Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Adv Sci (Weinh) ; : e2405124, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39041889

RESUMEN

Amid growing interest in the precise detection of volatile organic compounds (VOCs) in industrial field, the demand for highly effective gas sensors is at an all-time high. However, traditional sensors with their classic single-output signal, bulky and complex integrated structure when forming array often involve complicated technology and high cost, limiting their widespread adoption. Here, this study introduces a novel approach, employing an integrated YSZ-based (YSZ: yttria-stabilized zirconia) mixed potential sensor equipped with a triple-sensing electrode array, to efficiently detect and differentiate six types of VOCs gases. This innovative sensor integrates NiSb2O6, CuSb2O6, and MgSb2O6 sensing electrodes (SEs), which are sensitive to pentane, isoprene, n-propanol, acetone, acetic acid, and formaldehyde gases. Through feature engineering based on intuitive spike-based response values, it accentuates the distinct characteristics of every gas. Eventually, an average classification accuracy of 98.8% and an overall R-squared error (R2) of 99.3% for concentration regression toward six target gases can be achieved, showcasing the potential to quantitatively distinguish between industrial hazardous VOCs gases.

2.
Adv Sci (Weinh) ; : e2404178, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38946710

RESUMEN

2D transition metal borides (MBenes) with abundant surface terminals hold great promise in molecular sensing applications. However, MBenes from etching with fluorine-containing reagents present inert -fluorine groups on the surface, which hinders their sensing capability. Herein, the multilayer fluorine-free MoBTx MBene (where Tx represents O, OH, and Cl) with hydrophilic structure is prepared by a hydrothermal-assisted hydrochloric acid etching strategy based on guidance from the first-principle calculations. Significantly, the fluorine-free MoBTx-based humidity sensor is fabricated and demonstrates low resistance and excellent humidity performance, achieving a response of 90% to 98%RH and a high resolution of 1%RH at room temperature. By combining the experimental results with the first-principles calculations, the interactions between MoBTx and H2O, including the adsorption and intercalation of H2O, are understood first in depth. Finally, the portable humidity early warning system for real-time monitoring and early warning of infant enuresis and back sweating illustrates its potential for humidity sensing applications. This work not only provides guidance for preparation of fluorine-free MBenes, but also contributes to advancing their exploration in sensing applications.

3.
ACS Sens ; 9(7): 3763-3772, 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-38984447

RESUMEN

A phosphorus-doped carbon nanotube (CNT) aerogel as the support material was loaded with Pt nanoparticles in fuel cell-type gas sensors for ultrasensitive H2 detection. The high surface area of the CNT scaffold is favorable to providing abundant active sites, and the high electrical conductivity facilitates the transport of carriers generated by electrochemical reactions. In addition, the CNT aerogel was doped with phosphorus (P) to further enhance the conductivity and electrochemical catalytic activity. As a result, the fuel cell-type gas sensor using the Pt/CNT aerogel doped with the optimal P content as the sensing material shows considerable performance for H2 detection at room temperature. The sensor exhibits an ultrahigh response of -921.9 µA to 15,000 ppm of H2. The sensitivity is -0.063 µA/ppm, which is 21 times higher than that of the conventional Pt/CF counterpart. The sensor also exhibits excellent repeatability and humidity resistance, as well as fast response/recovery; the response/recovery times are 31 and 4 s to 3000 ppm of H2, respectively. The modulation of the structure and catalytic properties of the support material is responsible for the improvement of the sensor performance, thus providing a feasible solution for optimizing the performance of fuel cell-type gas sensors.


