Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
J Hazard Mater ; 480: 135833, 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39276732

RESUMEN

Plasma-activated water (PAW) is a novel antimicrobial agent with negligible toxicity and environmental burden, holding promise as an alternative to chemical disinfectants and antibiotics. In practice, liquid disinfectants are often soaked with cotton materials before further use. Rich in reducing functional groups on the surface, cotton will inevitably react with PAW, leading to the deterioration of PAW's functions. To resolve this issue, this work proposes a new concept of "secondary activation" for retaining and enhancing PAW's bioactivity, i.e., pre-treating cotton with air plasma before soaking PAW. For the first time, we find that the PAW absorbed by raw cotton completely loses its bactericidal effect, while plasma-treated cotton (PTC) restores the disinfection capacity and prolongs its effective duration. This restoration is attributed to the absorption of plasma-generated reactive species by cotton with oxidizing and nitrifying modifications on the fiber surface. Consequently, the concentrations of aqueous species in PAW increase rather than decrease after absorption by PTC. In addition, the PTC after 28-day storage can still enable PAW to achieve a bacterial reduction of ∼3 logs. This work identifies and addresses a crucial limitation in the disinfection application of PAW and elucidates the mechanism underlying PTC production and secondary activation of PAW.

2.
BMC Infect Dis ; 24(1): 960, 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39266946

RESUMEN

BACKGROUND: Antiviral drugs show significant efficacy in non-severe COVID-19 cases, yet there remains a subset of moderate COVID-19 patients whose pneumonia continues to progress post a complete course of treatment. Plasma-activated water (PAW) possesses anti-SARS-CoV-2 properties. To explore the potential of PAW in improving pneumonia in COVID-19 patients following antiviral treatment failure, we conducted this study. METHODS: This was a randomized, controlled trial. Moderate COVID-19 patients with antiviral treatment failure were randomly assigned to the experimental group or the control group. They inhaled nebulized PAW or saline respectively. This was done twice daily for four consecutive days. We assessed improvement in chest CT on day 5, the rate of symptom resolution within 10 days, and safety. RESULTS: A total of 23 participants were included, with 11 receiving PAW and 12 receiving saline. The baseline characteristics of both groups were comparable. The experimental group showed a higher improvement rate in chest CT on day 5 (81.8% vs. 33.3%, p = 0.036). The cumulative disappearance rate of cough within 10 days was higher in the experimental group. Within 28 days, 4 patients in each group progressed to severe illness, and no patients died. No adverse reactions were reported from inhaling nebulized PAW. CONCLUSION: This pilot trial preliminarily confirmed that nebulized inhalation of PAW can alleviate pneumonia in moderate COVID-19 patients with antiviral treatment failure, with no adverse reactions observed. This still needs to be verified by large-scale studies. TRIAL REGISTRATION: Chinese Clinical Trial Registry; No.: ChiCTR2300078706 (retrospectively registered, 12/15/2023); URL: www.chictr.org.cn .


Asunto(s)
Antivirales , Tratamiento Farmacológico de COVID-19 , COVID-19 , Nebulizadores y Vaporizadores , SARS-CoV-2 , Insuficiencia del Tratamiento , Humanos , Masculino , Femenino , Persona de Mediana Edad , Proyectos Piloto , Administración por Inhalación , Antivirales/uso terapéutico , Antivirales/administración & dosificación , Anciano , Agua , Adulto , Resultado del Tratamiento
3.
ACS Appl Mater Interfaces ; 16(35): 46123-46132, 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39180585

RESUMEN

Cold atmospheric plasma (CAP) is a fledgling therapeutic technique for psoriasis treatment with noninvasiveness, but clinical adoption has been stifled by the insufficient production and delivery of plasma-generated reactive oxygen and nitrogen species (RONS). Herein, patches of air-discharge plasma-activated ice microneedles (PA-IMNs) loaded with multiple RONS are designed for local transdermal delivery to treat psoriasis as an alternative to direct CAP irradiation treatment. By mixing two RONS generated by the air-discharge plasma in the NOx mode and O3 mode, abundant high-valence RONS are produced and incorporated into PA-IMNs via complex gas-gas and gas-liquid reactions. The PA-IMNs abrogate keratinocyte overproliferation by inducing reactive oxygen species (ROS)-mediated loss of the mitochondrial membrane potential and apoptosis of keratinocytes. The in vivo transdermal treatment confirms that PA-IMNs produce significant anti-inflammatory and therapeutic actions for imiquimod (IMQ)-induced psoriasis-like dermatitis in mice by inhibiting the release of associated inflammatory factors while showing no evident systemic toxicity. Therefore, PA-IMNs have a large potential in transdermal delivery platforms as they overcome the limitations of using CAP directly in the clinical treatment of psoriasis.


