional and non-SA signaling mechanisms involving OsPIN3t-mediated auxin transport and clathrin-mediated trafficking as key components.
Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Oryza , Clatrina/metabolismo , Proteínas de Arabidopsis/metabolismo , Oryza/metabolismo , Arabidopsis/genética , Ácido Salicílico/metabolismo , Raíces de Plantas/metabolismo , Transporte de Proteínas , Ácidos Indolacéticos/metabolismoRESUMEN
Long non-coding RNAs (lncRNAs) have been verified as flexible and important factors in various biological processes of multicellular eukaryotes, including plants. The respective intricate crosstalk among multiple epigenetic modifications has been examined to some extent. However, only a small proportion of lncRNAs has been functionally well characterized. Moreover, the relationship between lncRNAs and other epigenetic modifications has not been systematically studied. In this mini-review, we briefly summarize the representative biological functions of lncRNAs in developmental programs and environmental responses in plants. In addition, we particularly discuss the intimate relationship between lncRNAs and other epigenetic modifications, and we outline the underlying avenues and challenges for future research on plant lncRNAs.
RESUMEN
The objective of this study was to evaluate the efficacy and safety of Chinese patent medicine compared with western medicine in the treatment of Alzheimer's disease using the Network Meta-analysis. This study retrieved relevant studies from 7 databases, and the retrieval time was from the establishment of each database to June 2022. After the screening, data extraction, and quality assessment, 47 studies were finally analyzed, involving 11 Chinese patent medicines. The results demonstrated that Chinese patent medicine intervention was superior to oral western medicine treatment in improving the patient's condition as assessed by the Mini-mental State Examination (MMSE), Activities of Daily Living (ADL), effective rate, and Alzheimer's Disease Assessment Scale-Cognitive section (ADAS-Cog). Particularly, the effect of Chinese patent medicine combined with western medicine intervention was prominent. Meanwhile, Chinese patent medicine intervention in AD did not significantly increase the risk of adverse reactions. The results of the Network Meta-analysis demonstrated that Chinese patent medicine combined with western medicine had statistically significant differences in the MMSE score, ADL score, effective rate, and ADAS-Cog score, compared with both western medicine alone and Chinese patent medicine alone. In terms of adverse reactions, the difference between Chinese patent medicine intervention and simple oral western medicine was statistically significant. The results of further ranking probability analysis demonstrated that Chinese patent medicine combined with western medicine intervention ranked first in terms of MMSE, ADL, effective rate, and ADAS-Cog. Additionally, oral Chinese patent medicine intervention alone ranked first in reducing adverse reactions. In the funnel plots of the MMSE, ADL, and effective rate, most studies were symmetrically distributed on both sides of the midline, where small sample effects and publication bias might exist to some extent. However, this conclusion still needs to be combined with clinical syndrome differentiation and treatment, and more large-sample, multi-center, high-quality studies are needed for further verification.
Asunto(s)
Enfermedad de Alzheimer , Medicamentos Herbarios Chinos , Humanos , Enfermedad de Alzheimer/tratamiento farmacológico , Metaanálisis en Red , Actividades Cotidianas , Medicamentos sin Prescripción/uso terapéuticoRESUMEN
Rodents emit ultrasonic vocalizations (USVs) above the human hearing threshold of ~ 20 kHz to communicate emotional states and to coordinate their social interactive behavior. Twenty-two kHz USVs emitted by adult rats have been reported in a variety of aversive social and behavioral situations. They occur not only under painful or restraining conditions but can also be evoked by gentle cutaneous touch or airflow. This study aimed to test if placement of a human hand in a cage can evoke 22-kHz USVs. It was found that 36% of the adult male Sprague-Dawley and 13% of the adult male Wistar Han rats emitted 22-kHz USVs when a gloved hand was introduced into the cages. Average vocalization onset latencies were 5.0 ± 4.4 s (Sprague-Dawley) and 7.4 ± 4.0 s (Wistar Han) and the USVs had a stable frequency (22 kHz) across the calls, ranging from 0.1 to 2.3 seconds in duration. Surprisingly, no 22-kHz USVs were found in any female Wistar Han rats tested. To further explore the mechanisms underlying this observation, we compared retinal function, basal serum corticosterone, and testosterone levels between the 22-kHz USV responders and non-responders. None of these parameters or endpoints showed any significant differences between the two cohorts. The results suggest that the introduction of a gloved-hand inside the cage can trigger adult male albino rats to emit 22-kHz ultrasonic vocalizations. This response should be considered in USV studies and animal welfare.
