Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 4144, 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38755140

RESUMEN

Multiple Myeloma is an incurable plasma cell malignancy with a poor survival rate that is usually treated with immunomodulatory drugs (iMiDs) and proteosome inhibitors (PIs). The malignant plasma cells quickly become resistant to these agents causing relapse and uncontrolled growth of resistant clones. From whole genome sequencing (WGS) and RNA sequencing (RNA-seq) studies, different high-risk translocation, copy number, mutational, and transcriptional markers can be identified. One of these markers, PHF19, epigenetically regulates cell cycle and other processes and is already studied using RNA-seq. In this study, we generate a large (325,025 cells and 49 patients) single cell multi-omic dataset and jointly quantify ATAC- and RNA-seq for each cell and matched genomic profiles for each patient. We identify an association between one plasma cell subtype with myeloma progression that we call relapsed/refractory plasma cells (RRPCs). These cells are associated with chromosome 1q alterations, TP53 mutations, and higher expression of PHF19. We also identify downstream regulation of cell cycle inhibitors in these cells, possible regulation by the transcription factor (TF) PBX1 on chromosome 1q, and determine that PHF19 may be acting primarily through this subset of cells.


Asunto(s)
Cromosomas Humanos Par 1 , Proteínas de Unión al ADN , Mieloma Múltiple , Mieloma Múltiple/genética , Mieloma Múltiple/patología , Mieloma Múltiple/tratamiento farmacológico , Humanos , Cromosomas Humanos Par 1/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Regulación Neoplásica de la Expresión Génica , Células Plasmáticas/metabolismo , Mutación , Recurrencia Local de Neoplasia/genética , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Resistencia a Antineoplásicos/genética , Amplificación de Genes
2.
Eye (Lond) ; 38(3): 594-599, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37752342

RESUMEN

OBJECTIVES: To identify factors associated with progressive anisometropia after bilateral intraocular lens (IOL) implantation in patients with pediatric cataract. METHODS: Clinical and standardized questionnaire data were collected for Sixty-eight patients with pediatric cataract (136 eyes) who underwent bilateral IOL implantation and at least 1 year of follow-up. Univariate and multivariate linear regression models were used to identify factors associated with postoperative anisometropia. RESULTS: The median age at IOL implantation was 3.2 years (range: 1-12.4 years), and median follow-up time was 5.7 years (range: 1.1-14 years). At 1 month postoperatively and at the last follow-up, there were 19 (27%) and 31 (46%) cases of anisometropia ≥1 D, 9 (13%) and 15 (22%) cases of anisometropia ≥2 D, and 2 (3%) and 9 (13%) cases of anisometropia ≥3 D, respectively. Compared with 1 month postoperatively, the amount of anisometropia increased in 45 (67%) patients. Greater anisometropia one year or more after bilateral IOL implantation was associated with larger intereye difference in IOL power (P = 0.032, 95%CI 0.013 to 0.285), intereye difference in preoperative axial length (P = 0.018, 95%CI -1.247 to -0.123), presence of strabismus (P = 0.017, 95%CI 0.063-0.601), anisometropia at 1 month postoperatively (P = 0.001, 95%CI 0.126-0.478), and intereye difference in axial length at the last follow-up (P = 0.047, 95%CI 0.005-0.627). CONCLUSION: Anisometropia might progress after bilateral IOL implantation in patients with pediatric cataract. Greater intereye difference in IOL power, presence of strabismus might increase the potential of progressive anisometropia.


Asunto(s)
Anisometropía , Extracción de Catarata , Catarata , Lentes Intraoculares , Estrabismo , Humanos , Niño , Lactante , Preescolar , Extracción de Catarata/efectos adversos , Implantación de Lentes Intraoculares , Anisometropía/etiología , Agudeza Visual , Catarata/complicaciones , Estudios de Seguimiento
3.
Cell Rep ; 42(11): 113374, 2023 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-37938973