Asunto(s)
Administración Cutánea , Agujas , Gases em Plasma , Psoriasis , Especies Reactivas de Oxígeno , Psoriasis/tratamiento farmacológico , Psoriasis/patología , Animales , Gases em Plasma/química , Ratones , Humanos , Especies Reactivas de Oxígeno/metabolismo , Especies de Nitrógeno Reactivo/metabolismo , Queratinocitos/efectos de los fármacos , Queratinocitos/metabolismo , Imiquimod/toxicidad , Hielo , Parche Transdérmico , Apoptosis/efectos de los fármacos , Ratones Endogámicos BALB C
4.
Redox Biol ; 75: 103284, 2024 09.
Artículo en Inglés | MEDLINE | ID: mdl-39059203

RESUMEN

Malignant melanoma is the most lethal form of skin cancer. As a promising anti-cancer agent, plasma-activated water (PAW) rich in reactive oxygen and nitrogen species (RONS) has shown significant potential for melanoma treatment. However, rapid decay of RONS and inefficient delivery of PAW in conventional injection methods limit its practical applications. To address this issue, here we report a new approach for the production of plasma-activated cryo-microneedles (PA-CMNs) patches using custom-designed plasma devices and processes. Our innovation is to incorporate PAW into the PA-CMNs that are fabricated using a fast cryogenic micro-molding method. It is demonstrated that PA-CMNs can be easily inserted into skin to release RONS and slow the decay of RONS thereby prolonging their bioactivity and effectiveness. The new insights into the effective melanoma treatment suggest that the rich mixture of RONS within PA-CMNs prepared by custom-developed hybrid plasma-assisted configuration induces both ferroptosis and apoptosis to selectively kill tumor cells. A significant inhibition of subcutaneous A375 melanoma growth was observed in PA-CMNs-treated tumor-bearing nude mice without any signs of systemic toxicity. The new approach based on PA-CMNs may potentially open new avenues for a broader range of disease treatments.


Asunto(s)
Melanoma , Especies de Nitrógeno Reactivo , Especies Reactivas de Oxígeno , Neoplasias Cutáneas , Animales , Melanoma/terapia , Melanoma/patología , Melanoma/metabolismo , Melanoma/tratamiento farmacológico , Humanos , Ratones , Neoplasias Cutáneas/patología , Neoplasias Cutáneas/terapia , Neoplasias Cutáneas/tratamiento farmacológico , Especies Reactivas de Oxígeno/metabolismo , Línea Celular Tumoral , Especies de Nitrógeno Reactivo/metabolismo , Gases em Plasma/uso terapéutico , Apoptosis , Agujas , Ensayos Antitumor por Modelo de Xenoinjerto , Ratones Desnudos
5.
J Colloid Interface Sci ; 672: 126-132, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-38833732

RESUMEN

Despite the excellent photocatalytic activity under visible light, graphitic carbon nitride (g-C3N4) exhibits a high overpotential for hydrogen evolution. To address this issue, cocatalysts have been utilized to modify g-C3N4. However, the use of high-performance cocatalysts typically involves noble metals such as platinum and palladium, which are cost-prohibitive for practical applications. Therefore, the development of efficient and cost-effective cocatalysts is crucial for advancing photocatalysis. In this study, we synthesized a new Ni-based cocatalyst, nickel thiocarbonate (NiCS3), to enhance the photocatalytic hydrogen evolution reaction (HER) on g-C3N4. The NiCS3/g-C3N4 composite demonstrated a significantly increased hydrogen evolution rate of 951 µmol·h-1·g-1 under visible light, representing more than a 105-fold improvement compared to pure g-C3N4. Theoretical calculations suggested that the enhanced performance in photocatalytic hydrogen production can be attributed to the generation of a built-in electric field within the composite, facilitating efficient charge carrier separation and migration. Additionally, the C site in NiCS3 provides a favorable Gibbs free energy of adsorbed H* (ΔGH∗). This work underscores the potential of NiCS3 as a viable alternative to precious metals in photocatalytic hydrogen production using g-C3N4.

