RESUMEN
Transition metal oxides (TMOs) with high discharge capacity are considered as one of the most promising anodes for lithium-ion batteries. However, the practical utilization of TMOs is largely limited by cycling stability issues arising from volume expansion, structural collapse. In this study, we synthesized a high-entropy spinel oxide material (FeCrNiMnZn)3O4 using a solution combustion method. With the implementation of five cations through high-entropy engineering, the agglomeration and expansion of the electrode materials during charging and discharging are suppressed, and the cycling stability is enhanced. The results demonstrate that entropy-induced high-density grain boundaries and the reversibility of spinel structure contribute to improved capacity and cycling stability. Herein, (FeCrNiMnZn)3O4 provides a high capacity (1374 mAh g-1) at 0.1 A g-1 and superior cycling stability (almost 100 %) during 200 cycles with a current density of 0.5 A g-1. The study provides valuable understanding for designing the high entropy oxides anode electrodes.
RESUMEN
Background: Intramuscular hemangioma is a vascular malformation occurring in muscle tissues. It is most common in skeletal muscles of limbs, especially lower limbs in childhood. The intercostal intramuscular hemangioma with sternal invasion is very rare. Case presentation: The 47-year-old female patient was hospitalized due to "suddenly chest pain for 4 days". Chest contrast-enhanced CT indicated bony changes in the sternum, accompanied by soft tissue shadows in the posterior sternum and diaphragmatic angle. After admission, physical examination showed: peristernal tenderness, percussion pain, other no obvious positive signs. PET-CT examination indicated that there was a high possibility of benign sternal changes. No cancer cells were found by sternal puncture. Surgical biopsy was performed and pathological findings were consistent with intramuscular hemangioma. Conclusion: Intramuscular hemangioma with bone invasion is very rare, imaging examination is difficult to indicate obvious evidence, preoperative diagnosis is difficult, complete surgical resection is very important, more personalized treatment should be provided according to the overall situation of the patient.
RESUMEN
The vastly spreading COVID-19 pneumonia is caused by SARS-CoV-2. Lymphopenia and cytokine levels are tightly associated with disease severity. However, virus-induced immune dysregulation at cellular and molecular levels remains largely undefined. Here, the leukocytes in the pleural effusion, sputum, and peripheral blood biopsies from severe and mild patients were analyzed at single-cell resolution. Drastic T cell hyperactivation accompanying elevated T cell exhaustion was observed, predominantly in pleural effusion. The mechanistic investigation identified a group of CD14+ monocytes and macrophages highly expressing CD163 and MRC1 in the biopsies from severe patients, suggesting M2 macrophage polarization. These M2-like cells exhibited up-regulated IL10, CCL18, APOE, CSF1 (M-CSF), and CCL2 signaling pathways. Further, cell type specific dysregulation of transposable elements was observed in Severe COVID-19 patients. Together, our results suggest that severe SARS-CoV-2 infection causes immune dysregulation by inducing M2 polarization and subsequent T cell exhaustion. This study improves our understanding of COVID-19 pathogenesis.
RESUMEN
The Internet of Things technology allows you to transfer data to any asset through communication networks such as the Internet or intranet. One of the most important problems is security, which includes confidentiality, authenticity validation, and completeness. Among security problems, the most important ones are ensuring authenticity and protecting privacy. The elliptic curve encryption algorithm is famous protocols for maintaining privacy and verifying authenticity. Despite the capabilities they have and provide good security against network attacks, they face challenges such as response time, delay in the authentication and authentication process, as well as the amount of memory consumed. Two-factor authentication (2FA) is a security process where users provide two different authentication factors to authenticate themselves. It also provides a higher level of security than authentication methods that rely on single-factor authentication (SFA). This article presents two novel methods for 2FA that use encryption techniques, scramble architecture, and chord architecture. These methods allow for the authentication process to be initiated by both parties involved in the communication. Three scenarios and three metrics of reaction time, memory usage, and connection latency were used to assess the efficacy of the suggested approach. The average reaction time is improved and is 0.012 s when the lengths of the finger table in the chord structure are increased to 10, 15, and 20. The findings show that the suggested approach reduces computing complexity, reaction time, and communication latency. It has an average reaction time of 0.016 s, an average memory use of 30,360 kb, and an average connection latency of 0.042 s.