Asunto(s)
Geles , Hidrógeno , Nanotubos de Carbono , Fósforo , Platino (Metal) , Nanotubos de Carbono/química , Platino (Metal)/química , Fósforo/química , Hidrógeno/química , Hidrógeno/análisis , Geles/química , Técnicas Electroquímicas/métodos , Técnicas Electroquímicas/instrumentación , Catálisis
4.
ACS Nano ; 18(24): 15681-15694, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38848285

RESUMEN

The prolonged wound-healing process caused by pathogen infection remains a major public health challenge. The developed electrical antibiotic administration typically requires metal electrodes wired to a continuous power supply, restricting their use beyond clinical environments. To obviate the necessity for antibiotics and an external power source, we have developed a wearable synergistic electroceutical device composed of an air self-charging Zn battery. This battery integrates sustained tissue regeneration and antibacterial modalities while maintaining more than half of the initial capacity after ten cycles of chemical charging. In vitro bacterial/cell coculture with the self-charging battery demonstrates inhibited bacterial activity and enhanced cell function by simulating the endogenous electric field and dynamically engineering the microenvironment with released chemicals. This electroceutical device provides accelerated healing of a bacteria-infected wound by stimulating angiogenesis and modulating inflammation, while effectively inhibiting bacterial growth at the wound site. Considering the simple structure and easy operation for long-term treatment, this self-charging electroceutical device offers great potential for personalized wound care.


Asunto(s)
Antibacterianos , Dispositivos Electrónicos Vestibles , Cicatrización de Heridas , Animales , Antibacterianos/farmacología , Antibacterianos/química , Humanos , Ratones , Staphylococcus aureus/fisiología , Zinc/química , Escherichia coli , Pruebas de Sensibilidad Microbiana
5.
ACS Sens ; 9(3): 1575-1583, 2024 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-38483350

RESUMEN

Monitoring of isoprene in exhaled breath is expected to provide a noninvasive and painless method for dynamic monitoring of physiological and metabolic states during exercise. However, for real-time and portable detection of isoprene, gas sensors have become the best choice for gas detection technology, which are crucial to achieving the goal of anytime, anywhere, human-centered healthcare in the future. Here, we first report a mixed potential type isoprene sensor based on a Gd2Zr2O7 solid electrolyte and a CdSb2O6 sensing electrode, which enables sensitive detection for isoprene with sensitivities of -21.2 mV/ppm and -65.8 mV/decade in the range of 0.05-1 and 1-100 ppm. The sensing behavior of the sensor follows the mixed potential sensing mechanism and was further verified by the electrochemical polarization curves. The significant differentiation between the sensor response to exhaled breath of healthy individuals and simulated breath containing different concentrations of isoprene demonstrates the potential of the sensor for the detection of isoprene in exhaled breath. Simultaneously, monitoring of isoprene during exercise signifies the feasibility of the sensor in dynamic monitoring of physiological indicators, which is not only of great significance for optimizing training and guiding therapeutic exercise intervention in sporting scenarios but also expected to help further reveal the interaction between exercise, muscle, and organ metabolism in medicine.


Asunto(s)
Pruebas Respiratorias , Gases , Hemiterpenos , Humanos , Pruebas Respiratorias/métodos , Butadienos , Biomarcadores
6.
Nanomaterials (Basel) ; 14(5)2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38470759

RESUMEN

Sensors based on triboelectric nanogenerators (TENGs) are increasingly gaining attention because of their self-powered capabilities and excellent sensing performance. In this work, we report a Mo2CTx-based triboelectric sensor (Mo-TES) consisting of a Mo2CTx/polydimethylsiloxane (PDMS) composite film. The impact of the mass fraction (wt%) and force of Mo2CTx particles on the output performance of Mo-TES was systematically explored. When Mo2CTx particles is 3 wt%, Mo-TES3 achieves an open-circuit voltage of 86.89 V, a short-circuit current of 578.12 nA, and a power density of 12.45 µW/cm2. It also demonstrates the ability to charge capacitors with varying capacitance values. Additionally, the Mo-TES3 demonstrates greater sensitivity than the Mo-TES0 and a faster recovery time of 78 ms. Meanwhile, the Mo-TES3 also demonstrates excellent stability in water washing and antifatigue testing. This demonstrates the effectiveness of Mo-TES as a pressure sensor. Furthermore, leveraging the principle of electrostatic induction, the triboelectric sensor has the potential to achieve non-contact sensing, making it a promising candidate for disease prevention and safety protection.

