RESUMEN
Poly (ADP-ribose) polymerase inhibitors (PARPi) are selectively active in ovarian cancer (OC) with homologous recombination (HR) deficiency (HRD) caused by mutations in BRCA1/2 and other DNA repair pathway members. We sought molecular targeted therapy that induce HRD in HR-proficient cells to induce synthetic lethality with PARPi and extend the utility of PARPi. Here, we demonstrate that lysine-specific demethylase 1 (LSD1) is an important regulator for OC. Importantly, genetic depletion or pharmacological inhibition of LSD1 induces HRD and sensitizes HR-proficient OC cells to PARPi in vitro and in multiple in vivo models. Mechanistically, LSD1 inhibition directly impairs transcription of BRCA1/2 and RAD51, three genes essential for HR, dependently of its canonical demethylase function. Collectively, our work indicates combination with LSD1 inhibitor could greatly expand the utility of PARPi to patients with HR-proficient tumor, warranting assessment in human clinical trials.
Asunto(s)
Proteína BRCA1 , Neoplasias Ováricas , Humanos , Femenino , Proteína BRCA1/genética , Proteína BRCA1/metabolismo , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Inhibidores de Poli(ADP-Ribosa) Polimerasas/uso terapéutico , Regulación hacia Abajo , Reparación del ADN , Proteína BRCA2/genética , Proteína BRCA2/metabolismo , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/genética , Neoplasias Ováricas/patología , Recombinación Homóloga , Histona Demetilasas/genética , Histona Demetilasas/metabolismo , Recombinasa Rad51/genética , Recombinasa Rad51/metabolismoRESUMEN
As a key rate-limiting enzyme in the de novo synthesis of pyrimidine nucleotides, human dihydroorotate dehydrogenase (hDHODH) is considered a known target for the treatment of autoimmune diseases, including inflammatory bowel disease (IBD). Herein, BAY 41-2272 with a 1H-pyrazolo[3,4-b]pyridine scaffold was identified as an hDHODH inhibitor by screening an active compound library containing 5091 molecules. Further optimization led to 2-(1-(2-chloro-6-fluorobenzyl)-1H-pyrrolo[2,3-b]pyridin-3-yl)-5-cyclopropylpyrimidin-4-amine (w2), which was found to be the most promising and drug-like compound with potent inhibitory activity against hDHODH (IC50 = 173.4 nM). Compound w2 demonstrated acceptable pharmacokinetic characteristics and alleviated the severity of acute ulcerative colitis induced by dextran sulfate sodium in a dose-dependent manner. Notably, w2 exerted better therapeutic effects on ulcerative colitis than hDHODH inhibitor vidofludimus and Janus kinase (JAK) inhibitor tofacitinib. Taken together, w2 is a promising hDHODH inhibitor for the treatment of IBD and deserves to be developed as a preclinical candidate.
Asunto(s)
Colitis Ulcerosa , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH , Humanos , Estructura Molecular , Colitis Ulcerosa/tratamiento farmacológico , Diseño de Fármacos , Dihidroorotato Deshidrogenasa , Inhibidores Enzimáticos/farmacologíaRESUMEN
The expression of linear DNA sequence is precisely regulated by the three-dimensional (3D) architecture of chromatin. Morphine-induced aberrant gene networks of neurons have been extensively investigated; however, how morphine impacts the 3D genomic architecture of neurons is still unknown. Here, we applied digestion-ligation-only high-throughput chromosome conformation capture (DLO Hi-C) technology to investigate the effects of morphine on the 3D chromatin architecture of primate cortical neurons. After receiving continuous morphine administration for 90 days on rhesus monkeys, we discovered that morphine re-arranged chromosome territories, with a total of 391 segmented compartments being switched. Morphine altered over half of the detected topologically associated domains (TADs), most of which exhibited a variety of shifts, followed by separating and fusing types. Analysis of the looping events at kilobase-scale resolution revealed that morphine increased not only the number but also the length of differential loops. Moreover, all identified differentially expressed genes from the RNA sequencing data were mapped to the specific TAD boundaries or differential loops, and were further validated for changed expression. Collectively, an altered 3D genomic architecture of cortical neurons may regulate the gene networks associated with morphine effects. Our finding provides critical hubs connecting chromosome spatial organization and gene networks associated with the morphine effects in humans.