RESUMEN
Although the human body needs nickel as a trace element, too much nickel exposure can be hazardous. The effects of nickel on cells include inducing oxidative stress, interfering with DNA damage repair, and altering epigenetic modifications. Glucose metabolism and lipid metabolism are closely related to oxidative stress; however, their role in nickel-induced damage needs further study. In Institute of Cancer Research (ICR) mice, our findings indicated that nickel stress increased the levels of blood lipid indicators (triglycerides, high-density lipoprotein, and cholesterol) by about 50%, blood glucose by more than two-fold, and glycated serum protein by nearly 20%. At the same time, nickel stress increased oxidative stress (malondialdehyde) and inflammation (Interleukin 6) by about 30% in the kidney. Based on next-generation sequencing technology, we detected and analyzed differentially expressed genes in the kidney caused by nickel stress. Bioinformatics analysis and experimental verification showed that nickel inhibited the expression of genes related to lipid metabolism and the AMPK and PPAR signaling pathways. The finding that nickel induces kidney injury and inhibits key genes involved in lipid metabolism and the AMPK and PPAR signaling pathways provides a theoretical basis for a deeper understanding of the mechanism of nickel-induced kidney injury.
RESUMEN
Understanding the interlayer interaction between 2D layered structures is critical for the construction of various micro- and nanoscale functional devices. However, both the normal and the tangential interlayer interactions between 2D layered materials have rarely been studied simultaneously. In this work, an immersion and lift-up method is proposed to wrap a layer of graphene flakes onto a plasma-pretreated atomic force microscopy (AFM) nanoprobe for the measurements of interaction forces by AFM. The normal interactions (adhesion force and adhesion energy) and tangential interactions (friction force) between two different probes (Pt-coated probe and graphene-wrapped probe) and two different 2D graphene materials [graphene and graphene oxide (GO)] were systematically measured, respectively. The adhesion energies of Pt-GO, Pt-graphene, graphene-GO, and graphene-graphene were measured to be 0.72 ± 0.05, 0.41 ± 0.03, 0.19 ± 0.02, and 0.10 ± 0.02 J m-2, respectively. The graphene-graphene contact pair showed the lowest adhesion force (5.57 ± 1.03 nN) and adhesion energy (0.10 ± 0.02 J m-2), which was attributed to the strong covalent bonds and charge density distribution. The friction coefficients of Pt-GO, graphene-GO, Pt-graphene, and graphene-graphene were determined to be 0.38, 0.14, 0.054, and 0.013. The graphene-graphene tribo-pair exhibited a superlow friction state for a long time, which was attributed to incommensurate contact and weak van der Waals interactions. These findings provide a technical route to reveal the interlayer interactions of various 2D layered materials, which can be widely applied in microelectromechanical systems.
RESUMEN
Medical images are often characterized by their structured anatomical representations and spatially inhomogeneous contrasts. Leveraging anatomical priors in neural networks can greatly enhance their utility in resource-constrained clinical settings. Prior research has harnessed such information for image segmentation, yet progress in deformable image registration has been modest. Our work introduces textSCF, a novel method that integrates spatially covariant filters and textual anatomical prompts encoded by visual-language models, to fill this gap. This approach optimizes an implicit function that correlates text embeddings of anatomical regions to filter weights. textSCF not only boosts computational efficiency but can also retain or improve registration accuracy. By capturing the contextual interplay between anatomical regions, it offers impressive interregional transferability and the ability to preserve structural discontinuities during registration. textSCF's performance has been rigorously tested on intersubject brain magnetic resonance imaging (MRI) and abdominal computerized tomography (CT) registration tasks, outperforming existing state-of-the-art models in the MICCAI Learn2Reg 2021 challenge and leading the leaderboard. In abdominal registrations, textSCF's larger model variant improved the Dice score by 11.3% over the second-best model, while its smaller variant maintained similar accuracy but with an 89.13% reduction in network parameters and a 98.34% decrease in computational operations.