6.
Infect Drug Resist ; 17: 2315-2328, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38882657

RESUMEN

Purpose: This study aimed to investigate the antibacterial effects of plasma-activated saline (PAS) on My-cobacterium tuberculosis (Mtb). Methods: We conducted a growth assay on 3 strains of Mtb and an antibiotic sensitivity test on 4 strains of Mtb. Both tests included groups treated with normal saline (NS), PAS, and hydrochloric acid (HCl). The test of antibiotic sensitivity consisted of parallel tests with two concentrations of bacteria suspension: 10-2 and 10-4. The selected antibiotics were rifampicin (RIF), isoniazid (INH), ethambutol (EMB), and streptomycin (SM). The number of bacteria was determined after one month of culture under different conditions. The Kruskal-Wallis test was used to analyze the differences in grouping factors at representative time points. Results: The growth assay indicated that PAS significantly inhibited the growth of 3 strains of Mtb compared with NS and HCl treatment groups. Furthermore, except for the initial observation time point, the remaining three observation time points consistently demonstrate no significant differences between the NS group and the HCl group. The antibiotic sensitivity test of INH, SM, and RIF indicated that PAS could inhibit the growth of antibiotic-resistant Mtb, and the antibiotic sensitivity test of INH and SM with bacterial suspension concentration of 10-2 and SM with bacterial suspension concentration of 10-4 showed statistically different results. The antibiotic sensitivity test of EMB indicated that the growth of Mtb in PAS was slower than that in NS and HCl in both antibiotic-resistant and sensitive Mtb, but there was no statistical difference. Conclusion: The study indicates that PAS contains a significant amount of active substances and exhibits high oxidizability and an acidic pH state. The unique physicochemical properties of PAS significantly delayed the growth of Mtb, compared to the NS and the HCl. PAS not only inhibited the growth of drug-sensitive strains but also significantly enhanced the sensitivity of drug-resistant strains to anti-tuberculosis drugs, which may provide a new therapeutic strategy for the treatment of tuberculosis.

8.
J Hazard Mater ; 471: 134365, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38669926

RESUMEN

The disinfection of fabrics is crucial in preventing the spread of infectious diseases caused by pathogenic microorganisms to maintain public health. A previous study proved that plasma-activated nebulized mist (PANM) could effectively inactivate microorganisms both in aerosol and attached to the surface. In this study, the PANM driven by different plasma gases were employed to inactivate microorganisms on diverse fabrics. The PANM could efficiently inactivate a variety of microorganisms, including bacteria, fungi, and viruses, contaminating different fabrics, and even across covering layers of different fabrics. The mites residing on the cotton fabrics both uncovered and covered with various types of fabrics were also effectively inactivated by the PANM. After 30 times repeated treatments of the PANM, notable changes were observed in the color of several fabrics while the structural integrity and mechanical strength of the fabrics were unaffected and maintained similarly to the untreated fabrics with slight changes in elemental composition. Additionally, only trace amounts of nitrate remained in the fabrics after the PANM treatment. Therefore, the PANM treatment supplied an efficient, broad-spectrum, and environmentally friendly strategy for industrial and household disinfection of fabrics.


Asunto(s)
Gases em Plasma , Textiles , Gases em Plasma/farmacología , Animales , Desinfección/métodos , Bacterias/efectos de los fármacos , Hongos/efectos de los fármacos , Nebulizadores y Vaporizadores , Virus/efectos de los fármacos
9.
J Am Chem Soc ; 146(18): 12601-12608, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38687243