Asunto(s)
Cromatina , Cromosomas , Humanos , Animales , Cromatina/genética , Genoma , Primates/genética , Derivados de la MorfinaRESUMEN
Clarithromycin (CLA) has been widely used in the treatment of bacterial infection. Research reveals the adverse effects on the central nervous system among patients receiving CLA treatment; whereas, a relevant underlying mechanism remains considerably unclear. According to our research, an integrated lipidomic and transcriptomic analysis was applied to explore the effect of CLA on neurobehavior. CLA treatment caused anxiety-like behaviors dose-dependently during open field as well as elevated plus maze trials on mice. Transcriptomes and LC/MS-MS-based metabolomes were adopted for investigating how CLA affected lipidomic profiling as well as metabolic pathway of the cerebral cortex. CLA exposure greatly disturbed glycerophospholipid metabolism and the carbon chain length of fatty acids. By using whole transcriptome sequencing, we found that CLA significantly downregulated the mRNA expression of CEPT1 and CHPT1, two key enzymes involved in the synthesis of glycerophospholipids, supporting the findings from the lipidomic profiling. Also, CLA causes changes in neuronal morphology and function in vitro, which support the existing findings concerning neurobehavior in vivo. We speculate that altered glycerophospholipid metabolism may be involved in the neurobehavioral effect of CLA. Our findings contribute to understanding the mechanisms of CLA-induced adverse effects on the central nervous system. 1. Clarithromycin treatment caused anxiety-like behavior with dose-dependent response both in the open field and elevated plus maze test in mice; 2. Clarithromycin exposing predominately disturbed the metabolism of glycerophospholipids in the cerebral cortex of mice; 3. Clarithromycin application remarkably attenuated CEPT1 and CHPT1 gene expression, which participate in the last step in the synthesis of glycerophospholipids; 4. The altered glycerophospholipid metabolomics may be involved in the abnormal neurobehavior caused by clarithromycin.
Asunto(s)
Claritromicina , Lipidómica , Animales , Ratones , Claritromicina/farmacología , Transcriptoma , Glicerofosfolípidos/metabolismo , Corteza Cerebral/metabolismoRESUMEN
Small cell lung cancer (SCLC) is one of the most malignant types of lung cancer. Cancer stem cell (CSC) and tumor immune evasion are critical for the development of SCLC. We previously reported that NDR1 enhances breast CSC properties. NDR1 might also have a role in the regulation of immune responses. In the current study, we explore the function of NDR1 in the control of CSC properties and evasion of phagocytosis in SCLC. We find that NDR1 enhances the enrichment of the ALDEFLUORhigh and CD133high population, and promotes sphere formation in SCLC cells. Additionally, NDR1 upregulates CD47 expression to enhance evasion of phagocytosis in SCLC. Furthermore, the effects of NDR1 enhanced CD47 expression and evasion of phagocytosis are more prominent in CSC than in non-CSC. Importantly, NDR1 promotes ASCL1 expression to enhance NDR1-promoted CSC properties and evasion of phagocytosis in SCLC cells. Mechanically, NDR1 enhances protein stability and the nuclear location of ASCL1 to activate the transcription of CD47 in SCLC. Finally, CD47-blocking antibody can be used to target NDR1 enhanced CSC properties and evasion of phagocytosis by suppressing EGFR activation in SCLC. In summary, our data indicate that NDR1 could be a critical factor for modulating CSC properties and phagocytosis in SCLC.