7.
ACS Sens ; 9(1): 464-473, 2024 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-38153408

RESUMEN

Breath analysis using gas sensors is an emerging method for disease screening and diagnosis. Since it is closely related to the lipid metabolism and blood ketone concentration of the body, the detection of acetone content in exhaled breath is helpful for the screening and monitoring of diabetes and ketosis. The development of an acetone sensor with high selectivity, stability, and low detection limit has been the research focus for this purpose. Here, we developed a mixed potential type acetone sensor based on Gd2Zr2O7 solid electrolyte and CoSb2O6 sensing electrode. The developed sensor exhibits an extremely low detection limit of 10 ppb, enabling linear detection for acetone in an extremely wide range of 10 ppb-100 ppm. The good results of systematic evaluation on selectivity, repeatability, and stability prove the superior reliability of the sensor, which is a prerequisite for the application in actual breath detection. The ability of the sensor to distinguish healthy people from diabetic ketosis patients was confirmed by using the sensor to detect the breath of healthy people and diabetic patients, proving the feasibility of the sensor in the diagnosis and monitoring of diabetic ketosis.


Asunto(s)
Diabetes Mellitus , Cetoacidosis Diabética , Humanos , Cetoacidosis Diabética/diagnóstico , Acetona/análisis , Límite de Detección , Reproducibilidad de los Resultados , Cetonas , Diabetes Mellitus/diagnóstico
8.
ACS Sens ; 9(1): 171-181, 2024 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-38159288

RESUMEN

With the rapid development of the concept of the Internet of Things (IoT), gas sensors with the function of simulating the human sense of smell became irreplaceable as a key element. Among them, ammonia (NH3) sensors played an important role in respiration tests, environmental monitoring, safety, and other fields. However, the fabrication of the high-performance device with high stability and resistance to mechanical damages was still a challenge. In this work, polyurethane (PU) with excellent self-healing ability was applied as the substrate, and the sensor was designed from new sensitive material design and device structure optimization, through applying the organic molecule with groups which could absorb NH3 and the laminated structure to shorten the electronic transmission path to achieve a low resistance state and favorable sensing properties. Accordingly, a room temperature flexible NH3 sensor based on 6,6',6″-(nitrilotris(benzene-4,1-diyl))tris(5-phenylpyrazine-2,3-dicarbonitrile) (TPA-3DCNPZ) was successfully developed. The device could self-heal by means of a thermal evaporation assisted method. It exhibited a detection limit of 1 ppm at 98% relative humidity (RH), as well as great stability, selectivity, bending flexibility, and self-healing properties. The improved NH3 sensing performance under high RH was further investigated by complex impedance plots (CIPs) and density functional theory (DFT), attributing to the enhanced adsorption of NH3. The TPA-3DCNPZ based NH3 sensors proved to have great potential for application on simulated exhaled breath to determine the severity of kidney diseases and the progress of treatment. This work also provided new ideas for the construction of high-performance room temperature NH3 sensors.


Asunto(s)
Materiales Inteligentes , Humanos , Benceno , Temperatura , Adsorción , Amoníaco
9.
ACS Sens ; 8(11): 4132-4142, 2023 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-37938135

RESUMEN

Wearable gas sensors demonstrate broad potential for environmental monitoring and breath analysis applications. Typically, they require a highly stable and high-performance flexible gas sensing unit that can work with a small, flexible circuit to enable real-time accurate concentration analysis and prediction. This work proposes a flexible gas sensor using antimony-doped tin dioxide composite polyaniline as the sensing material for room-temperature ammonia detection over a wide humidity range. The sensor exhibits high sensitivity (response value at 33.1 toward 100 ppm ammonia at 70% relative humidity), excellent selectivity, and good long-term and mechanical stability. The increased sensitivity is due to a reduction in the hole concentration of polyaniline in air, achieved through compositing and doping. Subsequently, regression analysis equations are developed to establish the relationship between the gas concentration and sensor response under varying environmental humidity conditions. The sensor was integrated with a small, low-power circuit module to form a wearable smart bracelet with signal acquisition, processing, and wireless transmission functions, which could achieve early and remote warning of gas leakage in different humidity environments. This research demonstrates a promising approach to designing high-performance, high-stability, and flexible gas sensors and their corresponding wireless sensing systems.


