Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Epigenetics ; 19(1): 2337087, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38564758

RESUMEN

Decidual macrophages are the second-largest immune cell group at the maternal-foetal interface. They participate in apoptotic cell removal, and protect the foetus from microorganisms or pathogens. Dysfunction of decidual macrophages gives rise to pregnancy complications such as preeclampsia and recurrent spontaneous miscarriage (RSM). However, the mechanisms by which decidual macrophages are involved in the occurrence of adverse pregnancy outcomes have not been elucidated. Here we integrated DNA methylation and gene expression data from decidua macrophages to identify potential risk factors related to RSM. GPR133 was significantly hypomethylated and upregulated in decidual macrophages from RSM patients. Further demethylation analysis demonstrated that GPR133 expression in decidual macrophages was significantly increased by 5-Aza-dC treatment. In addition, the influence of GPR133 on the phagocytic ability of macrophages was explored. Phagocytosis was impaired in the decidual macrophages of RSM patients with increased GPR133 expression. Increased GPR133 expression induced by demethylation treatment in the decidual macrophages of healthy control patients led to a significant decrease in phagocytic function. Importantly, knockdown of GPR133 resulted in a significant improvement in the phagocytic function of THP-1 macrophages. In conclusion, the existing studies have shown the influence of GPR133 on the phagocytic function of decidual macrophages and pregnancy outcomes, providing new data and ideas for future research on the role of decidual macrophages in RSM.


Asunto(s)
Aborto Espontáneo , Decidua , Femenino , Humanos , Embarazo , Aborto Espontáneo/genética , Decidua/metabolismo , Metilación de ADN , Macrófagos , Fagocitosis , Regulación hacia Arriba
2.
Pharmaceutics ; 15(7)2023 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-37514059

RESUMEN

Prostate cancer (PC) is one of the common malignant tumors of the male genitourinary system. Here, we constructed PTX@ZIF-8, which is a metal-organic-framework-encapsulated drug delivery nanoparticle with paclitaxel (PTX) as a model drug, and further modified the synthesized peptide dimer (Di-PEG2000-COOH) onto the surface of PTX@ZIF-8 to prepare a nanotargeted drug delivery system (Di-PEG@PTX@ZIF-8) for the treatment of prostate cancer. This study investigated the morphology, particle size distribution, zeta potential, drug loading, encapsulation rate, stability, in vitro release behavior, and cytotoxicity of this targeted drug delivery system, and explored the uptake of Di-PEG@PTX@ZIF-8 by human prostate cancer Lncap cells at the in vitro cellular level, as well as the proliferation inhibition and promotion of apoptosis of Lncap cells by the composite nanoparticles. The results suggest that Di-PEG@PTX@ZIF-8, as a zeolitic imidazolate frameworks-8-loaded paclitaxel nanoparticle, has promising potential for the treatment of prostate cancer, which may provide a novel strategy for the delivery system targeting prostate cancer.

3.
Cell Mol Biol (Noisy-le-grand) ; 69(4): 120-124, 2023 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-37329537

RESUMEN

This study was carried out to investigate the correlation between the onset of peripheral neuropathy and levels of hypersensitive C-reactive protein (hs-CRP), interleukin 1ß (IL-1ß) and IL-6 in senile Parkinson's disease (PD) patients. For this purpose, a total of 60 PD patients and 60 age-matched healthy subjects were enrolled in this study and received the assessment for peripheral nerves by using the quantified method. Besides, levels of hs-CRP, IL-1ß and IL-6 in serum were determined to analyze the correlation between the clinical features, including the severity of PD and cognitive decline, and the levels of hs-CRP, IL-1ß and IL-6. Results showed that PD patients had more cases of peripheral neuropathy than those in the healthy control group. Levels of hs-CRP, IL-1ß and IL-6 in the serum of PD patients were much higher than those in the healthy control (P<0.05). Besides, PD patients had lower scores of MMSE and MoCA but higher CNPI scores when compared to the healthy control group. As a result, we found that the severity of peripheral neuropathy was in a positive correlation with the levels of hs-CRP, IL-1ß and IL-6. It was concluded that PD patients generally have peripheral neuropathy that may correlate with the increases in the levels of hs-CRP, IL-1ß and IL-6, and early intervention may mitigate the development and progression of peripheral neuropathy.