Asunto(s)
Ultrasonido , Vocalización Animal , Humanos , Animales , Masculino , Femenino , Ratas , Vocalización Animal/fisiología , Ratas Wistar , Ratas Sprague-Dawley , Conducta SocialRESUMEN
BACKGROUND: Gunao-Yizhi decoction has the effects of supplementing intelligence, strengthening marrow, resolving phlegm, and reducing turbidity. It is clinically used for the treatment of vascular dementia (VaD). However, there is still a lack of systematic evaluation of its efficacy and safety. This review conducted a systematic review of the current evidence on the efficacy and safety of Gunao-Yizhi decoction combined with donepezil for VaD. METHODS: China National Knowledge Infrastructure (CNKI), Wanfang database (Wanfang), Chinese Science and Technology Periodical Database (VIP), China Biology Medicine disc (CBM), MEDLINE, EMBASE, and Cochrane Library were searched for randomized controlled trials on Gunao-Yizhi decoction combined with donepezil for VaD. RevMan 5.3 software was used for data analysis. RESULTS: Twelve studies were obtained, including 1036 patients. Compared with donepezil alone, meta-analysis showed that Gunao-Yizhi decoction combined with donepezil could improve clinical efficacy, mini-mental state examination (MMSE) score, Hasegawa dementia scale (HDS), increase the level of superoxide dismutase (SOD) in serum, and reduce the level of malonaldehyde dismutas (MDA) in serum. The GRADE system was adopted to evaluate the outcome index. Clinical efficiency and the MMSE score were evaluated as very-low-quality evidence. HDS score, serum SOD level, and serum MDA level were evaluated as low-quality evidence. CONCLUSION: Gunao-Yizhi decoction combined with donepezil has a significant prevalence in the treatment of vascular dementia, with no increase in adverse events. Gunao-Yizhi decoction can be recommended for routine use in the treatment of VaD.
Asunto(s)
Demencia Vascular , Medicamentos Herbarios Chinos , Demencia Vascular/tratamiento farmacológico , Donepezilo/uso terapéutico , Medicamentos Herbarios Chinos/uso terapéutico , Humanos , Malondialdehído , Superóxido DismutasaRESUMEN
Lateral organ boundaries domain (LBD) proteins are plant-specific transcription factors that play important roles in organ development and stress response. However, the function of LBD genes has not been reported in Euphorbiaceae. In this paper, we used Jatropha curcas as the main study object and added rubber tree (Hevea brasiliensis), cassava (Manihot esculenta Crantz) and castor (Ricinus communis L.) to take a phylogenetic analysis of LBD genes. Of LBD, 33, 58, 54 and 30 members were identified in J. curcas, rubber tree, cassava and castor, respectively. The phylogenetic analysis showed that LBD members of Euphorbiaceae could be classified into two major classes and seven subclasses (Ia-Ie,IIa-IIb), and LBD genes of Euphorbiaceae tended to cluster in the same branch. Further analysis showed that the LBD genes of Euphorbiaceae in the same clade usually had similar protein motifs and gene structures, and tissue expression patterns showed that they also have similar expression profiles. JcLBDs in class Ia and Ie are mainly expressed in male and female flowers, and there are multiple duplication genes with similar expression profiles in these clades. It was speculated that they are likely to play important regulatory roles in flower development. Our study provided a solid foundation for further investigation of the role of LBD genes in the sexual differentiaion of J. curcas.
RESUMEN
Root system architecture (RSA) and tiller are important agronomic traits. However, the mechanisms of the IGT family genes regulate RSA and tiller development in different rice varieties remain unclear. In this study, we demonstrated that 38 rice varieties obtained from Yuanyang Hani's terraced fields with different RSA and could be classified into six groups based on the ratio of root length and width. We found a positive correlation between RSA (including root width, length, and area) and tiller number in most of rice varieties. Furthermore, the IGT family genes Deeper Rooting 1 (DRO1), LAZY1, TAC1, and qSOR1 showed different expression patterns when rice grown under irrigation and drought conditions. Moreover, the qSOR1 gene had higher levels in the roots and tillers, and accompanied with higher levels of PIN1b gene in roots when rice grown under drought environmental condition. DRO1 gene had two single nucleotide polymorphisms (SNPs) in the exon 3 sequences and showed different expression patterns in the roots and tillers of the 38 rice varieties. Overexpression of DRO1 with a deletion of exon 5 caused shorter root length, less lateral roots and lower levels of LAZY1, TAC1, and qSOR1. Further protein interaction network, microRNA targeting and co-expression analysis showed that DRO1 plays a critical role in the root and tiller development associated with auxin transport. These data suggest that the RSA and tiller development are regulated by the IGT family genes in an intricate network way, which is tightly related to rice genetic background in rice adapting to different environmental conditions.