Asunto(s)
Nanocompuestos , Dispositivos Electrónicos Vestibles , Amoníaco/análisis , Antimonio , Humedad
10.
ACS Sens ; 8(11): 4323-4333, 2023 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-37874741

RESUMEN

Gas sensors integrated with machine learning algorithms have aroused keen interest in pattern recognition, which ameliorates the drawback of poor selectivity on a sensor. Among various kinds of gas sensors, the yttria-stabilized zirconia (YSZ)-based mixed potential-type sensor possesses advantages of low cost, simple structure, high sensitivity, and superior stability. However, as the number of sensors increases, the increased power consumption and more complicated integration technology may impede their extensive application. Herein, we focus on the development of a single YSZ-based mixed potential sensor from sensing material to machine learning for effective detection and discrimination of unary, binary, and ternary gas mixtures. The sensor that is sensitive to isoprene, n-propanol, and acetone is manufactured with the MgSb2O6 sensing electrode prepared by a simple sol-gel method. Unique response patterns for specific gas mixtures could be generated with temperature regulation. We chose seven algorithm models to be separately trained for discrimination. In order to realize more accurate discrimination, we further discuss the selection of suitable feature parameters and its reasons. With temperature regulation coefficients which are easily available as feature input to model, a single sensor is verified to achieve elevated accuracy rates of 95 and 99% for the discrimination of seven gases (three unary gases, three binary gas mixtures, and one ternary gas mixture) and redefined six gas mixtures. This article provides a potential new approach via a mixed potential sensor instead of a sensor array that could provide a wide application prospect in the field of electronic nose and artificial olfaction.


Asunto(s)
1-Propanol , Acetona , Temperatura , Gases
11.
Biosens Bioelectron ; 229: 115243, 2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-36989580

RESUMEN

Lipid droplets (LDs) are critical organelles involved in many physiological processes in eukaryotic cells. To visualize and study LDs, particular the small/nascent LDs, the emerging super-resolution fluorescence imaging techniques with nanoscale resolution would be much more powerful in comparison to the conventional confocal/wide-field imaging techniques. However, directly limited by the availability of advanced LDs probes, super-resolution fluorescence imaging of LDs is a practically challenging task. In this context, a superior LDs fluorescent probe named Lipi-Deep Red is newly developed for structured illumination microscopy (SIM) super-resolution imaging. This fluorescent probe features with the advantages of strong deep red/NIR emission, fluorogenic character, high LDs specificity, and outstanding photostability. These advantages enable the fluorescent probe to be finely applied in SIM super-resolution imaging, e.g. time-lapse imaging (up to 1000 frames) to monitor the LDs dynamics at nanoscale (159 nm), two-color time-lapse imaging to discover the nearby contact/interaction between LDs and mitochondria. Consequently, the fusion processes of LDs are impressively visualized at a high spatial and temporal resolution. Two kinds of contact models between LDs and mitochondria (dynamic contact and stable contact) newly proposed in the recent literatures are successfully revealed.