RESUMEN
[This corrects the article DOI: 10.1021/acsomega.4c00448.].
RESUMEN
Artificial intelligence and human-computer interaction advances demand bioinspired sensing modalities capable of comprehending human affective states and speech. However, endowing skin-like interfaces with such intricate perception abilities remains challenging. Here, we have developed a flexible piezoresistive artificial ear (AE) sensor based on gold nanoparticles, which can convert sound signals into electrical signals through changes in resistance. By testing the sensor's performance at both frequency and sound pressure level (SPL), the AE has a frequency response range of 20 Hz to 12 kHz and can sense sound signals from up to 5 m away at a frequency of 1 kHz and an SPL of 126 dB. Furthermore, through deep learning, the device achieves up to 96.9% and 95.0% accuracy in classification and recognition applications for seven emotional and eight urban environmental noises, respectively. Hence, on one hand, our device can monitor the patient's emotional state by their speech, such as sudden yelling and screaming, which can help healthcare workers understand patients' condition in time. On the other hand, the device could also be used for real-time monitoring of noise levels in aircraft, ships, factories, and other high-decibel equipment and environments.
Asunto(s)
Aprendizaje Profundo , Emociones , Oro , Humanos , Emociones/fisiología , Oro/química , Nanopartículas del Metal/química , VozRESUMEN
Carbon microspheres have indeed shown great promise as effective materials for absorbing electromagnetic waves, particularly in microwave applications. Their unique properties, such as high surface area, porosity, and electronic characteristics, make them ideal candidates for addressing the growing concerns around electromagnetic pollution from electronic devices. By leveraging the properties of these materials, we can work toward creating more efficient and sustainable electromagnetic wave absorption technologies. Recent efforts have focused on synthesizing and investigating carbon microsphere-based electromagnetic wave-absorbing nanomaterials with the ambition of achieving the desired attributes of being thin, light, wide, and robust. This Review first delves into the detailed mechanism of electromagnetic wave absorption, followed by an elucidation of the preparation methods for carbon microsphere-based nanomaterials. Furthermore, it systematically outlines the common methods and strategies employed to improve the microwave absorption capabilities of carbon microspheres, including chemical vapor deposition, emulsion polymerization, hydrothermal methods, and template methods. Lastly, it outlines the challenges encountered by carbon microsphere-based electromagnetic wave absorption nanomaterials and outlines their prospects, mainly morphology change, component hybridization, and elemental doping. This Review aims to provide valuable insights into the creation of carbon microsphere nanomaterials with excellent electromagnetic wave absorption properties.
RESUMEN
Two-dimensional (2D) materials with excellent properties and widespread applications have been explosively investigated. However, their conventional synthetic methods exhibit concerns of limited scalability, complex purification process, and incompetence of prohibiting their restacking. The blowing strategy, characterized by gas-template, low-cost, and high-efficiency, presents a valuable avenue for the synthesis of 2D-based foam materials and thereby addresses these constraints. Whereas, its comprehensive introduction has been rarely outlined so far. This review commences with a synopsis of the blowing strategy, elucidating its development history, the statics and kinetics of the blowing process, and the choice of precursor and foaming agents. Thereafter, we dwell at length on across-the-board foams enabled by the blowing route, like BxCyNz foams, carbon foams, and diverse composite foams consisting of carbon and metal compounds. Following that, a wide-ranging evaluation of the functionality of the foam products in fields such as energy storage, electrocatalysis, adsorption, etc. is discussed, revealing their distinctive strength originated from the foam structure. Finally, after concluding the current progress, we provide some personal discussions on the existing challenges and future research priorities in this rapidly developing method.