RESUMEN

The burgeoning necessity to discover new methodologies for the synthesis of long-chain hydrocarbons and oxygenates, independent of traditional reliance on high-temperature, high-pressure, and fossil fuel-based carbon, is increasingly urgent. In this context, we introduce a nonthermal plasma-based strategy for the initiation and propagation of long-chain carbon growth from biogas constituents (CO2 and CH4). Utilizing a plasma reactor operating at atmospheric room temperature, our approach facilitates hydrocarbon chain growth up to C40 in the solid state (including oxygenated products), predominantly when CH4 exceeds CO2 in the feedstock. This synthesis is driven by the hydrogenation of CO2 and/or amalgamation of CHx radicals. Global plasma chemistry modeling underscores the pivotal role of electron temperature and CHx radical genesis, contingent upon varying CO2/CH4 ratios in the plasma system. Concomitant with long-chain hydrocarbon production, the system also yields gaseous products, primarily syngas (H2 and CO), as well as liquid-phase alcohols and acids. Our finding demonstrates the feasibility of atmospheric room-temperature synthesis of long-chain hydrocarbons, with the potential for tuning the chain length based on the feed gas composition.

10.
Artículo en Inglés | MEDLINE | ID: mdl-38429978

RESUMEN

BACKGROUND AND HYPOTHESIS: An estimated 80% of individuals with chronic kidney disease (CKD) experience concomitant skin disorders, yet experimental research that elucidates the pathological changes in CKD-affected skin is limited. Cold atmospheric plasma (CAP) has shown promise in regulating keratinocyte proliferation, skin barrier function, and anti-inflammatory activity. We hypothesize that CAP emerges as a promising therapeutic avenue for CKD-related skin diseases. METHODS: Male and female C57/BL6 mice were administered a 0.2% adenine diet to generate a CKD mouse model. Skin samples from dialysis patients were also collected. These models were used to investigate the pathological alterations in the renal glomeruli, tubules, and epidermis. Subsequently, the potential impact of CAP on the stratum corneum, keratinocytes, skin hydration, and inflammation in mice with CKD were examined. RESULTS: Renal biopsies revealed glomerular and tubular atrophy, epithelial degeneration and necrosis in uriniferous tubules, and significant renal interstitial fibrosis. Skin biopsies from patients with CKD and mice showed stratum corneum thickening, epidermis atrophy, skin hydration dysfunction, and excessive inflammation. CAP attenuated skin atrophy, hydration dysfunction, and inflammation in mice with CKD, as evidenced by the activated level of YAP1/ß-catenin and Nrf-2/OH-1, enhanced expression of K5 and Ki67, increased levels of AQP3, collagen I, and GLUT1, reduced infiltration of CD3+ T cells, and diminished levels of IL-6 and TNF-α. CONCLUSION: This study provides valuable insights into the pathological changes in skin associated with CKD in both patients and animal models. It also establishes that CAP has the potential to effectively mitigate skin atrophy, hydration dysfunction, and inflammation, suggesting a novel therapeutic avenue for the treatment of CKD-related skin disorders.

11.
J Colloid Interface Sci ; 659: 878-885, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38219306

RESUMEN

Cocatalysts play a key role in improving photocatalytic performance by enhancing conductivity and providing an enormous number of active sites simultaneously. However, cocatalysts are usually made of noble metals such as Pt, which are expensive and rare. Therefore, cocatalysts derived from cheap and abundant elements are highly desirable. Here, for the first time, we demonstrate that NiCS3, which is made from nickel that is abundant and costs less than 0.04 % of Pt, is an effective substitute for Pt cocatalysts for the photocatalytic activity of CdS nanorods in hydrogen evolution reaction (HER). Under visible light, the NiCS3/CdS composite with NiCS3 as the cocatalyst achieved an astonishing H2 production of 61.9 mmol·g-1·h-1 while maintaining high stability, which is 14 times higher than that observed when using CdS alone and nearly 2 times higher than that of Pt/CdS. We also established that the metallicity of NiCS3 results in good carrier conductivity, which promotes the electron transfer and the separation of photo-induced carriers. Due to the appropriate adsorption energy ΔGH*, NiCS3 more readily adsorbs hydrogen protons and desorbs molecular hydrogen during the photocatalytic process compared with Pt. Additionally, NiCS3 can effectively inhibit the photo-corrosion effect of CdS itself, ensuring a good stability of HER. These results suggest that NiCS3 is a promising substitute for Pt cocatalysts.