RESUMEN

Glioblastoma (GBM) is the most common and aggressive primary brain malignancy. Adhesion G protein-coupled receptors (aGPCRs) have attracted interest for their potential as treatment targets. Here, we show that CD97 (ADGRE5) is the most promising aGPCR target in GBM, by virtue of its de novo expression compared to healthy brain tissue. CD97 knockdown or knockout significantly reduces the tumor initiation capacity of patient-derived GBM cultures (PDGCs) in vitro and in vivo. We find that CD97 promotes glycolytic metabolism via the mitogen-activated protein kinase (MAPK) pathway, which depends on phosphorylation of its C terminus and recruitment of ß-arrestin. We also demonstrate that THY1/CD90 is a likely CD97 ligand in GBM. Lastly, we show that an anti-CD97 antibody-drug conjugate selectively kills tumor cells in vitro. Our studies identify CD97 as a regulator of tumor metabolism, elucidate mechanisms of receptor activation and signaling, and provide strong scientific rationale for developing biologics to target it therapeutically in GBM.


Asunto(s)
Glioblastoma , Humanos , Glioblastoma/patología , Fosforilación , Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal
5.
Blood Cancer J ; 13(1): 144, 2023 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-37696786

RESUMEN

Biallelic TP53 inactivation is the most important high-risk factor associated with poor survival in multiple myeloma. Classical biallelic TP53 inactivation has been defined as simultaneous mutation and copy number loss in most studies; however, numerous studies have demonstrated that other factors could lead to the inactivation of TP53. Here, we hypothesized that novel biallelic TP53 inactivated samples existed in the multiple myeloma population. A random forest regression model that exploited an expression signature of 16 differentially expressed genes between classical biallelic TP53 and TP53 wild-type samples was subsequently established and used to identify novel biallelic TP53 samples from monoallelic TP53 groups. The model reflected high accuracy and robust performance in newly diagnosed relapsed and refractory populations. Patient survival of classical and novel biallelic TP53 samples was consistently much worse than those with mono-allelic or wild-type TP53 status. We also demonstrated that some predicted biallelic TP53 samples simultaneously had copy number loss and aberrant splicing, resulting in overexpression of high-risk transcript variants, leading to biallelic inactivation. We discovered that splice site mutation and overexpression of the splicing factor MED18 were reasons for aberrant splicing. Taken together, our study unveiled the complex transcriptome of TP53, some of which might benefit future studies targeting abnormal TP53.


Asunto(s)
Mieloma Múltiple , Humanos , Mieloma Múltiple/genética , Alelos , Mutación , Factores de Empalme de ARN , Bosques Aleatorios , Proteína p53 Supresora de Tumor/genética , Factores de Transcripción
6.
Res Sq ; 2023 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-37645789

RESUMEN

Multiple Myeloma is an incurable plasma cell malignancy with a poor survival rate that is usually treated with immunomodulatory drugs (iMiDs) and proteosome inhibitors (PIs). The malignant plasma cells quickly become resistant to these agents causing relapse and uncontrolled growth of resistant clones. From whole genome sequencing (WGS) and RNA sequencing (RNA-seq) studies, different high-risk translocation, copy number, mutational, and transcriptional markers have been identified. One of these markers, PHF19, epigenetically regulates cell cycle and other processes and has already been studied using RNA-seq. In this study a massive (325,025 cells and 49 patients) single cell multiomic dataset was generated with jointly quantified ATAC- and RNA-seq for each cell and matched genomic profiles for each patient. We identified an association between one plasma cell subtype with myeloma progression that we have called relapsed/refractory plasma cells (RRPCs). These cells are associated with 1q alterations, TP53 mutations, and higher expression of PHF19. We also identified downstream regulation of cell cycle inhibitors in these cells, possible regulation of the transcription factor (TF) PBX1 on 1q, and determined that PHF19 may be acting primarily through this subset of cells.