Asunto(s)
Técnicas Biosensibles , Gotas Lipídicas , Gotas Lipídicas/metabolismo , Colorantes Fluorescentes/metabolismo , Mitocondrias , Microscopía Fluorescente/métodos
12.
Chem Sci ; 14(8): 2123-2130, 2023 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-36845924

RESUMEN

Implanted rechargeable batteries that can provide energy over a sufficient lifetime and ultimately degrade into non-toxic byproducts are highly desirable. However, their advancement is significantly impeded by the limited toolbox of electrode materials with a known biodegradation profile and high cycling stability. Here we report biocompatible, erodible poly(3,4-ethylenedioxythiophene) (PEDOT) grafted with hydrolyzable carboxylic acid pendants. This molecular arrangement combines the pseudocapacitive charge storage from the conjugated backbones and dissolution via hydrolyzable side chains. It demonstrates complete erosion under aqueous conditions in a pH-dependent manner with a predetermined lifetime. The compact rechargeable Zn battery with a gel electrolyte offers a specific capacity of 31.8 mA h g-1 (57% of theoretical capacity) and outstanding cycling stability (78% capacity retention over 4000 cycles at 0.5 A g-1). Subcutaneous implantation of this Zn battery into Sprague-Dawley (SD) rats demonstrates complete biodegradation in vivo and biocompatibility. This molecular engineering strategy presents a viable avenue for developing implantable conducting polymers with a predetermined degradation profile and high energy storage capability.

13.
ACS Appl Mater Interfaces ; 15(4): 6047-6057, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36661846

RESUMEN

The performance of electrochemical gas sensors depends on the reactions at the three-phase boundary. In this work, a mixed-potential gas sensor containing a counter electrode, a reference electrode, and a sensitive electrode was constructed. By applying a bias voltage to the counter electrode, the three-phase boundary can be polarized. The polarization state of the three-phase boundary determined the gas-sensitive performance. Taking 100 ppm ethanol vapor as an example, by regulating the polarization state of the three-phase boundary, the response value of the sensor can be adjusted from -170 to 40 mV, and the sensitivity can be controlled from -126.4 to 42.6 mV/decade. The working temperature of the sensor can be reduced after polarizing the three-phase boundary, lowering the power consumption from 1.14 to 0.625 W. The sensor also showed good stability and short response-recovery time (3 s). Based on this sensor, the Random Forest algorithm reached 99% accuracy in identifying the kind of VOC vapors. This accuracy was made possible by the ability to generate several signals concurrently. The above gas-sensitive performance improvements were due to the polarized three-phase boundary.

14.
Theranostics ; 13(1): 95-105, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36593956

RESUMEN

Background: Lipid droplets (LDs) are critical organelles associated with many physiological processes in eukaryotic cells. To visualize and study LDs, fluorescence imaging techniques including the confocal imaging as well as the emerging super-resolution imaging of stimulated emission depletion (STED), have been regarded as the most useful methods. However, directly limited by the availability of advanced LDs fluorescent probes, the performances of LDs fluorescence imaging are increasingly unsatisfied with respect to the fast research progress of LDs. Methods: We herein newly developed a superior LDs fluorescent probe named Lipi-QA as a powerful tool for LDs fluorescence imaging and biological study. Colocalization imaging of Lipi-QA and LDs fluorescent probe Ph-Red was conducted in four cell lines. The LDs staining selectivity and the photostability of Lipi-QA were also evaluated by comparing with the commercial LDs probe Nile Red. The in-situ fluorescence lifetime of Lipi-QA in LDs was determined by time-gated detection. The cytotoxicity of Lipi-QA was assessed by MTT assay. The STED saturation intensity as well as the power- and gate time-dependent resolution were tested by Leica SP8 STED super-resolution nanoscopy. The time-lapse 3D confocal imaging and time-lapse STED super-resolution imaging were then designed to study the complex physiological functions of LDs. Results: Featuring with the advantages of the super-photostability, high LDs selectivity, long fluorescence lifetime and low STED saturation intensity, the fluorescent probe Lipi-QA was capable of the long-term time-lapse three-dimensional (3D) confocal imaging to in-situ monitor LDs in 3D space and the time-lapse STED super-resolution imaging (up to 500 STED frames) to track the dynamics of LDs with nanoscale resolution (37 nm). Conclusions: Based on the state-of-the-art fluorescence imaging results, some new biological insights into LDs have been successfully provided. For instance, the long-term time-lapse 3D confocal imaging has surely answered an important and controversial question that the number of LDs would significantly decrease rather than increase upon starvation stimulation; the time-lapse STED super-resolution imaging with the highest resolution has impressively uncovered the fission process of nanoscale LDs for the first time; the starvation-induced change of LDs in size and in speed has been further revealed at nanoscale by the STED super-resolution imaging. All of these results not only highlight the utility of the newly developed fluorescent probe but also significantly promote the biological study of LDs.