12.
ChemSusChem ; 17(6): e202300783, 2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-37994281

RESUMEN

Ammonia plays a crucial role in industry and agriculture worldwide, but traditional industrial ammonia production methods are energy-intensive and negatively impact the environment. Ammonia synthesis using low-temperature plasma technology has gained traction in the pursuit of environment-benign and cost-effective methods for producing green ammonia. This Review discusses the recent advances in low-temperature plasma-assisted ammonia synthesis, focusing on three main routes: N2+H2 plasma-only, N2+H2O plasma-only, and plasma coupled with other technologies. The reaction pathways involved in the plasma-assisted ammonia synthesis, as well as the process parameters, including the optimum catalyst types and discharge schemes, are examined. Building upon the current research status, the challenges and research opportunities in the plasma-assisted ammonia synthesis processes are outlined. The article concludes with the outlook for the future development of the plasma-assisted ammonia synthesis technology in real-life industrial applications.

13.
Adv Sci (Weinh) ; 11(10): e2307746, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38145346

RESUMEN

Electrical stimulation (ES) is proposed as a therapeutic solution for managing chronic wounds. However, its widespread clinical adoption is limited by the requirement of additional extracorporeal devices to power ES-based wound dressings. In this study, a novel sandwich-structured photovoltaic microcurrent hydrogel dressing (PMH dressing) is designed for treating diabetic wounds. This innovative dressing comprises flexible organic photovoltaic (OPV) cells, a flexible micro-electro-mechanical systems (MEMS) electrode, and a multifunctional hydrogel serving as an electrode-tissue interface. The PMH dressing is engineered to administer ES, mimicking the physiological injury current occurring naturally in wounds when exposed to light; thus, facilitating wound healing. In vitro experiments are performed to validate the PMH dressing's exceptional biocompatibility and robust antibacterial properties. In vivo experiments and proteomic analysis reveal that the proposed PMH dressing significantly accelerates the healing of infected diabetic wounds by enhancing extracellular matrix regeneration, eliminating bacteria, regulating inflammatory responses, and modulating vascular functions. Therefore, the PMH dressing is a potent, versatile, and effective solution for diabetic wound care, paving the way for advancements in wireless ES wound dressings.


Asunto(s)
Diabetes Mellitus , Hidrogeles , Humanos , Biomimética , Proteómica , Cicatrización de Heridas , Vendajes
14.
J Am Chem Soc ; 145(51): 28233-28239, 2023 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-38103175

RESUMEN

By inducing CO2-pulsed discharges within microchannel bubbles and regulating thus-forming plasma microbubbles, we observe high-performance, catalyst-free coformation of hydrogen peroxide (H2O2) and oxalate directly from CO2 and water. With isotope-labeled C18O2 as the feedstock, peaks of H218O16O and H216O2 observed by ex situ surface-enhanced Raman spectra indicate that single-atom oxygen (O) from CO2 dissociations and H2O-derived OH radicals both contribute to H2O2 formation. The global plasma chemistry modeling suggests that high-density, energy-intense electron supply enables high-density CO2- (aq) and HCO2- (aq) formation and their subsequent coupling to produce oxalate. The enhanced solvation of CO2, facilitated by the efficient transport of CxOy ionic species and CO, is demonstrated as a crucial benefit of spark discharges interacting with water at the bubble interface. We expect this plasma microbubble approach to provide a novel power-to-chemical avenue to convert CO2 into valuable H2O2 and oxalic acid platform chemicals, thus leveraging renewable energy resources.