Asunto(s)
Neoplasias Pulmonares , Proteínas Serina-Treonina Quinasas/metabolismo , Carcinoma Pulmonar de Células Pequeñas , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Antígeno CD47/genética , Antígeno CD47/metabolismo , Línea Celular Tumoral , Receptores ErbB/metabolismo , Humanos , Neoplasias Pulmonares/metabolismo , Células Madre Neoplásicas/patología , Fagocitosis , Estabilidad Proteica , Carcinoma Pulmonar de Células Pequeñas/genética , Carcinoma Pulmonar de Células Pequeñas/patologíaRESUMEN
BACKGROUND: The existence of breast cancer stem cells (BCSCs) causes tumor relapses, metastasis and resistance to conventional therapy in breast cancer. NDR1 kinase, a component of the Hippo pathway, plays important roles in multiple biological processes. However, its role in cancer stem cells has not been explored. The purpose of this study was to investigate the roles of NDR1 in modulating BCSCs. METHODS: The apoptosis was detected by Annexin V/Propidium Iodide staining and analyzed by flow cytometry. BCSCs were detected by CD24/44 or ALDEFLUOR staining and analyzed by flow cytometry. The proliferation ability of BCSCs was evaluated by sphere formation assay. The expression of interested proteins was detected by western blot analysis. The expression of HES-1 and c-MYC was detected by real-time PCR. Notch1 signaling activation was detected by luciferase reporter assay. Protein interaction was evaluated by immunoprecipitation. Protein degradation was evaluated by ubiquitination analysis. The clinical relevance of NDR1 was analyzed by Kaplan-Meier Plotter. RESULTS: NDR1 regulates apoptosis and drug resistance in breast cancer cells. The upregulation of NDR1 increases CD24low/CD44high or ALDEFLUORhigh population and sphere-forming ability in SUM149 and MCF-7 cells, while downregulation of NDR1 induces opposite effects. NDR1 increased the expression of the Notch1 intracellular domain (NICD) and activated the transcription of its downstream target (HES-1 and c-MYC). Critically, both suppression of Notch pathway activation by DAPT treatment or downregulation of Notch1 expression by shRNA reverses NDR1 enhanced BCSC properties. Mechanically, NDR1 interactes with both NICD or Fbw7 in a kinase activity-independent manner. NDR1 reduces the proteolytic turnover of NICD by competing with Fbw7 for NICD binding, thereby leading to Notch pathway activation. Furthermore, NDR1 might function as a hub to modulate IL-6, TNF-α or Wnt3a induced activation of Notch1 signaling pathway and enrichment of breast cancer stem cells. Moreover, we find that the elevation of NDR1 expression predictes poor survival (OS, RFS, DMFS and PPS) in breast cancer. CONCLUSION: Our study revealed a novel function of NDR1 in regulating BCSC properties by activating the Notch pathway. These data might provide a potential strategy for eradicating BCSC to overcome tumor relapses, metastasis and drug resistance.
Asunto(s)
Fenómenos Biológicos , Neoplasias de la Mama , Proteínas Serina-Treonina Quinasas , Neoplasias de la Mama/patología , Línea Celular Tumoral , Proliferación Celular , Femenino , Humanos , Recurrencia Local de Neoplasia/metabolismo , Recurrencia Local de Neoplasia/patología , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , Receptor Notch1/genética , Transducción de SeñalRESUMEN
The development, persistence and relapse of drug addiction require drug memory that generally develops with drug administration-paired contextual stimuli. Adult hippocampal neurogenesis (AHN) contributes to cocaine memory formation; however, the underlying mechanism remains unclear. Male mice hippocampal expression of Tau was significantly decreased during the cocaine-associated memory formation. Genetic overexpression of four microtubule-binding repeats Tau (4R Tau) in the mice hippocampus disrupted cocaine memory by suppressing AHN. Furthermore, 4R Tau directly interacted with phosphoinositide 3-kinase (PI3K)-p85 and impaired its nuclear translocation and PI3K-AKT signaling, processes required for hippocampal neuron proliferation. Collectively, 4R Tau modulates cocaine memory formation by disrupting AHN, suggesting a novel mechanism underlying cocaine memory formation and provide a new strategy for the treatment of cocaine addiction.SIGNIFICANCE STATEMENT Drug memory that generally develops with drug-paired contextual stimuli and drug administration is critical for the development, persistence and relapse of drug addiction. Previous studies have suggested that adult hippocampal neurogenesis (AHN) plays a role in cocaine memory formation. Here, we showed that Tau was significantly downregulated in the hippocampus in the cocaine memory formation. Tau knock-out (KO) promoted AHN in the hippocampal dentate gyrus (DG), resulting in the enhanced memory formation evoked by cocaine-cue stimuli. In contrast, genetically overexpressed 4R Tau in the hippocampus disrupted cocaine-cue memory by suppressing AHN. In addition, 4R Tau interacted directly with phosphoinositide 3-kinase (PI3K)-p85 and hindered its nuclear translocation, eventually repressing PI3K-AKT signaling, which is essential for hippocampal neuronal proliferation.