Asunto(s)
Colorantes Fluorescentes , Sondas Moleculares , Sondas Moleculares/metabolismo , Microscopía Fluorescente/métodos , Colorantes Fluorescentes/metabolismo , Gotas Lipídicas/metabolismo , Imagen Óptica
15.
ACS Sens ; 8(1): 400-402, 2023 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-36598844

RESUMEN

In our recent work (ACS Sens.2022, 7, 1095-1104), Mirabella et al. provided comments on our publication, mainly focusing on the controversy between the oxygen vacancy model and the ionosorbed model and the related derivation based on the law of mass action. Herein we explain the correlation between the ionosorption model and the oxygen vacancy model and provide a brief introduction of our view on these two models. Moreover, a more detailed derivation about the law of mass action is provided to explain the relationship between surface electron concentration, oxygen partial pressure, adsorbed oxygen density, and oxygen vacancy density.


Asunto(s)
Electrones , Oxígeno , Presión Parcial
16.
ACS Sens ; 7(12): 3915-3922, 2022 12 23.
Artículo en Inglés | MEDLINE | ID: mdl-36417704

RESUMEN

Light activation is an effective method to improve sensor performance at room temperature (RT). This work realized the effective detection of trace-level NO2 at RT under visible light by combining ZnO with the excellent photocatalyst BiOI. A 1.5 atom % BiOI-ZnO-based sensor under 520 nm light exhibited optimal sensing properties with the maximum responses (13.9 to 1 ppm NO2), fast response/recovery time (66 s/47 s to 1 ppm), and a low detection limit of 25 ppb (theoretically 0.34 ppb). In the meantime, the sensor also possessed excellent selectivity, repeatability, and stability. The excellent properties were attributed to the high concentration of oxygen vacancies and the prolonged lifetime of photogenerated carriers. In addition, the observed photovoltaic effect of the sensor at RT indicated that the sensor held application prospects in the photovoltaic self-power field.


Asunto(s)
Nanotubos , Óxido de Zinc , Dióxido de Nitrógeno , Temperatura , Luz
17.
ACS Appl Mater Interfaces ; 14(49): 55109-55118, 2022 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-36448961

RESUMEN

Flexible wearable electronic devices with multiple sensing functions that simulate human skin in all aspects have become a popular research topic. However, the current expensive and time-consuming means of integration and the complex decoupling process are hampering the further development of multifunctional sensors. Here, an ultraflexible ionic fiber membrane (IFM) prepared by a simple electrospinning technique is reported, which exhibits pressure and humidity sensing properties. With the help of different electrode structures, the IFM-based multifunctional sensor achieved pressure and humidity detection with different sensing mechanisms. Pressure sensing with high sensitivity (49.7 kPa-1 at 0-30 kPa) and wide detection range (0-220 kPa) was indicated by the capacitive signal. Humidity sensing with high linearity (1.086% per percent relative humidity (RH)) in the range 15%-90% RH was indicated by the resistance signal. In particular, the multimodal output of capacitance/resistance corresponding to pressure/humidity in this study directly addresses the problem of accurately distinguishing the two stimuli. Furthermore, we have demonstrated that the impact between pressure and humidity is negligible when measured simultaneously and independently. Because of the excellent pressure/humidity sensing performance, we have fabricated a smart bracelet and mask for pulse, skin moisture, and breathe monitoring, which indicates the promising future of multifunctional flexible sensors based on IFM in the healthcare field.