15.
Adv Mater ; : e2308098, 2023 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-37777858

RESUMEN

Radioprotective agents hold clinical promises to counteract off-target adverse effects of radiation and benefit radiotherapeutic outcomes, yet the inability to control drug transport in human organs poses a leading limitation. Based upon a validated rank-based multigene signature model, radiosensitivity indices are evaluated of diverse normal organs as a genomic predictor of radiation susceptibility. Selective ORgan-Targeting (SORT) hafnium oxide nanoparticles (HfO2 NPs) are rationally designed via modulated synthesis by α-lactalbumin, homing to top vulnerable organs. HfO2 NPs like Hensify are commonly radioenhancers, but SORT HfO2 NPs exhibit surprising radioprotective effects dictated by unfolded ligands and Hf(0)/Hf(IV) redox couples. Still, the X-ray attenuation patterns allow radiological confirmation in target organs by dual-beam spectral computed tomography. SORT HfO2 NPs present potent antioxidant activities, catalytically scavenge reactive oxygen species, and mimic multienzyme catalytic activities. Consequently, SORT NPs rescue radiation-induced DNA damage in mouse and rabbit models and provide survival benefits upon lethal exposures. In addition to inhibiting radiation-induced mitochondrial apoptosis, SORT NPs impede DNA damage and inflammation by attenuating activated FoxO, Hippo, TNF, and MAPK interactive cascades. A universal methodology is proposed to reverse radioenhancers into radioprotectors. SORT radioprotective agents with image guidance are envisioned as compelling in personalized shielding from radiation deposition.

16.
J Hazard Mater ; 459: 132072, 2023 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-37480605

RESUMEN

The airborne microorganisms in the aerosols are one main transmission way of pathogenic microorganisms and therefore inactivation of microorganisms in aerosols could effectively prevent the transmission of pathogenic microorganisms to control epidemics. The mist nebulized by plasma-activated air could effectively inactivate bacteria and could be developed for the sterilization of microorganisms in aerosols. In this study, the plasma-activated nebulized mist (PANM) was applied for the inactivation of microorganisms in aerosols and efficiently inactivated the bacteria, yeast, and viruses in aerosols after 2-min treatment. The PANM treatment caused morphologic changes and damage to the bacteria cells in aerosols. The PANM could also inactivate the microorganisms attached to the surface of the treatment chamber and the bacteria attached to the skin of mice within 6-min treatment. The biosafety assays demonstrated that the PANM treatment exhibited no effects on the behavior, hematological and serum biochemical parameters of blood, and organs from the mice. This study would supply an efficient, broad-spectrum, and safe aerosol sterilization strategy based on plasma technology to prevent the transmission of airborne microorganisms.


Asunto(s)
Bioensayo , Saccharomyces cerevisiae , Animales , Ratones , Piel , Esterilización , Tecnología
17.
ACS Appl Mater Interfaces ; 15(18): 21804-21818, 2023 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-37129251

RESUMEN

Reactive oxygen species-mediated therapeutic strategies, including chemodynamic therapy (CDT) and photodynamic therapy (PDT), have exhibited translational promise for effective cancer management. However, monotherapy often ends up with the incomplete elimination of the entire tumor due to inherent limitations. Herein, we report a core-shell-structured Pd1.7Bi@CeO2-ICG (PBCI) nanoplatform constructed by a facile and effective strategy for synergistic CDT, PDT, and photothermal therapy. In the system, both Pd1.7Bi and CeO2 constituents exhibit peroxidase- and catalase-like characteristics, which not only generate cytotoxic hydroxyl radicals (•OH) for CDT but also produce O2 in situ and relieve tumor hypoxia for enhanced PDT. Furthermore, upon 808 nm laser irradiation, Pd1.7Bi@CeO2 and indocyanine green (ICG) coordinately prompt favorable photothermia, resulting in thermodynamically amplified catalytic activities. Meanwhile, PBCI is a contrast agent for near-infrared fluorescence imaging to determine the optimal laser therapeutic window in vivo. Consequently, effective tumor elimination was realized through the above-combined functions. The as-synthesized unitary PBCI theranostic nanoplatform represents a potential one-size-fits-all approach in multimodal synergistic therapy of hypoxic tumors.


Asunto(s)
Neoplasias , Fotoquimioterapia , Humanos , Fotoquimioterapia/métodos , Terapia Fototérmica , Neoplasias/tratamiento farmacológico , Terapia Combinada , Hipoxia/tratamiento farmacológico , Línea Celular Tumoral
18.
Adv Sci (Weinh) ; 10(14): e2207407, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36929325