RESUMEN
BACKGROUND: Right ventricular (RV) fibrosis is an important pathological change that occurs during the development of right heart failure (RHF) induced by pulmonary hypertension (PH). Dapagliflozin (DAPA), a sodium-glucose cotransporter 2 (SGLT2) inhibitor, has been shown to play a major role in left heart failure, but it is unclear whether it has a positive effect on RHF. This study aimed to clarify the effect of DAPA on PH-induced RHF and investigate the underlying mechanisms. METHODS: We conducted experiments on two rat models with PH-induced RHF and cardiac fibroblasts (CFs) exposed to pathological mechanical stretch or transforming growth factor-beta (TGF-ß) to investigate the effect of DAPA. RESULTS: In vivo, DAPA could improve pulmonary hemodynamics and RV function. It also attenuated right heart hypertrophy and RV fibrosis. In vitro, DAPA reduced collagen expression by increasing the production of matrix metalloproteinase 2 (MMP2) and matrix metalloproteinase 9 (MMP9). Additionally, DAPA was found to reduce reactive oxygen species (ROS) levels in CFs and the right heart in rats. Similar to DAPA, the ROS scavenger N-acetylcysteine (NAC) exerted antifibrotic effects on CFs. Therefore, we further investigated the mechanism by which DAPA promoted collagen degradation by reducing ROS levels. CONCLUSIONS: In summary, we concluded that DAPA ameliorated PH-induced structural and functional changes in the right heart by increasing collagen degradation. Our study provides new ideas for the possibility of using DAPA to treat RHF.
Asunto(s)
Compuestos de Bencidrilo , Colágeno , Fibrosis , Glucósidos , Insuficiencia Cardíaca , Ratas Sprague-Dawley , Especies Reactivas de Oxígeno , Animales , Glucósidos/farmacología , Glucósidos/uso terapéutico , Compuestos de Bencidrilo/farmacología , Compuestos de Bencidrilo/uso terapéutico , Insuficiencia Cardíaca/tratamiento farmacológico , Insuficiencia Cardíaca/metabolismo , Insuficiencia Cardíaca/fisiopatología , Especies Reactivas de Oxígeno/metabolismo , Ratas , Colágeno/metabolismo , Masculino , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Fibroblastos/patología , Metaloproteinasa 9 de la Matriz/metabolismo , Hipertensión Pulmonar/tratamiento farmacológico , Hipertensión Pulmonar/metabolismo , Hipertensión Pulmonar/patología , Inhibidores del Cotransportador de Sodio-Glucosa 2/farmacología , Inhibidores del Cotransportador de Sodio-Glucosa 2/uso terapéutico , Metaloproteinasa 2 de la Matriz/metabolismo , Modelos Animales de EnfermedadRESUMEN
The increasing resistance of agricultural pests to existing acaricides presents a significant challenge to sustainable agriculture. Therefore, this study introduced FM-1088, a novel isoindolinone-based phenyl trifluoroethyl thioether derivative generated through an innovative design strategy combining bioisosterism and novel cyclization methods. We synthesized several compounds and evaluated their acaricidal efficacy against Tetranychus cinnabarinus in greenhouses and Panonychus citri in field settings. FM-1088 emerged as a standout candidate, demonstrating a lower median lethal concentration (LC50) of 0.722 mg/L compared to the commercial acaricide, cyetpyrafen. Notably, 30 days after application, FM-1088 showed a field control efficacy of 96.4% against P. citri, highlighting its potential for broader applications. The results underscore the utility of the isoindolinone scaffold in pesticide development, offering a promising solution to combat pest resistance with implications for enhanced crop protection and agricultural productivity. Future studies should explore the detailed mode of action of FM-1088 and its potential applicability across diverse agricultural settings, further confirming its role as a sustainable solution for pest management.
Asunto(s)
Acaricidas , Acaricidas/química , Acaricidas/farmacología , Animales , Tetranychidae/efectos de los fármacos , Tetranychidae/crecimiento & desarrollo , Estructura MolecularRESUMEN
Due to the fact that more conventional heavy oil recovery methods (heating, emulsification, dilution, and other methods) have many shortcomings, they cannot meet the demand of heavy oil exploitation. Therefore, there is a need for new recovery methods. In this paper, the surface of nano SiO2 was modified with a silane coupling agent, KH-560, to prepare a nanoviscosity reducer (NRV), which has high-temperature resistance (300 °C), calcium and magnesium resistance (Ca2+ + Mg2+ > 900 mg/L) and high viscosity reduction rate (>99%). FTIR and SEM measurements showed that KH560 has been successfully connected to the surface of SiO2. The particle size distribution of NRV is mainly distributed in 50-80 nm, which matches the results of SEM. The experimental results showed that the viscosity reduction rates of 1 wt % NRV on M-1 heavy oil before and after aging were 99.73% and 99.71%, respectively. The viscosity reduction effect of 1% NRV on M-1 heavy oil and the bleeding rate of emulsion formation were investigated when the oil-water ratio ranged from 9:1 to 1:9. The results showed that when the oil-water ratio was between 7:3 and 1:9, the viscosity reduction rate was greater than 99%. Besides, the bleeding rate of emulsion increases with the decrease of the oil-water ratio. What's more, static and dynamic adsorption experiments showed that the adsorption capacity of 1 wt % NRV was 1.746 mg/g and 1.668 mg/g sand, respectively. The interfacial tension experiment showed that the interfacial tension (IFT) between 1 wt % NRV and M-1 heavy oil was 0.052 mN/m, and low interfacial tension was beneficial to displace the oil in the formation pores. At the same time, the displacement effect of NRV on M-1 heavy oil at different concentrations (0.5, 1.0, and 1.5 wt %) and temperatures (200, 250, and 300 °C) was investigated by core flooding experiments. The results showed that the recovery rate increases with the increase of NRV concentration, and 1 wt % NRV at 300 °C will improve the recovery rate of M-1 heavy oil by 27.3% compared to steam flooding. NRV could reduce the viscosity of crude oil, which provides technical guidelines for the exploitation of heavy oil and extra heavy oil.
RESUMEN
The stannic oxide (SnO2) anode expands in volume during cycling causing a decrease in reversible capacity. In this work, we generated a spherical SnO2/Sn heterojunction with core-shell structure composites encapsulated by graphene (SnO2/Sn/G) in situ using a simple one-step hydrothermal and subsequent annealing process. SnO2/Sn heterojunction nanospheres dispersed in a porous graphene framework accelerate the diffusion kinetics of electrons and ions. In addition, the structure plays a key role in mitigating large volume changes and nanostructure agglomeration. As a result, SnO2/Sn/G exhibits excellent performance as an anode material for lithium-ion batteries (LIBs), maintaining a reversible specific capacity of 720.6 mA h g-1 even after 600 cycles at a current density of 0.5 A g-1.
RESUMEN
BACKGROUND: Colon cancer has high mortality rate which making it one of the leading causes of cancer deaths. Oxaliplatin is a common chemotherapeutic drug, but it has disadvantages such as drug resistance. OBJECTIVE: The purpose of this study is to explore the mechanism of exosomes in the resistance of oxaliplatin and verify whether elemene and STAT3 inhibitors reverse the resistance to oxaliplatin. METHODS: Related cell line models were constructed and the proliferation, migration, invasion, apoptosis and resistance to oxaliplatin were evaluated for all three cells of HCT116/L, sensitive cell HCT116 and HCT116+HCT116/L-exosomes (HCT116-exo). It was to explore probable signaling pathways and mechanisms by Western blotting. RESULTS: HCT116-exo drug-resistant chimeric cells showed greater capacity for proliferation, migration and invasion than HCT116 sensitive cells. After the above cells were treated with oxaliplatin, the apoptosis rate of chimeric drug-resistant cells HCT116-exo and its IC50 increased compared with the sensitive cells HCT116. The proliferation, invasion and migration of cells treated with STAT3 inhibitor or ß-elemene combined with oxaliplatin reduced compared with those treated with oxaliplatin or ß-elemene alone. The STAT3 inhibitor or ß-elemene in combination with oxaliplatin increased the rate of apoptosis relative to oxaliplatin or ß-elemene alone. Drug-resistant cell exosomes could promote the EMT process, related to the participation of FGFR4, SHMT2 and STAT3 inhibitors. CONCLUSION: Drug-resistant cell exosomes could induce resistance, and improve the capacity of colon cancer towards proliferate, invade, migrate and promote the EMT process. The ß-elemene combined with oxaliplatin could reverse the above results which might be related to the STAT3 pathway and EMT pathway in colon cancer.