Asunto(s)
Dispositivos Electrónicos Vestibles , Humanos , Humedad , Capacidad Eléctrica , Piel , Electrodos
18.
Nanomaterials (Basel) ; 12(19)2022 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-36234395

RESUMEN

Carbon monoxide (CO) is one of the most toxic gases to human life. Therefore, the effective monitoring of it down to ppb level is of great significance. Herein, a series of In2O3 nanofibers modified with Au or Pd species or simultaneous Au and Pd species have been prepared by electrospinning combined with a calcination process. The as-obtained samples are applied for the detection of CO. Gas-sensing investigations indicate that 2 at% Au and 2 at% Pd-co-modified In2O3 nanofibers exhibit the highest response (21.7) to 100 ppm CO at 180 °C, and the response value is ~8.5 times higher than that of pure In2O3 nanofibers. More importantly, the detection limit to CO is about 200 ppb with a response value of 1.23, and is obviously lower than that (6 ppm) of pure In2O3 nanofibers. In addition, the sensor also shows good stability within 19 days. These demonstrate that co-modifying In2O3 nanofibers with suitable amounts of Pd and Au species might be a meaningful strategy for the development of high-performance carbon monoxide gas sensors.

19.
Anal Chem ; 94(35): 12095-12102, 2022 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-36006461

RESUMEN

Lipid droplets (LDs), which are ubiquitous organelles existing in almost all eukaryotic cells, have attracted a lot of attention in the field of cell biology over the last decade. For the biological study of LDs via fluorescence imaging, the superior LD fluorescent probes with environmental polarity-sensitive character are highly desired and powerful but are very scarce. Herein, we have newly developed such a kind of fluorescent probe named LDs-Red which enables us to visualize LDs and to further reveal their polarity information. This fluorescent probe displays the advantages of intense red/near-infrared emission, high LD staining specificity, and good photostability; thus, it would be very useful for LD fluorescence imaging application. As a result, the three-dimensional confocal imaging to visualize spatial distribution of LDs and the multicolor confocal imaging to simultaneously observe LDs and other cellular organelles have been realized using this new LD fluorescent probe. Furthermore, the polarity-sensitive emission character of this probe enables us to quantitatively determine the LD polarity via spectral scan imaging. Consequently, the cancer cells (HepG2, HeLa, and Panc02) displaying lower polarity of LDs than the normal cells (L929, U251, and HT22) have been systematically demonstrated. In addition, this polarity-sensitive probe displaying shorter fluorescence wavelengths in cancer cells than in normal cells has an important and potential ability to distinguish them.


Asunto(s)
Colorantes Fluorescentes , Gotas Lipídicas , Células HeLa , Humanos , Imagen Óptica , Coloración y Etiquetado
20.
J Hazard Mater ; 440: 129695, 2022 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-35963092

RESUMEN

Triethylamine (TEA), as a common and widely used industrial raw material, is extremely hazardous to the environment and human health. Therefore, the development of a portable gas-sensing technology for high-efficiency detection of TEA is of great worth for human health and environmental monitoring. In this work, a mixed potential type TEA sensor was initially developed based on pyrochlore Gd2Zr2O7 solid state electrolyte and BiVO4 sensing electrode. The sensor generates high response values of - 62.2 mV and - 134.4 mV to 5 ppm and 100 ppm TEA at 500 °C, respectively. The response value of the sensor displays a logarithmic linear relationship with the concentration of TEA in the range of 1-100 ppm with the sensitivity of - 50.8 mV/decade. Besides, the sensor shows good response and recovery characteristics, and the response and recovery time to 10 ppm TEA is 10 s and 89 s, respectively. Moreover, the sensor possesses good humidity resistance, reproducibility and stability. The sensing behavior of the sensor is explained by the mixed potential sensing mechanism, which is confirmed by the measurement of the polarization curves. This work provides a good supplement for TEA gas sensor, which holds important application value for the sensitive detection of TEA in the environment.


Asunto(s)
Electrólitos , Etilaminas , Electrodos , Humanos , Reproducibilidad de los Resultados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...