RESUMEN

A continuous risk from microbial infections poses a major environmental and public health challenge. As an emerging strategy for inhibiting bacterial infections, plasma-activated water (PAW) has proved to be highly effective, environmental-friendly, and non-drug resistant to a broad range of microorganisms. However, the relatively short lifetime of reactive oxygen and nitrogen species (RONS) and the high spreadability of liquid PAW inevitably limit its real-life applications. In this study, plasma-activated hydrogel (PAH) is developed to act as reactive species carrier that allow good storage and controlled slow-release of RONS to achieve long-term antibacterial effects. Three hydrogel materials, including hydroxyethyl cellulose (HEC), carbomer 940 (Carbomer), and acryloyldimethylammonium taurate/VP copolymer (AVC) are selected, and their antibacterial performances under different plasma activation conditions are investigated. It is shown that the composition of the gels plays the key role in determining their biochemical functions after the plasma activation. The antimicrobial performance of AVC is much better than that of PAW and the other two hydrogels, along with the excellent stability to maintain the antimicrobial activity for more than 14 days. The revealed mechanism of the antibacterial ability of the PAH identifies the unique combination of short-lived species (1 O2 , ∙OH, ONOO- and O2 - ) stored in hydrogels. Overall, this study demonstrates the efficacy and reveals the mechanisms of the PAH as an effective and long-term disinfectant capable of delivering and preserving antibacterial chemistries for biomedical applications.


Asunto(s)
Antiinfecciosos , Desinfección , Hidrogeles/química , Especies Reactivas de Oxígeno , Antibacterianos/farmacología , Antibacterianos/química , Polímeros , Especies de Nitrógeno Reactivo
19.
Adv Healthc Mater ; 12(17): e2203011, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36841552

RESUMEN

Pancreatic cancer renders a principal cause of cancer mortalities with a dismal prognosis, lacking sufficiently safe and effective therapeutics. Here, diversified cyclodiaryliodonium (CDAI) NADPH oxidase (NOX) inhibitors are rationally designed with tens of nanomolar optimal growth inhibition, and CD44-targeted delivery is implemented using synthesized sulfated glycosaminoglycan derivatives. The self-assembled nanoparticle-drug conjugate (NDC) enables hyaluronidase-activatable controlled release and facilitates cellular trafficking. NOX inhibition reprograms the metabolic phenotype by simultaneously impairing mitochondrial respiration and glycolysis. Moreover, the NDC selectively diminishes non-mitochondrial reactive oxygen species (ROS) but significantly elevates cytotoxic ROS through mitochondrial membrane depolarization. Transcriptomic profiling reveals perturbed p53, NF-κB, and GnRH signaling pathways interconnected with NOX inhibition. After being validated in patient-derived pancreatic cancer cells, the anticancer efficacy is further verified in xenograft mice bearing heterotopic and orthotopic pancreatic tumors, with extended survival and ameliorated systemic toxicity. It is envisaged that the translation of cyclodiaryliodonium inhibitors with an optimized molecular design can be expedited by enzyme-activatable targeted delivery with improved pharmacokinetic profiles and preserved efficacy.


Asunto(s)
NADPH Oxidasas , Neoplasias Pancreáticas , Humanos , Ratones , Animales , NADPH Oxidasas/genética , NADPH Oxidasas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Glicosaminoglicanos , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/patología , Neoplasias Pancreáticas
20.
J Hazard Mater ; 446: 130686, 2023 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-36610342

RESUMEN

The global pandemic caused by SARS-CoV-2 has lasted two and a half years and the infections caused by the viral contamination are still occurring. Developing efficient disinfection technology is crucial for the current epidemic or infectious diseases caused by other pathogenic microorganisms. Gas plasma can efficiently inactivate different microorganisms, therefore, in this study, a combination of water spray and plasma-activated air was established for the disinfection of pathogenic microorganisms. The combined treatment efficiently inactivated the Omicron-pseudovirus through caused the nitration modification of the spike proteins and also the pathogenic bacteria. The combined treatment was improved with a funnel-shaped nozzle to form a temporary relatively sealed environment for the treatment of the contaminated area. The improved device could efficiently inactivate the Omicron-pseudovirus and bacteria on the surface of different materials including quartz, metal, leather, plastic, and cardboard and the particle size of the water spray did not affect the inactivation effects. This study supplied a disinfection strategy based on plasma-activated air for the inactivation of contaminated pathogenic microorganisms.


Asunto(s)
COVID-19 , Agua , Humanos , SARS-CoV-2 , COVID-19/prevención & control , Desinfección , Bacterias
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...