7.
Front Immunol ; 14: 1239614, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37600810

RESUMEN

Multiple myeloma (MM) is a devastating plasma cell malignancy characterized by the expansion of aberrant monoclonal plasma cells in the bone marrow, leading to severe clinical manifestations and poor prognosis, particularly in relapsed/refractory cases. Identifying novel therapeutic targets is crucial to improve treatment outcomes in these patients. In this study, we investigated the role of the protein arginine methyltransferase 1 (PRMT1) in MM pathogenesis and explored its potential as a therapeutic target. We observed that PRMT1, responsible for most asymmetric di-methylation in cells, exhibited the highest expression among PRMT family members in MM cell lines and primary MM cells. Importantly, PRMT1 expression was significantly elevated in relapsed/refractory patients compared to newly diagnosed patients. High expression of PRMT1 expression was strongly associated with poor prognosis. We found that genetic or enzymatic inhibition of PRMT1 impaired MM cell growth, induced cell cycle arrest, and triggered cell death. Treatment with MS023, a potent PRMT type I inhibitor, demonstrated a robust inhibitory effect on the viability of primary cells isolated from newly diagnosed and proteasome inhibitor-relapsed/refractory patients in a dose-dependent manner. Suppression of PRMT1 downregulated genes related to cell division and upregulated genes associated with apoptosis pathway. We also found that genes related to immune response and lymphocyte activation were significantly upregulated in PRMT1-suppressed cells. Notably, the activation status of T cells was strikingly enhanced upon co-culturing with PRMT1-KO MM cells. In vivo studies using a xenograft model revealed that targeting PRMT1 by either CRISPR/Cas9-mediated knockout or MS023 treatment significantly attenuated MM tumor growth and prolonged the survival of tumor-bearing mice. Histological analysis further confirmed increased apoptotic cell death in MS023-treated tumors. Collectively, our findings establish PRMT1 as an indispensable and novel therapeutic vulnerability in MM. The elevated expression of PRMT1 in relapsed/refractory patients underscores its potential as a target for overcoming treatment resistance. Moreover, our results highlight the efficacy of MS023 as a promising therapeutic agent against MM, offering new avenues for therapeutic approaches in relapsed/refractory MM.


Asunto(s)
Mieloma Múltiple , Humanos , Animales , Ratones , Mieloma Múltiple/tratamiento farmacológico , Mieloma Múltiple/genética , Proteína-Arginina N-Metiltransferasas/genética , Células Plasmáticas , Antivirales , Apoptosis , Proteínas Represoras/genética
8.
Sensors (Basel) ; 23(2)2023 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-36679612

RESUMEN

The emergence and advancement of flexible electronics have great potential to lead development trends in many fields, such as "smart electronic skin" and wearable electronics. By acting as intermediates to detect a variety of external stimuli or physiological parameters, flexible sensors are regarded as a core component of flexible electronic systems and have been extensively studied. Unlike conventional rigid sensors requiring costly instruments and complicated fabrication processes, flexible sensors can be manufactured by simple procedures with excellent production efficiency, reliable output performance, and superior adaptability to the irregular surface of the surroundings where they are applied. Here, recent studies on flexible sensors for sensing humidity and strain/pressure are outlined, emphasizing their sensory materials, working mechanisms, structures, fabrication methods, and particular applications. Furthermore, a conclusion, including future perspectives and a short overview of the market share in this field, is given for further advancing this field of research.


Asunto(s)
Dispositivos Electrónicos Vestibles , Humanos , Electrónica , Dolor , Humedad
9.
Blood Cancer J ; 13(1): 16, 2023 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-36670103

RESUMEN

Alternative splicing plays a pivotal role in tumorigenesis and proliferation. However, its pattern and pathogenic role has not been systematically analyzed in multiple myeloma or its subtypes. Alternative splicing profiles for 598 newly diagnosed myeloma patients with comprehensive genomic annotation identified primary translocations, 1q amplification, and DIS3 events to have more differentially spliced events than those without. Splicing levels were correlated with expression of splicing factors. Moreover, the non-homologous end joining pathway was an independent factor that was highly associated with splicing frequency as well as an increased number of structural variants. We therefore identify an axis of high-risk disease encompassing expression of the non-homologous end joining pathway, increase structural variants, and increased alternative splicing that are linked together. This indicates a joint pathogenic role for DNA damage response and alternative RNA processing in myeloma.