Asunto(s)
Enfermedad de Parkinson , Enfermedades del Sistema Nervioso Periférico , Humanos , Proteína C-Reactiva/metabolismo , Interleucina-1beta , Interleucina-6
4.
Commun Biol ; 6(1): 361, 2023 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-37012372

RESUMEN

AMPK plays significant roles in the modulation of metabolic reprogramming and viral infection. However, the detailed mechanism by which AMPK affects viral infection is unclear. The present study aims to determine how AMPK influences white spot syndrome virus (WSSV) infection in shrimp (Marsupenaeus japonicus). Here, we find that AMPK expression and phosphorylation are significantly upregulated in WSSV-infected shrimp. WSSV replication decreases remarkably after knockdown of Ampkα and the shrimp survival rate of AMPK-inhibitor injection shrimp increases significantly, suggesting that AMPK is beneficial for WSSV proliferation. Mechanistically, WSSV infection increases intracellular Ca2+ level, and activates CaMKK, which result in AMPK phosphorylation and partial nuclear translocation. AMPK directly activates mTORC2-AKT signaling pathway to phosphorylate key enzymes of glycolysis in the cytosol and promotes expression of Hif1α to mediate transcription of key glycolytic enzyme genes, both of which lead to increased glycolysis to provide energy for WSSV proliferation. Our findings reveal a novel mechanism by which WSSV exploits the host CaMKK-AMPK-mTORC2 pathway for its proliferation, and suggest that AMPK might be a target for WSSV control in shrimp aquaculture.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Glucólisis , Diana Mecanicista del Complejo 2 de la Rapamicina , Penaeidae , Replicación Viral , Virus del Síndrome de la Mancha Blanca 1 , Aerobiosis , Proteínas Quinasas Activadas por AMP/genética , Proteínas Quinasas Activadas por AMP/metabolismo , Diana Mecanicista del Complejo 2 de la Rapamicina/metabolismo , Penaeidae/genética , Penaeidae/metabolismo , Fosforilación , Transducción de Señal , Virus del Síndrome de la Mancha Blanca 1/fisiología , Técnicas de Silenciamiento del Gen
5.
Chem Soc Rev ; 52(9): 2946-2991, 2023 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-37016986

RESUMEN

Alkene functionalisation is a powerful strategy that has enabled access to a wide array of compounds including valuable pharmaceuticals and agrochemicals. The reactivity of the alkene π-bond has allowed incorporation of a diverse range of atoms and functional groups through a wide variety of reaction pathways. N-Heterocyclic carbenes (NHCs) are a class of persistent carbenes that are widely employed as ancillary ligands due to their ability to act as strong σ-donors compared to widely-applied conventional phosphine-based ligands. NHCs are also unique as their molecular bulk provides steric influence for regio- and stereo-control in many alkene functionalisation reactions, illustrated by the examples covered in this review. A combination of the unique reactivity of NHC ligands and nickel's characteristics has facilitated the design of reaction pathways that show distinct selectivity and reactivity, including the activation of bonds previously considered "inert", such as C-H bonds, the C-O bond of ethers and esters, and the C-N bonds of amides. This review summarises the advancements in Ni(NHC) catalysed alkene functionalisation up to 2022, covering the following major reaction classes: Heck-type reactions, hydrofunctionalisation and dicarbofunctionalisation.

6.
Front Pharmacol ; 14: 1051305, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36873995

RESUMEN

Maintenance therapy in adult T-cell acute lymphoblastic leukemia (T-ALL) is the longest phase but with limited option. The classic drugs used in the maintenance phase such as 6-mercaptopurine, methotrexate, corticosteroid and vincristine have potentially serious toxicities. Optimizing therapy in the modern age, chemo-free maintenance therapy regimens for patients with T-ALL may dramatically improve the maintenance therapeutic landscape. We report here the combination of Anti-programmed cell death protein 1 antibody and histone deacetylase inhibitor as chemo-free maintenance treatment in a T-ALL patient with literature review, thus providing a unique perspective in addition to valuable information which may inform novel therapeutic approaches.

7.
Front Immunol ; 13: 885782, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35693782

RESUMEN

Trained immunity is driven by metabolism and epigenetics in innate immune cells in mammals. The phenomenon of trained immunity has been identified in invertebrates, including shrimp, but the underlying mechanisms remain unclear. To elucidate mechanisms of trained immunity in shrimp, the metabolomic changes in hemolymph of Marsupenaeus japonicus trained by the UV-inactivated white spot syndrome virus (UV-WSSV) were analyzed using tandem gas chromatography-mass/mass spectrometry. The metabolomic profiles of shrimp trained with UV-WSSV followed WSSV infection showed significant differences comparison with the control groups, PBS injection followed WSSV infection. 16 differential metabolites in total of 154 metabolites were identified, including D-fructose-6-phosphate, D-glucose-6-phosphate, and D-fructose-6-phosphate, and metabolic pathways, glycolysis, pentose phosphate pathway, and AMPK signaling pathway were enriched in the UV-WSSV trained groups. Further study found that histone monomethylation and trimethylation at H3K4 (H3K4me1 and H3K4me3) were involved in the trained immunity. Our data suggest that the UV-WSSV induced trained immunity leads to metabolism reprogramming in the shrimp and provide insights for WSSV control in shrimp aquaculture.


Asunto(s)
Penaeidae , Virus del Síndrome de la Mancha Blanca 1 , Animales , Proteínas de Artrópodos , Inmunidad Innata , Mamíferos/metabolismo , Rayos Ultravioleta
8.
Ecotoxicol Environ Saf ; 241: 113756, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35691196

RESUMEN

Zearalenone (ZEN) is a potent oestrogenic mycotoxin that is mainly produced by Fusarium species and is a serious environmental pollutant in animal feeds. Apiotrichum mycotoxinivorans has been widely used as a feed additive to detoxify ZEN. However, the effects of ZEN on A. mycotoxinivorans and its detoxification mechanisms remain unclear. In this study, transcriptomic and bioinformatic analyses were used to investigate the molecular responses of A. mycotoxinivorans to ZEN exposure and the genetic basis of ZEN detoxification. We detected 1424 significantly differentially expressed genes (DEGs), of which 446 were upregulated and 978 were downregulated. Functional and enrichment analyses showed that ZEN-induced genes were significantly associated with xenobiotic metabolism, oxidative stress response, and active transport systems. However, ZEN-inhibited genes were mainly related to cell division, cell cycle, and fungal development. Subsequently, bioinformatic analysis identified candidate ZEN-detoxification enzymes. The Baeyer-Villiger monooxygenases and carboxylesterases, which are responsible for the formation and subsequent hydrolysis of a new ZEN lactone, respectively, were significantly upregulated. In addition, the expression levels of genes related to conjugation and transport involved in the xenobiotic detoxification pathway were significantly upregulated. Moreover, the expression levels of genes encoding enzymatic antioxidants and those related to growth and apoptosis were significantly upregulated and downregulated, respectively, which made it possible for A. mycotoxinivorans to survive in a highly toxic environment and efficiently detoxify ZEN. This is the first systematic report of ZEN tolerance and detoxification in A. mycotoxinivorans. We identified the metabolic enzymes that were potentially involved in detoxifying ZEN in the GMU1709 strain and found that ZEN-induced transcriptional regulation of genes is key to withstanding highly toxic environments. Hence, our results provide valuable information for developing enzymatic detoxification systems or engineering this detoxification pathway in other species.


Asunto(s)
Zearalenona , Animales , Saccharomyces cerevisiae/metabolismo , Transcriptoma , Trichosporon , Xenobióticos , Zearalenona/toxicidad
9.
Angew Chem Int Ed Engl ; 61(26): e202202674, 2022 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-35388949

RESUMEN

Catalytic strategies that provide stereoselective access to highly substituted alkenes from abundant monosubstituted substrates are exceedingly sought-after but rare. Here, we show that a N-heterocyclic carbene-NiI catalytic species mediates efficient union of electronically polarized terminal olefins with benzyl chlorides, in the presence of trimethylsilyl triflate and trimethylamine additives, to generate trisubstituted boron- and arene-containing trans alkenes in excellent regio- and stereoselectivities. Control experiments provide evidence for a mechanism involving branched-selective Heck-type benzylation that overrides substrate control, followed by trans-selective 1,3-hydrogen shift. The method represents a significant addition to the toolbox of reactions for the concise synthesis of unsaturated biologically active compounds.


Asunto(s)
Alquenos , Níquel , Alquenos/química , Catálisis , Isomerismo , Estructura Molecular , Níquel/química , Estereoisomerismo
10.
Front Cell Infect Microbiol ; 12: 834015, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35186802

RESUMEN

Over the past decade, Apiotrichum mycotoxinivorans has been recognized globally as a source of opportunistic infections. It is a yeast-like fungus, and its association as an uncommon pulmonary pathogen with cystic fibrosis patients has been previously reported. Immunocompromised patients are at the highest risk of A. mycotoxinivorans infections. Therefore, to investigate the genetic basis for the pathogenicity of A. mycotoxinivorans, we performed whole-genome sequencing and comparative genomic analysis of A. mycotoxinivorans GMU1709 that was isolated from sputum specimens of a pneumonia patient receiving cardiac repair surgery. The assembly of Oxford Nanopore reads from the GMU1709 strain and its subsequent correction using Illumina paired-end reads yielded a high-quality complete genome with a genome size of 30.5 Mb in length, which comprised six chromosomes and one mitochondrion. Subsequently, 8,066 protein-coding genes were predicted based on multiple pieces of evidence, including transcriptomes. Phylogenomic analysis indicated that A. mycotoxinivorans exhibited the closest evolutionary affinity to A. veenhuisii, and both the A. mycotoxinivorans strains and the formerly Trichosporon cutaneum ACCC 20271 strain occupied the same phylogenetic position. Further comparative analysis supported that the ACCC 20271 strain belonged to A. mycotoxinivorans. Comparisons of three A. mycotoxinivorans strains indicated that the differences between clinical and non-clinical strains in pathogenicity and drug resistance may be little or none. Based on the comparisons with strains of other species in the Trichosporonaceae family, we identified potential key genetic factors associated with A. mycotoxinivorans infection or pathogenicity. In addition, we also deduced that A. mycotoxinivorans had great potential to inactivate some antibiotics (e.g., tetracycline), which may affect the efficacy of these drugs in co-infection. In general, our analyses provide a better understanding of the classification and phylogeny of the Trichosporonaceae family, uncover the underlying genetic basis of A. mycotoxinivorans infections and associated drug resistance, and provide clues into potential targets for further research and the therapeutic intervention of infections.


Asunto(s)
Trichosporon , Genoma Bacteriano , Humanos , Filogenia , Análisis de Secuencia de ADN , Secuenciación Completa del Genoma
12.
Microb Drug Resist ; 28(1): 7-17, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34357802

RESUMEN

Pseudomonas aeruginosa is an opportunistic pathogen, which usually presents multiple antibiotic resistance. Host-directed therapy involves modulating the host defense system and the interplay between innate and adaptive immunity is a new strategy for designing anti-infection drugs. Memantine (MEM), a drug used to treat Alzheimer's disease, has a good inhibitory effect on neonatal mice with Escherichia coli-associated bacteremia and meningitis; however, the inhibitory effect and mechanisms of MEM against P. aeruginosa infection remain unclear. Here, we investigated whether MEM could inhibit P. aeruginosa infection and explored the potential mechanisms. MEM significantly promoted the bactericidal effect of neutrophils against P. aeruginosa and its drug-resistant strain. The combination index of MEM and amikacin (AMK) was <1. In vivo experiments showed that the bacteremia and inflammation severities in the MEM-treated group were less than those in the untreated group, and the bacterial load in the organs was significantly less than that in the control group. Combining MEM with the reactive oxygen species (ROS) inhibitor, N-acetyl-l-cysteine, weakened the anti-infective effect of MEM. MEM increased the expression of NADPH p67phox and promoted neutrophilic ROS production. Deleting the p67phox gene significantly weakened the effects of MEM on ROS generation and improving bactericidal effect of neutrophils. In conclusion, MEM promoted the bactericidal effect of neutrophils against P. aeruginosa and its drug-resistant strain, and had a synergistic antibacterial effect when combined with AMK. MEM may exert its anti-infective effects by promoting neutrophilic bactericidal activity via increasing the expression level of p67phox and further stimulating ROS generation.


Asunto(s)
Amicacina/farmacología , Antibacterianos/farmacología , Memantina/farmacología , Pseudomonas aeruginosa/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Acetilcisteína/farmacología , Animales , Farmacorresistencia Bacteriana , Neutrófilos/efectos de los fármacos , Fosfoproteínas/efectos de los fármacos , Infecciones por Pseudomonas/prevención & control , Ratas , Ratas Sprague-Dawley
13.
Nat Chem ; 14(2): 188-195, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34903858

RESUMEN

In the absence of directing auxiliaries, the catalytic addition of carbogenic groups to unactivated alkenes with control of regioselectivity remains an ongoing challenge in organic chemistry. Here we describe a directing-group-free, nickel-catalysed strategy that couples a broad array of unactivated and activated olefins with aryl-substituted triflates and organometallic nucleophiles to afford diarylation adducts in either regioisomeric form, in up to 93% yield and >98% site selectivity. By switching the reagents involved, the present strategy may be extended to other classes of dicarbofunctionalization reactions. Mechanistic and computational investigations offer insights into the origin of the observed regiochemical outcome and the utility of the method is highlighted through the concise syntheses of biologically active molecules. The catalyst control principles reported are expected to advance efforts towards the development of general site-selective alkene functionalizations, removing the requirement for neighbouring activating groups.


Asunto(s)
Alquenos/química , Catálisis , Indicadores y Reactivos/química , Níquel/química
14.
Sci Adv ; 7(36): eabf6033, 2021 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-34516894

RESUMEN

Glioblastoma (GBM) is a uniformly lethal disease driven by glioma stem cells (GSCs). Here, we use a chemical biology approach to unveil previously unknown GBM dependencies. By studying sulconazole (SN) with anti-GSC properties, we find that SN disrupts biotin distribution to the carboxylases and histones. Transcriptomic and metabolomic analyses of SN-treated GSCs reveal metabolic alterations that are characteristic of biotin-deficient cells, including intracellular cholesterol depletion, impairment of oxidative phosphorylation, and energetic crisis. Furthermore, SN treatment reduces histone biotinylation, histone acetylation, and expression of superenhancer-associated GSC critical genes, which are also observed when biotin distribution is genetically disrupted by holocarboxylase synthetase (HLCS) depletion. HLCS silencing impaired GSC tumorigenicity in an orthotopic xenograft brain tumor model. In GBM, high HLCS expression robustly indicates a poor prognosis. Thus, the dependency of GBM on biotin distribution suggests that the rational cotargeting of biotin-dependent metabolism and epigenetic pathways may be explored for GSC eradication.

15.
J Am Chem Soc ; 143(25): 9498-9506, 2021 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-34152130

RESUMEN

Alkene hydrocarbofunctionalization represents one of the most important classes of chemical transformations, but related branched-selective examples with unactivated olefins are scarce. Here, we report that catalytic amounts of a dimeric Ni(I) complex and an exogenous alkoxide base promote Markovnikov-selective hydroarylation(alkenylation) of unactivated and activated olefins using organo bromides or triflates derived from widely available phenols and ketones. Products bearing aryl- and alkenyl-substituted tertiary and quaternary centers could be isolated in up to 95% yield and >99:1 regioisomeric ratios. Contrary to previous dual-catalytic methods that rely on metal-hydride atom transfer (MHAT) to the olefin prior to carbofunctionalization with a cocatalyst, our mechanistic evidence points toward a nonradical reaction pathway that begins with site-selective carbonickelation across the C═C bond followed by hydride transfer using alkoxide as the hydride source. Utility of the single-catalyst protocol is highlighted through the synthesis of medicinally relevant scaffolds.

16.
Nat Catal ; 4(8): 674-683, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36051572

RESUMEN

Despite tremendous efforts aimed at devising methods for stereoselective alkene synthesis, critical challenges are yet to be addressed. Direct access to a diverse range of 1aryl(boryl)-1-methyl-functionalized tri- and tetrasubstituted trans alkenes, entities that are prevalent in many important molecules of interest, through a catalytic manifold from readily available α-olefin substrates remains elusive. Here, we demonstrate that catalytic amounts of a nonprecious N-heterocyclic carbene-Ni(I) complex in conjunction with a sterically bulky base promote site- and trans-selective union of monosubstituted olefins with a wide array of electrophilic reagents to deliver tri- and tetrasubstituted alkenes in up to 92% yield and >98% regio- and stereoselectivity. The protocol is amenable to the preparation of carbon- and heteroatom-substituted C=C bonds, providing distinct advantages over existing transformations. Utility is highlighted through concise stereoselective synthesis of biologically active compounds.

17.
J Org Chem ; 84(1): 409-416, 2019 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-30521336

RESUMEN

A highly efficient iridium-catalyzed cascade annulation of pyrazolones and sulfoxonium ylides to access various pyrazolo[1,2-α]cinnoline derivatives has been achieved. This novel approach expanded the application scope of coupling partners to ylides. The control experiments were performed to give insight into the mechanism of this reaction.

18.
Org Biomol Chem ; 15(14): 2902-2905, 2017 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-28304049

RESUMEN

Diazo compounds play an important role as a coupling partner in the synthesis of unique π-conjugated 7-azaindole derivatives via rhodium(iii)-catalyzed double C-H activation/cyclization.

19.
Chem Asian J ; 12(4): 415-418, 2017 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-28044420

RESUMEN

A convenient rhodium(III)-catalyzed cascade reaction of 7-azaindoles and alkynes through multiple C-H bond activation for the synthesis of unique [5]azahelicenes has been developed. The optical property of these screw-shaped helicene derivatives could be further utilized in electronic devices to recognize mercury ions.

20.
Chemistry ; 22(50): 17926-17929, 2016 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-27786383

RESUMEN

An efficient rhodium-catalyzed dehydrogenative Heck-type reaction between N-aryl-substituted 7-azaindoles and various alkenes through a H2 -releasing process without the need of any oxidizing agent was developed. The novel methodology broadens the scope of metal-catalyzed hydrogen-releasing reactions to include rhodium catalysis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...