Asunto(s)
Trastornos Relacionados con Cocaína/metabolismo , Hipocampo/metabolismo , Memoria/fisiología , Neurogénesis/fisiología , Proteínas tau/metabolismo , Animales , Masculino , Ratones , Ratones Endogámicos C57BL , Isoformas de ProteínasRESUMEN
Human dihydroorotate dehydrogenase (DHODH) is a flavin-dependent mitochondrial enzyme catalyzing the fourth step in the de novo pyrimidine synthesis pathway. It is originally a target for the treatment of the non-neoplastic diseases involving in rheumatoid arthritis and multiple sclerosis, and is re-emerging as a validated therapeutic target for cancer therapy. In this review, we mainly unravel the biological function of DHODH in tumor progression, including its crucial role in de novo pyrimidine synthesis and mitochondrial respiratory chain in cancer cells. Moreover, various DHODH inhibitors developing in the past decades are also been displayed, and the specific mechanism between DHODH and its additional effects are illustrated. Collectively, we detailly discuss the association between DHODH and tumors in recent years here, and believe it will provide significant evidences and potential strategies for utilizing DHODH as a potential target in preclinical and clinical cancer therapies.
RESUMEN
Introduction: Serine hydroxymethyltransferase 2 (SHMT2) plays a critical role in serine-glycine metabolism to drive cancer cell proliferation. However, the nonmetabolic function of SHMT2 in tumorigenesis, especially in human colorectal cancer (CRC) progression, remains largely unclear. Methods: SHMT2 expression in human CRC cells was identified by western blot and immunofluorescence assay. The CRC cell proliferation, migration, and invasion after SHMT2 knockdown or overexpression were explored through in vitro and in vivo assays. Immunofluorescence, mRNA-seq, co-immunoprecipitation, chromatin immunoprecipitation-qPCR and immunohistochemistry assays were used to investigate the underlying mechanisms behind the SHMT2 nonmetabolic function. Results: We demonstrated that SHMT2 was distributed in the cytoplasm and nucleus of human CRC cells. SHMT2 knockdown resulted in the significant inhibition of CRC cell proliferation, which was not restored by serine, glycine, or formate supplementation. The invasion and migration of CRC cells were suppressed after SHMT2 knockdown. Mechanistically, SHMT2 interacted with ß-catenin in the cytoplasm. This interaction inhibited the ubiquitylation-mediated degradation of ß-catenin and subsequently modulated the expression of its target genes, leading to the promotion of CRC cell proliferation and metastasis. Notably, the lysine 64 residue on SHMT2 (SHMT2K64) mediated its interaction with ß-catenin. Moreover, transcription factor TCF4 interacted with ß-catenin, which in turn increased SHMT2 expression, forming an SHMT2/ß-catenin positive feedback loop. In vivo xenograft experiments confirmed that SHMT2 promoted the growth and metastasis of CRC cells. Finally, the level of SHMT2 was found to be significantly increased in human CRC tissues. The SHMT2 level was correlated with an increased level of ß-catenin, associated with CRC progression and predicted poor patient survival. Conclusion: Taken together, our findings reveal a novel nonmetabolic function of SHMT2 in which it stabilizes ß-catenin to prevent its ubiquitylation-mediated degradation and provide a potential therapeutic strategy for CRC therapy.