Asunto(s)
Empalme Alternativo , Mieloma Múltiple , Humanos , Mieloma Múltiple/genética , Translocación Genética
10.
Cancers (Basel) ; 14(19)2022 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-36230801

RESUMEN

Chemoresistance has been a major challenge in the treatment of patients with breast cancer. The diverse omics platforms and small sample sizes reported in the current studies of chemoresistance in breast cancer limit the consensus regarding the underlying molecular mechanisms of chemoresistance and the applicability of these study findings. Therefore, we built two transcriptome datasets for patients with chemotherapy-resistant breast cancers­one comprising paired transcriptome samples from 40 patients before and after chemotherapy and the second including unpaired samples from 690 patients before and 45 patients after chemotherapy. Subsequent conventional pathway analysis and new subpathway analysis using these cohorts uncovered 56 overlapping upregulated genes (false discovery rate [FDR], 0.018) and 36 downregulated genes (FDR, 0.016). Pathway analysis revealed the activation of several pathways in the chemotherapy-resistant tumors, including those of drug metabolism, MAPK, ErbB, calcium, cGMP-PKG, sphingolipid, and PI3K-Akt, as well as those activated by Cushing's syndrome, human papillomavirus (HPV) infection, and proteoglycans in cancers, and subpathway analysis identified the activation of several more, including fluid shear stress, Wnt, FoxO, ECM-receptor interaction, RAS signaling, Rap1, mTOR focal adhesion, and cellular senescence (FDR < 0.20). Among these pathways, those associated with Cushing's syndrome, HPV infection, proteoglycans in cancer, fluid shear stress, and focal adhesion have not yet been reported in breast cancer chemoresistance. Pathway and subpathway analysis of a subset of triple-negative breast cancers from the two cohorts revealed activation of the identical chemoresistance pathways.

11.
PLoS Comput Biol ; 18(8): e1009421, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35984840

RESUMEN

Cancer is a complex disease with usually multiple disease mechanisms. Target combination is a better strategy than a single target in developing cancer therapies. However, target combinations are generally more difficult to be predicted. Current CRISPR-cas9 technology enables genome-wide screening for potential targets, but only a handful of genes have been screend as target combinations. Thus, an effective computational approach for selecting candidate target combinations is highly desirable. Selected target combinations also need to be translational between cell lines and cancer patients. We have therefore developed DSCN (double-target selection guided by CRISPR screening and network), a method that matches expression levels in patients and gene essentialities in cell lines through spectral-clustered protein-protein interaction (PPI) network. In DSCN, a sub-sampling approach is developed to model first-target knockdown and its impact on the PPI network, and it also facilitates the selection of a second target. Our analysis first demonstrated a high correlation of the DSCN sub-sampling-based gene knockdown model and its predicted differential gene expressions using observed gene expression in 22 pancreatic cell lines before and after MAP2K1 and MAP2K2 inhibition (R2 = 0.75). In DSCN algorithm, various scoring schemes were evaluated. The 'diffusion-path' method showed the most significant statistical power of differentialting known synthetic lethal (SL) versus non-SL gene pairs (P = 0.001) in pancreatic cancer. The superior performance of DSCN over existing network-based algorithms, such as OptiCon and VIPER, in the selection of target combinations is attributable to its ability to calculate combinations for any gene pairs, whereas other approaches focus on the combinations among optimized regulators in the network. DSCN's computational speed is also at least ten times fast than that of other methods. Finally, in applying DSCN to predict target combinations and drug combinations for individual samples (DSCNi), DSCNi showed high correlation between target combinations predicted and real synergistic combinations (P = 1e-5) in pancreatic cell lines. In summary, DSCN is a highly effective computational method for the selection of target combinations.


Asunto(s)
Neoplasias , Humanos , Neoplasias/genética , Neoplasias/tratamiento farmacológico , Mapas de Interacción de Proteínas/genética , Algoritmos , Técnicas de Silenciamiento del Gen , Combinación de Medicamentos
13.
Am J Ophthalmol ; 233: 153-162, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34303685

