RESUMEN
Chimeric antigen receptor (CAR)-T cell therapy is a transformative treatment against advanced malignancies. Unfortunately, once administrated in vivo, CAR-T cells become out of artificial control, and fierce response to CAR-T therapy may cause severe adverse events, represented by cytokine-release syndrome and on-target/off-tumor effects. Here, a nanomodified switch strategy is developed, leading to sustained and precise "on-tumor only" activation of CAR-T cells. Here, original gelatinase-responsive nanoparticles (NPs) are used to selectively deliver the heterodimerizing switch, which is the key component of switchable CAR with separated activation modules. The "NanoSwitch" is tumor-specific, thus inactivated switchable CAR-T cells do little harm to normal cells, even if the normal cells express the target of CAR-T. Owing to the sustained-release effect of NPs, the CAR-T cells are activated smoothly, avoiding sudden release of cytokine. These data introduce NanoSwitch as a universal and applicable solution to safety problems of CAR-T therapy regardless of the target.