Asunto(s)
Neoplasias Colorrectales/genética , Citoplasma/genética , Glicina Hidroximetiltransferasa/genética , beta Catenina/genética , Animales , Carcinogénesis/genética , Carcinogénesis/patología , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Neoplasias Colorrectales/patología , Progresión de la Enfermedad , Femenino , Regulación Neoplásica de la Expresión Génica/genética , Células HCT116 , Células HT29 , Humanos , Ratones , Ratones Desnudos , Factor de Transcripción 4/genética , Ensayos Antitumor por Modelo de Xenoinjerto/métodosRESUMEN
The abuse potential of ketamine limits its clinical application, but the precise mechanism remains largely unclear. Here we discovered that ketamine significantly remodels the endocannabinoid-related lipidome and activates 2-arachidonoylglycerol (2-AG) signaling in the dorsal striatum (caudate nucleus and putamen, CPu) of mice. Elevated 2-AG in the CPu is essential for the psychostimulant and reinforcing effects of ketamine, whereas blockade of the cannabinoid CB1 receptor, a predominant 2-AG receptor, attenuates ketamine-induced remodeling of neuronal dendrite structure and neurobehaviors. Ketamine represses the transcription of the monoacylglycerol lipase (MAGL) gene by promoting the expression of PRDM5, a negative transcription factor of the MAGL gene, leading to increased 2-AG production. Genetic overexpression of MAGL or silencing of PRDM5 expression in the CPu robustly reduces 2-AG production and ketamine effects. Collectively, endocannabinoid signaling plays a critical role in mediating the psychostimulant and reinforcing properties of ketamine.
Asunto(s)
Ácidos Araquidónicos/metabolismo , Proteínas de Unión al ADN , Endocannabinoides/metabolismo , Glicéridos/metabolismo , Ketamina/farmacología , Monoacilglicerol Lipasas , Transducción de Señal/efectos de los fármacos , Factores de Transcripción , Animales , Agonistas de Receptores de Cannabinoides/metabolismo , Núcleo Caudado/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Expresión Génica , Regulación de la Expresión Génica , Ratones , Monoacilglicerol Lipasas/genética , Monoacilglicerol Lipasas/metabolismo , Neuronas/metabolismo , Receptor Cannabinoide CB1/efectos de los fármacos , Receptor Cannabinoide CB1/metabolismo , Trastornos Relacionados con Sustancias/genética , Trastornos Relacionados con Sustancias/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismoRESUMEN
BACKGROUND: Lysine-specific histone demethylase 1 (LSD1) is a potential target of cancer therapy. In the present study, we aimed to investigate the combined antitumor activity of a novel LSD1 inhibitor (ZY0511) with 5-fluorouracil (5-FU) and elucidate the underlying mechanism in colorectal cancer (CRC). METHODS: We evaluated LSD1 expression in CRC tissues from patients who received 5-FU treatment. The synergistic antitumor effect of 5-FU with ZY0511 against human CRC cells was detected both in vitro and in vivo. The underlying mechanism was explored based on mRNA sequencing (mRNA-seq) technology. RESULTS: Overexpression of LSD1 was observed in human CRC tissues, and correlated with CRC development and 5-FU resistance. ZY0511, a novel LSD1 inhibitor, effectively inhibited CRC cells proliferation, both in vitro and in vivo. Notably, the combination of ZY0511 and 5-FU synergistically reduced CRC cells viability and migration in vitro. It also suppressed Wnt/ß-catenin signaling and DNA synthesis pathways, which finally induced apoptosis of CRC cells. In addition, the combination of ZY0511 with 5-FU significantly reduced CRC xenograft tumor growth, along with lung and liver metastases in vivo. CONCLUSIONS: Our findings identify LSD1 as a potential marker for 5-FU resistance in CRC. ZY0511 is a promising candidate for CRC therapy as it potentiates 5-FU anticancer effects, thereby providing a new combinatorial strategy for treating CRC.