RESUMEN

PURPOSE: To investigate the influence of anterior chamber depth (ACD) on the accuracy of the Kane, EVO 2.0, Barrett Universal II (BU II), Olsen, SRK/T, and Haigis formulas in patients with elongated eyes. DESIGN: Retrospective case series study. METHODS: A total of 106 patients (106 eyes) diagnosed with high myopia (axial length ≥26 mm) were enrolled and divided into 3 subgroups according to preoperative ACD. Mean refractive error (ME), mean absolute refractive error (MAE), median absolute refractive error (MedAE), and proportions of eyes within ±0.25 D, ±0.50 D, ±0.75 D, and ±1.00 D were calculated. RESULTS: In all patients, the MedAE was lowest for the Kane formula (0.28 D), followed by the BU II (0.34 D). In the shallow ACD subgroup, EVO 2.0 formula produced the lowest MedAE (0.22 D), and the highest proportion of eyes within ±0.25 D (58%); the BU II (0.23 D, 50%) and Kane (0.25 D, 50%) formulas produced similar proportions. In the deep ACD group, the MedAEs of the Haigis and SRK/T formulas (0.68 D and 0.50 D, respectively) were significantly higher than those of the EVO 2.0 (0.37 D), Kane (0.30 D), BU II (0.43 D), and Olsen (0.34 D) formulas (P < 0.05). CONCLUSIONS: Overall, the Kane and EVO 2.0 formulas had the highest accuracy. EVO 2.0 and BU II formulas are recommended for patients with shallow ACD; the Kane formula is recommended for patients with deep ACD (especially patients with extremely elongated eyes). The SRK/T and Haigis formulas should be avoided as much as possible.


Asunto(s)
Lentes Intraoculares , Facoemulsificación , Cámara Anterior , Longitud Axial del Ojo , Biometría , Humanos , Implantación de Lentes Intraoculares , Óptica y Fotónica , Refracción Ocular , Estudios Retrospectivos
14.
Int J Ophthalmol ; 14(12): 1903-1908, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34926206

RESUMEN

AIM: To investigate the safety and efficacy of sticky silicone oil (SSO) removal using a 22-gauge vein detained needle and inner limiting membrane (ILM) wrap-and-peel technique. METHODS: This retrospective consecutive case series reviewed the records of patients with a history of retinal detachment who had received silicone oil and perfluorocarbon liquid (PFCL) as intraocular tamponades. Patients were included in the analysis if they exhibited SSO remnants during silicone oil removal. The aspiration of most of the SSO remnants was performed by a 22-gauge vein detained needle. The small amounts of droplets adhered to the macula and epi-macular membrane were subsequently removed by the ILM warp-and-peel technique. The anatomical and functional outcomes, and postoperative complications were recorded. In vitro experiments were performed to simulate the formation of SSO remnants in four groups. RESULTS: Of 711 patients who underwent silicone oil removal during the study period, 9 patients exhibited SSO remnants and underwent follow-up for at least 3mo. Seven eyes (78%) underwent the ILM wrap-and-peel technique to completely remove small droplets of SSO that were glued to the macula and epi-macular membrane. No obvious complications occurred. Postoperative optical coherence tomography revealed normal retinal structure in all patients. In vitro analyses showed that balanced salt solution and prolonged vibration (for 1wk) had the strongest effects on silicone oil and PFCL compound opacities. CONCLUSION: SSO remnants could be removed in an intact manner and without complications, using a vein detained needle-assisted and ILM wrap-and-peel technique. The findings suggest that PFCL and infusion fluid should be completely removed before silicone oil injection to prevent SSO formation.

15.
Adv Sci (Weinh) ; 8(13): e2101458, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34051063

RESUMEN

Because there is no effective treatment for late-stage prostate cancer (PCa) at this moment, identifying novel targets for therapy of advanced PCa is urgently needed. A new network-based systems biology approach, XDeath, is developed to detect crosstalk of signaling pathways associated with PCa progression. This unique integrated network merges gene causal regulation networks and protein-protein interactions to identify novel co-targets for PCa treatment. The results show that polo-like kinase 1 (Plk1) and DNA methyltransferase 3A (DNMT3a)-related signaling pathways are robustly enhanced during PCa progression and together they regulate autophagy as a common death mode. Mechanistically, it is shown that Plk1 phosphorylation of DNMT3a leads to its degradation in mitosis and that DNMT3a represses Plk1 transcription to inhibit autophagy in interphase, suggesting a negative feedback loop between these two proteins. Finally, a combination of the DNMT inhibitor 5-Aza-2'-deoxycytidine (5-Aza) with inhibition of Plk1 suppresses PCa synergistically.