RESUMEN
The precise control of the chirality of polymer assemblies is a challenge faced by scientists and has received significant attention in recent years. In this study, we employed the polymerization-induced chiral self-assembly (PICSA) method to create chiral side-chain cyanobiphenyl (CB) block copolymer (BCP) assemblies. The flexible spacers in chiral CB monomers were regulated to exhibit two distinct odd-even effects in the supramolecular asymmetrical arrangement of the CB mesogens inside BCP assemblies. The research results indicated that the liquid crystalline properties of CB mesogens significantly influence the magnitude and sign of their chiroptical properties. These findings have significant implications for the design of polymer assemblies with designable chiroptical functions.
RESUMEN
Background: Through preoperative localization, surgeons can easily locate ground glass nodules (GGNs) and effectively control the extent of resection. Therefore, it is necessary to choose an appropriate puncture positioning method. The purpose of this study was to evaluate the effectiveness and safety of medical glue and positioning hooks in the preoperative positioning of GGNs and to provide a reference for clinical selection. Methods: From March 30, 2020 to June 13, 2022, a total of 859 patients with a CT diagnosis of GGNs requiring surgical resection were included in our study at the hospital. Among them, 21 patients who either opted out or could not undergo preoperative localization for various reasons were excluded. Additionally, 475 patients who underwent preoperative localization using medical glue and 363 patients who underwent preoperative localization through positioning hooks were also excluded. We conducted statistical analyses on the baseline data, success rates, complications, and pathological results of the remaining patients. The success rates, complication rates, and pathological results were compared between the two groups-those who received medical glue localization and those who received positioning hook localization. Results: There was no statistically significant difference between the two groups of patients in terms of age, body mass index, smoking history, location of the nodule, distance of the nodule from the pleura, or postoperative pathological results (P > 0.05). The success rate of medical glue and positioning hooks was 100%. The complication rates of medical glue and positioning hooks during single nodule positioning were 39.18% and 23.18%, respectively, which were significantly different (p < 0.001); the complication rates during multiple nodule positioning were 49.15% and 49.18%, respectively, with no statistically significant differences (p > 0.05). In addition, the method of positioning and the clinical characteristics of the patients were not found to be independent risk factors for the occurrence of complications. The detection rate of pulmonary nodules also showed some positive correlation with the spread of COVID-19 during the 2020-2022 period when COVID-19 was prevalent. Conclusion: When positioning a single node, the safety of positioning hooks is greater than when positioning multiple nodes, the safety of medical glue and positioning hooks is comparable, and the appropriate positioning method should be chosen according to the individual situation of the patient.
RESUMEN
Using nicofluprole as the lead compound, we designed and synthesized a series of new phenylpyrazole analogues through substituting the methyl group on the nitrogen atom of the amide with an acyl group. Bioassay results showed that compounds A12-A17 with a 1-cyanocyclopropimide group exhibited outstanding insecticidal activity. The LC50 values for compounds A12-A17 against Tetranychus cinnabarinus ranged from 0.58 to 0.91 mg/L. Compound A15 showed an LC50 value of 0.29 and 3.10 mg/L against Plutella xylostella and Myzus persicae, respectively. Molecular docking indicated the potential binding interactions of compound A15 with a gamma-aminobutyric acid receptor. Additionally, density functional theory calculations implied that the 1-cyanocyclopropimide structure might be essential for its biological activity. Phenylpyrazole derivatives, containing a 1-cyanocyclopropimide fragment, have the potential for further development as potential insecticides.