RESUMEN
Metabolic interaction between cancer-associated fibroblasts (CAFs) and colorectal cancer (CRC) cells plays a major role in CRC progression. However, little is known about lipid alternations in CAFs and how these metabolic reprogramming affect CRC cells metastasis. Here, we uncover CAFs conditioned medium (CM) promote the migration of CRC cells compared with normal fibroblasts CM. CAFs undergo a lipidomic reprogramming, and accumulate more fatty acids and phospholipids. CAFs CM after protein deprivation still increase the CRC cells migration, which suggests small molecular metabolites in CAFs CM are responsible for CRC cells migration. Then, we confirm that CRC cells take up the lipids metabolites that are secreted from CAFs. Fatty acids synthase (FASN), a crucial enzyme in fatty acids synthesis, is significantly increased in CAFs. CAF-induced CRC cell migration is abolished by knockdown of FASN by siRNA or reducing the uptake of fatty acids by CRC cells by sulfo-N-succinimidyloleate sodium in vitro and CD36 monoclonal antibody in vivo. To conclude, our results provide a new insight into the mechanism of CRC metastasis and suggest FASN of CAFs or CD36 of CRC cells may be potential targets for anti-metastasis treatment in the future.
Asunto(s)
Fibroblastos Asociados al Cáncer/metabolismo , Neoplasias Colorrectales/genética , Metabolismo de los Lípidos/fisiología , Movimiento Celular , Neoplasias Colorrectales/metabolismo , Humanos , Microambiente TumoralAsunto(s)
Proliferación Celular , Neoplasias Colorrectales , Regulación Enzimológica de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Mutación Missense , Proteínas de Neoplasias , Transaminasas , Sustitución de Aminoácidos , Neoplasias Colorrectales/enzimología , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Humanos , Proteínas de Neoplasias/biosíntesis , Proteínas de Neoplasias/genética , Transaminasas/biosíntesis , Transaminasas/genéticaRESUMEN
A series of novel tetrahydropyridine derivatives were prepared and evaluated using cell-based measurements. Systematic optimization of general structure G-1 led to the identification of compound 35 (EC50 = 4.9 nM) and 37 (EC50 = 8.8 nM) with high GPR119 agonism activity and moderate clog P. Through single and long-term pharmacodynamic experiments, we found that compound35 showed a hypoglycemic effect and may have an effect on improving basal metabolic rate in DIO mice. Both in vitro and in vivo tests indicated that compound 35 was a potential potent GPR119 agonist in allusion to T2DM treatment.
Asunto(s)
Diseño de Fármacos , Hipoglucemiantes/química , Pirrolidinas/química , Receptores Acoplados a Proteínas G/agonistas , Animales , Glucemia/análisis , Prueba de Tolerancia a la Glucosa , Humanos , Hipoglucemiantes/metabolismo , Hipoglucemiantes/uso terapéutico , Masculino , Ratones , Ratones Endogámicos C57BL , Obesidad/tratamiento farmacológico , Obesidad/patología , Pirrolidinas/metabolismo , Pirrolidinas/uso terapéutico , Ratas , Receptores Acoplados a Proteínas G/metabolismo , Solubilidad , Relación Estructura-ActividadRESUMEN
Much efforts have been tried to clarify the molecular mechanism of alcohol-induced brain damage from the perspective of genome and protein; however, the effect of chronic alcohol exposure on global lipid profiling of brain is unclear. In the present study, by using Q-TOF/MS-based lipidomics approach, we investigated the comprehensive lipidome profiling of brain from the rats orally administrated with alcohol daily, continuously for one year. Through systematically analysis of all lipids in prefrontal cortex (PFC) and striatum region, we found that long-term alcohol exposure profoundly modified brain lipidome profiling. Notably, three kinds of lipid classes, glycerophospholipid (GP), glycerolipid (GL) and fatty acyls (FA), were significantly increased in these two brain regions. Interestingly, most of the modified lipids were involved in synthetic pathways of endoplasmic reticulum (ER), which may result in ER stress-related metabolic disruption. Moreover, alcohol-modified lipid species displayed long length of carbon chain with high degree of unsaturation. Taken together, our results firstly present that chronic alcohol exposure markedly modifies brain lipidomic profiling, which may activate ER stress and eventually result in neurotoxicity. These findings provide a new insight into the mechanism of alcohol-related brain damage.