Asunto(s)
Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , ADN Metiltransferasa 3A/genética , ADN Metiltransferasa 3A/metabolismo , Neoplasias de la Próstata/genética , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo , Animales , Modelos Animales de Enfermedad , Humanos , Masculino , Ratones , Transducción de Señal , Quinasa Tipo Polo 1
16.
IEEE/ACM Trans Comput Biol Bioinform ; 18(4): 1325-1335, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-31581091

RESUMEN

Bayesian networks is a powerful method for identifying causal relationships among variables. However, as the network size increases, the time complexity of searching the optimal structure grows exponentially. We proposed a novel search algorithm - Fast and Furious Bayesian Network (FFBN). Compared to the existing greedy search algorithm, FFBN uses significantly fewer model configuration rules to determine the causal direction of edges when constructing the Bayesian network, which leads to greatly improved computational speed. We benchmarked the performance of FFBN by reconstructing gene regulatory networks (GRNs) from two DREAM5 challenge datasets: a synthetic dataset and a larger yeast transcriptome dataset. In both datasets, FFBN shows a much faster speed than the existing greedy search algorithm, while maintaining equally good or better performance in recall and precision. We then constructed three whole transcriptome GRNs for primary liver cancer (PL), primary colon cancer (PC) and colon to liver metastasis (CLM) expression data, which the existing greedy search algorithms failed. Three GRNs contain 12,099 common genes. Unprecedentedly, our newly developed FFBN algorithm is able to build up GRNs at a scale larger than 10,000 genes. Using FFBN, we discovered that CLM has its unique cancer molecular mechanisms and shares a certain degree of similarity with both PL and PC.


Asunto(s)
Neoplasias del Colon , Biología Computacional/métodos , Redes Reguladoras de Genes/genética , Neoplasias Hepáticas , Algoritmos , Teorema de Bayes , Neoplasias del Colon/genética , Neoplasias del Colon/metabolismo , Neoplasias del Colon/patología , Perfilación de la Expresión Génica , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/secundario , Transcriptoma/genética
17.
Biology (Basel) ; 9(9)2020 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-32906805

RESUMEN

In the prediction of the synergy of drug combinations, systems pharmacology models expand the scope of experiment screening and overcome the limitations of current computational models posed by their lack of mechanical interpretation and integration of gene essentiality. We therefore investigated the synergy of drug combinations for cancer therapies utilizing records in NCI ALMANAC, and we employed logistic regression to test the statistical significance of gene and pathway features in that interaction. We trained our predictive models using 43 NCI-60 cell lines, 165 KEGG pathways, and 114 drug pairs. Scores of drug-combination synergies showed a stronger correlation with pathway than gene features in overall trend analysis and a significant association with both genes and pathways in genome-wide association analyses. However, we observed little overlap of significant gene expressions and essentialities and no significant evidence that associated target and non-target genes and their pathways. We were able to validate four drug-combination pathways between two drug combinations, Nelarabine-Exemestane and Docetaxel-Vermurafenib, and two signaling pathways, PI3K-AKT and AMPK, in 16 cell lines. In conclusion, pathways significantly outperformed genes in predicting drug-combination synergy, and because they have very different mechanisms, gene expression and essentiality should be considered in combination rather than individually to improve this prediction.

18.
BMC Med Genomics ; 13(Suppl 5): 50, 2020 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-32241274

RESUMEN

BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC) is the most common pancreatic malignancy. Due to its wide heterogeneity, PDAC acts aggressively and responds poorly to most chemotherapies, causing an urgent need for the development of new therapeutic strategies. Cell lines have been used as the foundation for drug development and disease modeling. CRISPR-Cas9 plays a key role in every step-in drug discovery: from target identification and validation to preclinical cancer cell testing. Using cell-line models and CRISPR-Cas9 technology together make drug target prediction feasible. However, there is still a large gap between predicted results and actionable targets in real tumors. Biological network models provide great modus to mimic genetic interactions in real biological systems, which can benefit gene perturbation studies and potential target identification for treating PDAC. Nevertheless, building a network model that takes cell-line data and CRISPR-Cas9 data as input to accurately predict potential targets that will respond well on real tissue remains unsolved. METHODS: We developed a novel algorithm 'Spectral Clustering for Network-based target Ranking' (SCNrank) that systematically integrates three types of data: expression profiles from tumor tissue, normal tissue and cell-line PDAC; protein-protein interaction network (PPI); and CRISPR-Cas9 data to prioritize potential drug targets for PDAC. The whole algorithm can be classified into three steps: 1. using STRING PPI network skeleton, SCNrank constructs tissue-specific networks with PDAC tumor and normal pancreas tissues from expression profiles; 2. With the same network skeleton, SCNrank constructs cell-line-specific networks using the cell-line PDAC expression profiles and CRISPR-Cas 9 data from pancreatic cancer cell-lines; 3. SCNrank applies a novel spectral clustering approach to reduce data dimension and generate gene clusters that carry common features from both networks. Finally, SCNrank applies a scoring scheme called 'Target Influence score' (TI), which estimates a given target's influence towards the cluster it belongs to, for scoring and ranking each drug target. RESULTS: We applied SCNrank to analyze 263 expression profiles, CRPSPR-Cas9 data from 22 different pancreatic cancer cell-lines and the STRING protein-protein interaction (PPI) network. With SCNrank, we successfully constructed an integrated tissue PDAC network and an integrated cell-line PDAC network, both of which contain 4414 selected genes that are overexpressed in tumor tissue samples. After clustering, 4414 genes are distributed into 198 clusters, which include 367 targets of FDA approved drugs. These drug targets are all scored and ranked by their TI scores, which we defined to measure their influence towards the network. We validated top-ranked targets in three aspects: Firstly, mapping them onto the existing clinical drug targets of PDAC to measure the concordance. Secondly, we performed enrichment analysis to these drug targets and the clusters there are within, to reveal functional associations between clusters and PDAC; Thirdly, we performed survival analysis for the top-ranked targets to connect targets with clinical outcomes. Survival analysis reveals that overexpression of three top-ranked genes, PGK1, HMMR and POLE2, significantly increases the risk of death in PDAC patients. CONCLUSION: SCNrank is an unbiased algorithm that systematically integrates multiple types of omics data to do potential drug target selection and ranking. SCNrank shows great capability in predicting drug targets for PDAC. Pancreatic cancer-associated gene candidates predicted by our SCNrank approach have the potential to guide genetics-based anti-pancreatic drug discovery.


Asunto(s)
Algoritmos , Antineoplásicos/uso terapéutico , Biomarcadores de Tumor/antagonistas & inhibidores , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Redes Reguladoras de Genes/efectos de los fármacos , Terapia Molecular Dirigida , Neoplasias Pancreáticas/tratamiento farmacológico , Biomarcadores de Tumor/genética , Carcinoma Ductal Pancreático/tratamiento farmacológico , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patología , Perfilación de la Expresión Génica , Humanos , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patología , Pronóstico , Mapas de Interacción de Proteínas , Tasa de Supervivencia
19.
Genes (Basel) ; 10(10)2019 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-31557971

RESUMEN

Alternatively-activated pathways have been observed in biological experiments in cancer studies, but the concept had not been fully explored in computational cancer system biology. Therefore, an alternatively-activated pathway identification method was proposed and applied to primary breast cancer and breast cancer liver metastasis research using microarray data. Interestingly, the results show that cytokine-cytokine receptor interaction and calcium signaling were significantly enriched under both conditions. TGF beta signaling was found to be the hub in network topology analysis. In total, three types of alternatively-activated pathways were recognized. In the cytokine-cytokine receptor interaction pathway, four active alteration patterns in gene pairs were noticed. Thirteen cytokine-cytokine receptor pairs with inverse activity changes of both genes were verified by the literature. The second type was that some sub-pathways were active under only one condition. For the third type, nodes were significantly active in both conditions, but with different active genes. In the calcium signaling and TGF beta signalingpathways, node E2F5 and E2F4 were significantly active in primary breast cancer and metastasis, respectively. Overall, our study demonstrated the first time using microarray data to identify alternatively-activated pathways in breast cancer liver metastasis. The results showed that the proposed method was valid and effective, which could be helpful for future research for understanding the mechanism of breast cancer metastasis.