Asunto(s)
Trastornos del Sistema Nervioso Inducidos por Alcohol/metabolismo , Alcoholismo/metabolismo , Cuerpo Estriado/metabolismo , Metabolismo de los Lípidos , Metabolómica/métodos , Corteza Prefrontal/metabolismo , Espectrometría de Masa por Ionización de Electrospray , Trastornos del Sistema Nervioso Inducidos por Alcohol/patología , Alcoholismo/patología , Animales , Cuerpo Estriado/patología , Modelos Animales de Enfermedad , Retículo Endoplásmico/metabolismo , Retículo Endoplásmico/patología , Estrés del Retículo Endoplásmico , Ácidos Grasos/metabolismo , Glicerofosfolípidos/metabolismo , Corteza Prefrontal/patología , Ratas Wistar , Factores de TiempoRESUMEN
Lysine-specific demethylase1 (LSD1) plays a crucial role in cancer and has become a promising target for cancer therapy. However, the mechanism underlying the role of LSD1 in oncogenesis is poorly understood, and more effective LSD1 inhibitors are needed. Here we report the biological activity of a novel LSD1 inhibitor named ZY0511. ZY0511 specifically inhibited LSD1 activity and the proliferation of various human cancer cells especially the HeLa and HCT116â¯cells. ZY0511 significantly increased the expression of DDIT4, a known mTORC1 suppressor, which was a direct downstream target of LSD1 confirmed by ChIP-PCR. ZY0511-induced LSD1 inhibition upregulated the expression of DDIT4 by altering histone H3K4 methylation levels at its promoter, thus suppressing mTORC1 activity. Knockdown of DDIT4 attenuated the anticancer effect of ZY0511. Intraperitoneal administration of ZY0511 significantly prevented the growth of HCT116 and HeLa xenografts in mice and showed no detectable toxicity. Moreover, DDIT4 expression was correlated with the sensitivity of human cancer cells to chemotherapy. Taken together, ZY0511 showed therapeutic potential for solid tumors, the induction of DDIT4 may be used as a predictive biomarker of LSD1 inhibitors.
Asunto(s)
Antineoplásicos/farmacología , Inhibidores Enzimáticos/farmacología , Histona Demetilasas/antagonistas & inhibidores , Hidrazinas/farmacología , Morfolinas/farmacología , Neoplasias/tratamiento farmacológico , Sulfonas/farmacología , Serina-Treonina Quinasas TOR/metabolismo , Tiazoles/farmacología , Factores de Transcripción/metabolismo , Animales , Antineoplásicos/uso terapéutico , Apoptosis/efectos de los fármacos , Puntos de Control del Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Inhibidores Enzimáticos/uso terapéutico , Células HCT116 , Células HeLa , Histona Demetilasas/química , Humanos , Hidrazinas/uso terapéutico , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Modelos Moleculares , Morfolinas/uso terapéutico , Neoplasias/metabolismo , Fase S/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Sulfonas/uso terapéutico , Factores de Transcripción/biosíntesis , Regulación hacia Arriba , Ensayos Antitumor por Modelo de XenoinjertoRESUMEN
The DNA mismatch repair (MMR) system plays an important role in the initiation, diagnosis and treatments of colorectal cancer (CRC). Compared to CRC patients deficient in DNA MMR (dMMR), CRC patients proficient in DNA MMR (pMMR) have higher metastasis, short survival and poor response to chemotherapy and immunotherapy. It is wellknown that a highfat diet can cause CRC, and lipid metabolism is closely related to the development and metastasis of CRC. However, there have been few studies that address the difference in lipid metabolism between dMMR and pMMR CRC. Liquid chromatographytandem mass spectrometry (LC/MS) is an advanced technique that can perform the analysis of lipid metabolites and the roles of lipids present in low abundance in cell signaling and membrane stability. In the present study, we used the LC/MS technique to analyze the difference in the lipid metabolic profiles between dMMR cell lines (HCT116, DLD1, LoVo and HCT15) and pMMR cell lines (SW480, SW620, HT29 and NCM460). The results revealed that, among the 19 classes and 157 intact lipid species identified by the LC/MS analysis, the levels of most phospholipids were lower in dMMR cells than pMMR cells. Higher levels of phosphatidylcholine (PC; 16:0/18:1) and phosphatidic acid (PA; 18:0/18:0) were observed in pMMR cells than in dMMR cells. Furthermore, our results revealed that SCD1 and PLD1, the key enzymes involved in lipid metabolism associated with metastasis, are higher in pMMR cells than dMMR cells. To the best of our knowledge, we are the first to reveal that the levels of metastasisassociated lipids and key enzymes in lipid metabolism were higher in the CRC patients with pMMR compared with the CRC patients with dMMR. This study identified potential antimetastatic targets in the therapy of patients with pMMR, and also personalized therapy for the patients with pMMR.
Asunto(s)
Neoplasias Colorrectales/metabolismo , Reparación de la Incompatibilidad de ADN/genética , Metabolismo de los Lípidos/genética , Metaboloma/genética , Línea Celular Tumoral , Cromatografía Líquida de Alta Presión/métodos , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Humanos , Metabolómica/métodos , Fosfolipasa D/genética , Fosfolipasa D/metabolismo , Estearoil-CoA Desaturasa/genética , Estearoil-CoA Desaturasa/metabolismo , Espectrometría de Masas en Tándem/métodosRESUMEN
Lung metastasis is an important cause for the low 5-year survival rate of colorectal cancer patients. Understanding the metabolic profile of lung metastasis of colorectal cancer is important for developing molecular diagnostic and therapeutic approaches. We carried out the metabonomic profiling of lung tissue samples on a mouse lung metastasis model of colorectal cancer using 1H-nuclear magnetic resonance (1H-NMR). The lung tissues of mice were collected at different intervals after marine colon cancer cell line CT-26 was intravenously injected into BALB/c mice. The distinguishing metabolites of lung tissue were investigated using 1H-NMR-based metabonomic assay, which is a highly sensitive and non-destructive method for biomarker identification. Principal component analysis (PCA), partial least squares discriminant analysis (PLS-DA) and orthogonal partial least squares discriminant analysis (OPLS-DA) were applied to analyze 1H-NMR profiling data to seek potential biomarkers. All of the 3 analyses achieved excellent separations between the normal and metastasis groups. A total of 42 metabolites were identified, ~12 of which were closely correlated with the process of metastasis from colon to lung. These altered metabolites indicated the disturbance of metabolism in metastatic tumors including glycolysis, TCA cycle, glutaminolysis, choline metabolism and serine biosynthesis. Our findings firstly identified the distinguishing metabolites in mouse colorectal cancer lung metastasis models, and indicated that the metabolite disturbance may be associated with the progression of lung metastasis from colon cancer. The altered metabolites may be potential biomarkers that provide a promising molecular approach for clinical diagnosis and mechanistic study of colorectal cancer with lung metastasis.
Asunto(s)
Neoplasias Colorrectales/metabolismo , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/secundario , Metabolómica/métodos , Animales , Línea Celular Tumoral , Progresión de la Enfermedad , Glucólisis , Neoplasias Pulmonares/diagnóstico por imagen , Ratones , Trasplante de Neoplasias , Análisis de Componente Principal , Espectroscopía de Protones por Resonancia Magnética/métodosRESUMEN
Lipids are predominant components of the brain and key regulators for neural structure and function. The neuropsychopharmacological effect of cocaine has been intensively investigated; however, the impact of cocaine on brain lipid profiles is largely unknown. In this study, we used a LC-MS-based lipidomic approach to investigate the impact of cocaine on brain lipidome in two mouse models, cocaine-conditioned place preference (CPP) and hyperlocomotor models and the lipidome was profoundly modified in the nucleus accumbens (NAc) and striatum respectively. We comprehensively analyzed the lipids among 21 subclasses across 7 lipid classes and found that cocaine profoundly modified brain lipidome. Notably, the lipid metabolites significantly modified were sphingolipids and glycerophospholipids in the NAc, showing a decrease in ceramide and an increase in its up/downstream metabolites levels, and decrease lysophosphatidylcholine (LPC) and lysophosphoethanolamine (LPE) and increase phosphatidylcholine (PC) and phosphatidylethanolamines (PE) levels, respectively. Moreover, long and polyunsaturated fatty acid phospholipids were also markedly increased in the NAc. Our results show that cocaine can markedly modify brain lipidomic profiling. These findings reveal a link between the modified lipidome and psychopharmacological effect of cocaine, providing a new insight into the mechanism of cocaine addiction.