Asunto(s)
Neoplasias de la Mama/genética , Regulación Neoplásica de la Expresión Génica , Neoplasias Hepáticas/genética , Redes y Vías Metabólicas , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Señalización del Calcio , Citocinas/genética , Citocinas/metabolismo , Femenino , Perfilación de la Expresión Génica , Humanos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/secundario , Análisis de Secuencia por Matrices de Oligonucleótidos , Factor de Crecimiento Transformador beta/metabolismo
20.
BMC Med Genomics ; 12(Suppl 1): 23, 2019 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-30704460

RESUMEN

BACKGROUND: While most pediatric sarcomas respond to front-line therapy, some bone sarcomas do not show radiographic response like soft-tissue sarcomas (rhabdomyosarccomas) but do show 90% necrosis. Though, new therapies are urgently needed to improve survival and quality of life in pediatric patients with sarcomas. Complex chromosomal aberrations such as amplifications and deletions of DNA sequences are frequently observed in pediatric sarcomas. Evaluation of copy number variations (CNVs) associated with pediatric sarcoma patients at the time of diagnosis or following therapy offers an opportunity to assess dysregulated molecular targets and signaling pathways that may drive sarcoma development, progression, or relapse. The objective of this study was to utilize publicly available data sets to identify potential predictive biomarkers of chemotherapeutic response in pediatric Osteosarcoma (OS), Rhabdomyosarcoma (RMS) and Ewing's Sarcoma Family of Tumors (ESFTs) based on CNVs following chemotherapy (OS n = 117, RMS n = 64, ESFTs n = 25 tumor biopsies). METHODS: There were 206 CNV profiles derived from pediatric sarcoma biopsies collected from the public databases TARGET and NCBI-Gene Expression Omnibus (GEO). Through our comparative genomic analyses of OS, RMS, and ESFTs and 22,255 healthy individuals called from the Database of Genomic Variants (DGV), we identified CNVs (amplifications and deletions) pattern of genomic instability in these pediatric sarcomas. By integrating CNVs of Cancer Cell Line Encyclopedia (CCLE) identified in the pool of genes with drug-response data from sarcoma cell lines (n = 27) from Cancer Therapeutics Response Portal (CTRP) Version 2, potential predictive biomarkers of therapeutic response were identified. RESULTS: Genes associated with survival and/recurrence of these sarcomas with statistical significance were found on long arm of chromosome 8 and smaller aberrations were also identified at chromosomes 1q, 12q and x in OS, RMS, and ESFTs. A pool of 63 genes that harbored amplifications and/or deletions were frequently associated with recurrence across OS, RMS, and ESFTs. Correlation analysis of CNVs from CCLE with drug-response data of CTRP in 27 sarcoma cell lines, 33 CNVs out of 63 genes correlated with either sensitivity or resistance to 17 chemotherapies from which actionable CNV signatures such as IGF1R, MYC, MAPK1, ATF1, and MDM2 were identified. These CNV signatures could potentially be used to delineate patient populations that will respond versus those that will not respond to a particular chemotherapy. CONCLUSIONS: The large-scale analyses of CNV-drug screening provides a platform to evaluate genetic alterations across aggressive pediatric sarcomas. Additionally, this study provides novel insights into the potential utilization of CNVs as not only prognostic but also as predictive biomarkers of therapeutic response. Information obtained in this study may help guide and prioritize patient-specific therapeutic options in pediatric bone and soft-tissue sarcomas.


Asunto(s)
Biomarcadores de Tumor/genética , Variaciones en el Número de Copia de ADN , Genómica , Sarcoma/tratamiento farmacológico , Sarcoma/genética , Adolescente , Línea Celular Tumoral , Niño , Preescolar , Femenino , Genoma Humano/genética , Humanos , Lactante , Masculino , Pronóstico , Sarcoma/diagnóstico , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA