Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 190
Filtrar
1.
Exp Hematol Oncol ; 13(1): 91, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39223632

RESUMEN

Although immune checkpoint-based cancer immunotherapy has shown significant efficacy in various cancers, resistance still limits its therapeutic effects. Ubiquitination modification is a mechanism that adds different types of ubiquitin chains to proteins, mediating protein degradation or altering their function, thereby affecting cellular signal transduction. Increasing evidence suggests that ubiquitination modification plays a crucial role in regulating the mechanisms of resistance to cancer immunotherapy. Drugs targeting ubiquitination modification pathways have been shown to inhibit tumor progression or enhance the efficacy of cancer immunotherapy. This review elaborates on the mechanisms by which tumor cells, immune cells, and the tumor microenvironment mediate resistance to cancer immunotherapy and the details of how ubiquitination modification regulates these mechanisms, providing a foundation for enhancing the efficacy of cancer immunotherapy by intervening in ubiquitination modification.

2.
Expert Opin Drug Saf ; 2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-39158402

RESUMEN

BACKGROUND: As synthesis technology advances, novel and efficient derivatives of tetracyclines are found. Three new antibiotics, tigecycline, omadacycline, and eravacycline, approved within the past 18 years, and represent a new era in the use of tetracyclines. To gain further insight into adverse events linked to tetracyclines and better protect pediatric patients, ongoing monitoring of safety data is crucial. METHODS: The FAERS data from the first quarter of 2004 to the third quarter of 2023 in the AERSMine were extracted to conduct disproportionality analysis. The association between five tetracyclines and adverse events was evaluated using reporting odds ratio, and their risk factors were explored by multivariate logistic regression analysis. RESULTS: Our study showed that endocrine disorders had the strongest signal in children, especially thyroid gland disorders. Patients aged 12-18 and treatment with minocycline are risk factors for thyroid adverse events(12-18: OR = 10.727 [7.113-16.177], p < 0.0001; minocycline: OR = 17.025 [10.475-27.678], p < 0.0001).Second-generation tetracycline and third-generation tetracycline ADR patterns differed. Blood fibrinogen decreased and hypofibrinogenaemia were primarily reported with tigecycline and eravacycline. CONCLUSION: The potential effect of minocycline on thyroid function in adolescents should be of concern. This study investigated adverse events highly associated with tetracyclines treatment, which provided basic evidence for further research on tetracyclines-related adverse events for children. However, the safety of third-generation tetracycline in children requires additional validation through a large-scale prospective study.

3.
Mol Genet Metab Rep ; 40: 101123, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39185018

RESUMEN

Aim: To analyze the clinical phenotype and genetic etiology of three cases of glutaric aciduria type 1 (GA1) in Chinese children. Methods: We performed genetic and metabolic testing using tandem mass spectrometry (MS/MS) and gas chromatography-mass spectrometry (GC/MS), followed by trio whole-exome sequencing (trio-WES) and Sanger sequencing. A literature review on glutaric aciduria type 1 (GA1) in Chinese patients was also conducted. Results: Sequencing results showed each case had compound heterozygous variants in GCDH(NM_000159.4): c.214C > G (p.Arg72Gly) and c.411C > G (p.Tyr137Term) (Case 1), c.214C > G (p.Arg72Gly) and c.1204C > T (p.Arg402Trp) (Case 2), and c.1228G > T (p.Val410Leu) and c.395G > A (p.Arg132Gln) (Case 3). These variants were inherited from their respective parents. Notably, the c.214C > G variant found in two children was a novel variant not previously reported. A review of the literature revealed that, clinically, the majority of patients experienced onset in infancy and early childhood (82%). Additionally, 38.36% were diagnosed through newborn screening, with the primary reasons for the initial visit being delayed development (32.43%) and infections (21.61%). The most common clinical manifestations included increased head circumference (77.19%) and motor developmental delay (65.15%). Biochemically, patients exhibited significant elevations in C5DC (98.51%) and C5DC/C8 (94.87%) in blood, as well as GA (94.37%) and 3OHGA (69.39%) in urine. Radiographically, patients showed a high prevalence of abnormalities in cranial MRI (86.15%) and EEG (73.33%). Genetically, 67 distinct GCDH gene variants were identified among 73 patients, with missense variants being the most prevalent type (73.97%). The most frequent variant was c.1244-2 A > C, observed in 17.12% of cases. Additionally, the majority of variant sites were located in exons 11 (25.37%) and 6 (22.39%). Conclusion: GCDH variants were identified as the causative factors in the three children. The discovery of the novel variant (c.214C > G) expands the spectrum of pathogenic GCDH variants. These findings facilitate the diagnosis and treatment of affected children and provide a basis for genetic counseling and prenatal diagnosis for their families.

4.
J Microbiol Biotechnol ; 34(9): 1-7, 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39187451

RESUMEN

Effective isolation and sensitive detection of Pseudomonas aeruginosa (P. aeruginosa) is crucial for the early diagnosis and prognosis of various diseases, such as urinary tract infections. However, efficient isolation and simultaneous detection of P. aeruginosa remains a huge challenge. Herein, we depict a novel fluorescence assay for sensitive, enzyme-free detection of P. aeruginosa by integrating DNAzyme cascade-induced DNA tweezers and magnetic nanoparticles (MNPs)-based separation. The capture probe@MNPs is capable of accurately identifying target bacteria and transporting the bacteria signal to nucleic acid signals. Based on the DNAzyme cascade-induced DNA tweezers, the nucleic acid signals are extensively amplified, endowing the method with a high sensitivity and a low detection limit of 1 cfu/mL. In addition, the method also exhibits a wide detection of six orders of magnitudes. The proposed method could be extended to other bacteria detection by simply changing the aptamer sequence. Taking the merit of the high sensitivity, greatly minimized detection time (less than 1.5 h), enzyme-free characteristics, and stability, the proposed method could be potentially applied to diagnosing and preventing diseases caused by pathogenic bacteria.

5.
Int J Nanomedicine ; 19: 7775-7797, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39099795

RESUMEN

Purpose: The present study aimed to develop a lipid nanoplatform, denoted as "BAL-PTX-LN", co-loaded with chiral baicalin derivatives (BAL) and paclitaxel (PTX) to promote the anti-lung cancer efficacy of paclitaxel and reduce the toxicity of chemotherapeutic drugs. Methods: BAL-PTX-LN was optimized through central composite design based on a single-factor experiments. BAL-PTX-LN was evaluated by TEM, particle size, encapsulation efficiency, hemolysis rate, release kinetics and stability. And was evaluated by pharmacokinetics and the antitumor efficacy studied both in vitro and in vivo. The in vivo safety profile of the formulation was assessed using hematoxylin and eosin (HE) staining. Results: BAL-PTX-LN exhibited spherical morphology with a particle size of 134.36 ± 3.18 nm, PDI of 0.24 ± 0.02, and with an encapsulation efficiency exceeding 90%, BAL-PTX-LN remained stable after 180 days storage. In vitro release studies revealed a zero-order kinetic model of PTX from the liposomal formulation. No hemolysis was observed in the preparation group. Pharmacokinetic analysis of PTX in the BAL-PTX-LN group revealed an approximately three-fold higher bioavailability and twice longer t1/2 compared to the bulk drug group. Furthermore, the IC50 of BAL-PTX-LN decreased by 2.35 times (13.48 µg/mL vs 31.722 µg/mL) and the apoptosis rate increased by 1.82 times (29.38% vs 16.13%) at 24 h compared to the PTX group. In tumor-bearing nude mice, the BAL-PTX-LN formulation exhibited a two-fold higher tumor inhibition rate compared to the PTX group (62.83% vs 29.95%), accompanied by a ten-fold decrease in Ki67 expression (4.26% vs 45.88%). Interestingly, HE staining revealed no pathological changes in tissues from the BAL-PTX-LN group, whereas tissues from the PTX group exhibited pathological changes and tumor cell infiltration. Conclusion: BAL-PTX-LN improves the therapeutic effect of poorly soluble chemotherapeutic drugs on lung cancer, which is anticipated to emerge as a viable therapeutic agent for lung cancer in clinical applications.


Asunto(s)
Neoplasias Pulmonares , Paclitaxel , Paclitaxel/química , Paclitaxel/farmacocinética , Paclitaxel/farmacología , Paclitaxel/administración & dosificación , Animales , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/patología , Humanos , Flavonoides/química , Flavonoides/farmacología , Flavonoides/farmacocinética , Flavonoides/administración & dosificación , Tamaño de la Partícula , Nanopartículas/química , Ratones , Liposomas/química , Liposomas/farmacocinética , Células A549 , Lípidos/química , Masculino , Ratones Endogámicos BALB C , Línea Celular Tumoral , Liberación de Fármacos , Antineoplásicos Fitogénicos/farmacología , Antineoplásicos Fitogénicos/administración & dosificación , Antineoplásicos Fitogénicos/química , Antineoplásicos Fitogénicos/farmacocinética , Ratones Desnudos , Hemólisis/efectos de los fármacos , Antineoplásicos/química , Antineoplásicos/farmacología , Antineoplásicos/farmacocinética , Antineoplásicos/administración & dosificación
6.
Cell ; 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39094568

RESUMEN

Innate immune responses to microbial pathogens are regulated by intracellular receptors known as nucleotide-binding leucine-rich repeat receptors (NLRs) in both the plant and animal kingdoms. Across plant innate immune systems, "helper" NLRs (hNLRs) work in coordination with "sensor" NLRs (sNLRs) to modulate disease resistance signaling pathways. Activation mechanisms of hNLRs based on structures are unknown. Our research reveals that the hNLR, known as NLR required for cell death 4 (NRC4), assembles into a hexameric resistosome upon activation by the sNLR Bs2 and the pathogenic effector AvrBs2. This conformational change triggers immune responses by facilitating the influx of calcium ions (Ca2+) into the cytosol. The activation mimic alleles of NRC2, NRC3, or NRC4 alone did not induce Ca2+ influx and cell death in animal cells, suggesting that unknown plant-specific factors regulate NRCs' activation in plants. These findings significantly advance our understanding of the regulatory mechanisms governing plant immune responses.

7.
Gastroenterol Rep (Oxf) ; 12: goae067, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39027914

RESUMEN

Background: Gastric cancer brain metastasis (GCBM) represents a rare but highly aggressive malignancy. Metastatic cancer cells are highly heterogeneous and differentially remodels brain vasculature and immune microenvironments, which affects the treatment effectiveness and patient outcome. This study aimed to investigate the spatial interactions among different cell components, especially the vasculature system and the brain microenvironment of GCBM patients. Methods: We used digital spatial profiling to examine 140 regions composing tumor, immune, and brain tissues from three GCBM patients. Transcriptomic data with spatial information were analyzed for tissue areas related to different blood recruitment strategies. For validation, independent analysis of patient bulk transcriptomic data and in vivo single-cell transcriptomic data were performed. Results: Angiogenesis and blood vessel co-option co-existed within the same GCBM lesion. Tumors with high epithelial-mesenchymal transition and an enhanced transcriptomic gene signature composed of CTNNB1, SPARC, VIM, SMAD3, SMAD4, TGFB1, TGFB2, and TGFB3 were more prone to adopt blood vessel co-option than angiogenesis. Enriched macrophage infiltration, angiogenic chemokines, and NAMPT were found in angiogenic areas, while increased T cells, T cell activating cytokines, and reduced NAMPT were found in vessel co-option regions. Spatially, angiogenesis was enriched at the tumor edge, which showed higher DMBT1 expression than the tumor center. Conclusions: This study mapped the orchestrated spatial characteristics of tumor and immunological compositions that support the conventional and atypical vascularization strategies in GCBM. Our data provided molecular insights for more effective combinations of anti-vascular and immune therapies.

8.
Sensors (Basel) ; 24(11)2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38894466

RESUMEN

Strain sensors that can rapidly and efficiently detect strain distribution and magnitude are crucial for structural health monitoring and human-computer interactions. However, traditional electrical and optical strain sensors make access to structural health information challenging because data conversion is required, and they have intricate, delicate designs. Drawing inspiration from the moisture-responsive coloration of beetle wing sheaths, we propose using Ecoflex as a flexible substrate. This substrate is coated with a Fabry-Perot (F-P) optical structure, comprising a "reflective layer/stretchable interference cavity/reflective layer", creating a dynamic color-changing visual strain sensor. Upon the application of external stress, the flexible interference chamber of the sensor stretches and contracts, prompting a blue-shift in the structural reflection curve and displaying varying colors that correlate with the applied strain. The innovative flexible sensor can be attached to complex-shaped components, enabling the visual detection of structural integrity. This biomimetic visual strain sensor holds significant promise for real-time structural health monitoring applications.

9.
Asia Pac J Clin Nutr ; 33(2): 184-193, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38794978

RESUMEN

BACKGROUND AND OBJECTIVES: This study aimed to assess the associations of maternal iron status and placental iron transport proteins expression with the risk of pre-eclampsia (PE) in Chinese pregnant women. METHODS AND STUDY DESIGN: A total of 94 subjects with PE and 112 healthy pregnant women were enrolled. Fasting blood samples were collected to detect maternal iron status. The placenta samples were collected at delivery to detect the mRNA and protein expression of divalent metal transporter 1 (DMT1) and ferroportin-1 (FPN1). Logistic analysis was used to explore the associations of maternal iron status with PE risk. The associations of placental iron transport proteins with maternal iron status were explored. RESULTS: After adjusting for covariates, dietary total iron, non-heme iron intake and serum hepcidin were negatively associated with PE, with adjusted ORs (95%CIs) were 0.40 (0.17, 0.91), 0.42 (0.18, 0.94) and 0.02 (0.002, 0.13) for the highest versus lowest tertile, respectively. For the highest tertile versus lowest tertile, serum iron (4.08 (1.58, 10.57)) and ferritin (5.61 (2.36, 13.31)) were positively associated with PE. The mRNA expressions and protein levels of DMT1 and FPN1 in placenta were up-regulated in the PE group (p < 0.05). The mRNA expressions of DMT1 and FPN1 in placenta showed a negative correlation with the serum hepcidin (r = -0.71, p < 0.001; r = -0.49, p < 0.05). CONCLUSIONS: In conclusion, the maternal iron status were closely associated with PE risk, placental DMT1 and FPN1 were upregulated in PE which may be a promising target for the prevention of PE.


Asunto(s)
Proteínas de Transporte de Catión , Hierro , Placenta , Preeclampsia , Humanos , Femenino , Embarazo , Preeclampsia/epidemiología , Preeclampsia/sangre , Estudios de Casos y Controles , Adulto , Hierro/sangre , Hierro/metabolismo , Placenta/metabolismo , Proteínas de Transporte de Catión/genética , Hepcidinas/sangre , Factores de Riesgo , China/epidemiología , Estado Nutricional
10.
Adv Sci (Weinh) ; 11(28): e2401377, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38760901

RESUMEN

Tumor-associated chronic inflammation severely restricts the efficacy of immunotherapy in cold tumors. Here, a programmable release hydrogel-based engineering scaffold with multi-stimulation and reactive oxygen species (ROS)-response (PHOENIX) is demonstrated to break the chronic inflammatory balance in cold tumors to induce potent immunity. PHOENIX can undergo programmable release of resiquimod and anti-OX40 under ROS. Resiquimod is first released, leading to antigen-presenting cell maturation and the transformation of myeloid-derived suppressor cells and M2 macrophages into an antitumor immune phenotype. Subsequently, anti-OX40 is transported into the tumor microenvironment, leading to effector T-cell activation and inhibition of Treg function. PHOENIX consequently breaks the chronic inflammation in the tumor microenvironment and leads to a potent immune response. In mice bearing subcutaneous triple-negative breast cancer and metastasis models, PHOENIX effectively inhibited 80% and 60% of tumor growth, respectively. Moreover, PHOENIX protected 100% of the mice against TNBC tumor rechallenge by electing a robust long-term antigen-specific immune response. An excellent inhibition and prolonged survival in PHOENIX-treated mice with colorectal cancer and melanoma is also observed. This work presents a potent therapeutic scaffold to improve immunotherapy efficiency, representing a generalizable and facile regimen for cold tumors.


Asunto(s)
Modelos Animales de Enfermedad , Inmunoterapia , Inflamación , Animales , Ratones , Inmunoterapia/métodos , Inflamación/inmunología , Femenino , Microambiente Tumoral/inmunología , Hidrogeles/química , Imidazoles , Línea Celular Tumoral , Neoplasias de la Mama Triple Negativas/inmunología , Neoplasias de la Mama Triple Negativas/terapia
11.
Mol Ther Nucleic Acids ; 35(2): 102203, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38737921

RESUMEN

[This corrects the article DOI: 10.1016/j.omtn.2017.07.005.].

12.
MedComm (2020) ; 5(5): e535, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38741887

RESUMEN

Cholangiocarcinoma (CCA) is characterized by rapid onset and high chance of metastasis. Therefore, identification of novel therapeutic targets is imperative. E26 transformation-specific homologous factor (EHF), a member of the E26 transformation-specific transcription factor family, plays a pivotal role in epithelial cell differentiation and cancer progression. However, its precise role in CCA remains unclear. In this study, through in vitro and in vivo experiments, we demonstrated that EHF plays a profound role in promoting CCA by transcriptional activation of glioma-associated oncogene homolog 1 (GLI1). Moreover, EHF significantly recruited and activated tumor-associated macrophages (TAMs) through the C-C motif chemokine 2/C-C chemokine receptor type 2 (CCL2/CCR2) axis, thereby remodeling the tumor microenvironment. In human CCA tissues, EHF expression was positively correlated with GLI1 and CCL2 expression, and patients with co-expression of EHF/GLI1 or EHF/CCL2 had the most adverse prognosis. Furthermore, the combination of the GLI1 inhibitor, GANT58, and CCR2 inhibitor, INCB3344, substantially reduced the occurrence of EHF-mediated CCA. In summary, our findings suggest that EHF is a potential prognostic biomarker for patients with CCA, while also advocating the therapeutic approach of combined targeting of GLI1 and CCL2/CCR2-TAMs to inhibit EHF-driven CCA development.

13.
Spectrochim Acta A Mol Biomol Spectrosc ; 317: 124415, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-38733918

RESUMEN

SO2 derivatives play an important role in many metabolic processes, excessive ingestion of them can lead to serious complications of various diseases. In this work, a novel dual ratiometric NIR fluorescent probe XT-CHO based on ICT effect was synthesized for detecting SO2 derivative. In the design of the probe, the α, ß-unsaturated bond formed between benzopyran and coumarin was used as the reaction site for SO2, meanwhile, the extended π-conjugate system promoted maximum emission wavelength of the probe up to 708 nm. Notably, the probe exhibited high selectivity and sensitivity for detecting SO2, the limit of detection reached 2.13 nM and 58.5 nM in fluorescence spectra and UV-Vis absorption spectra, respectively. The reaction mechanism of SO2 and XT-CHO had been verified by 1H NMR, ESI-MS spectra and DFT calculation. Moreover, the probe was successfully applied in detecting endogenous and exogenous SO2 in living cells and proved possessed the mitochondrial targeted ability.


Asunto(s)
Colorantes Fluorescentes , Mitocondrias , Dióxido de Azufre , Colorantes Fluorescentes/química , Colorantes Fluorescentes/síntesis química , Dióxido de Azufre/análisis , Humanos , Mitocondrias/química , Mitocondrias/metabolismo , Espectrometría de Fluorescencia , Células HeLa , Espectroscopía Infrarroja Corta/métodos , Cumarinas/química , Cumarinas/síntesis química , Límite de Detección , Teoría Funcional de la Densidad , Imagen Óptica
14.
RSC Adv ; 14(15): 10538-10545, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38567325

RESUMEN

Graphene-based (Gr-based) electrothermal heaters, due to their light weight, low electrical resistance, high thermal conductivity, and easy accessibility, have attracted widespread attention in the field of electrothermal heating. To achieve a high steady-state temperature in electrothermal heaters under low voltage, here we constructed a Gr-based film with low electrical resistance. Firstly, we employed non-toxic vitamin C to reduce silver nitrate for the in situ chemical deposition of silver nanoparticles (AgNPs) on the Gr surface. The SEM results confirmed that the AgNPs were uniformly deposited on the Gr surface. The synergistic interaction between AgNPs and Gr provided high-speed electrons transport paths for the film. On the other hand, we employed biodegradable lignocellulose fiber (LCF) as a dispersant and film-forming agent. The aromatic ring structure of LCF interacts with Gr via π-π interactions, aiding the dispersion of Gr in aqueous solutions. SEM results revealed that LCF permeated through the surfaces and interstices of the two-dimensional Gr sheets, providing mechanical support for the composite film. This approach enables the creation of freestanding Gr-AgNPs/LCF electrothermal composites. The resistivity and electrothermal results demonstrated that the obtained 20 wt% Gr-based composite film possessed low electrical resistance (5.4 Ω sq-1) and exhibited an outstanding saturated temperature of 214 °C under a very low input voltage of 7 V. The preparation method of this Gr-based composite film is simple, easy to operate, and environmentally friendly, providing a new reference for the preparation of eco-friendly and high-performance resistance heating electronics.

15.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 41(4): 467-472, 2024 Apr 10.
Artículo en Chino | MEDLINE | ID: mdl-38565514

RESUMEN

OBJECTIVE: To analyze the clinical phenotype and genotypes of two children with Carnitine-acylcarnitine translocase deficiency (CACTD). METHODS: Two children diagnosed with CACTD at the Gansu Provincial Maternal and Child Health Care Hospital respectively on January 3 and November 19, 2018 were selected as the study subjects. Trio-whole exome sequencing (trio-WES) was carried out, and candidate variants were validated through Sanger sequencing and pathogenicity analysis. RESULTS: Both children were males and had manifested mainly with hypoglycemia. Trio-WES and Sanger sequencing showed that child 1 had harbored compound heterozygous variants of the SLC25A20 gene, namely c.49G>C (p.Gly17Arg) and c.106-2A>G, which were inherited from his father and mother, respectively. Child 2 had harbored homozygous c.199-10T>G variants of the SLC25A20 gene, which were inherited from both of his parents. Among these, the c.106-2A>G and c.49G>C variants were unreported previously. Based on the guidelines from the American College of Medical Genetics and Genomics (ACMG), the c.49G>C (p.Gly17Arg), c.106-2A>G, and c.199-10T>G variants were classified as likely pathogenic (PM2_supporting+PP3+PM3_strong+PP4), pathogenic (PVS1+PM2_supporting+PM5+PP3), and pathogenic (PVS1+PM2_supporting+PP3+PP5), respectively. CONCLUSION: Combined with their clinical phenotype and genetic analysis, both children were diagnosed with CACTD. Above finding has provided a basis for their treatment as well as genetic counseling and prenatal diagnosis for their families.


Asunto(s)
Carnitina Aciltransferasas/deficiencia , Asesoramiento Genético , Genómica , Errores Innatos del Metabolismo Lipídico , Niño , Masculino , Femenino , Embarazo , Humanos , Linaje , Madres , Mutación , Proteínas de Transporte de Membrana
16.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 41(3): 306-311, 2024 Mar 10.
Artículo en Chino | MEDLINE | ID: mdl-38448019

RESUMEN

OBJECTIVE: To explore the genetic basis for a Chinese pedigree affected with co-morbid Ornithine carbamoyl transferase deficiency (OTCD) and MECP2 duplication syndrome. METHODS: A proband who was admitted to the Neonatal Intensive Care Unit of Gansu Provincial Maternal and Child Health Care Hospital on December 19, 2017 was selected as the study subject. High-throughput sequencing and multiplex ligation-dependent probe amplification (MLPA) were carried out for her pedigree, and short tandem repeat-based linkage analysis and chromosome copy number variation sequencing (CNV-seq) were used for the prenatal diagnosis. RESULTS: The proband, a 3-day-old female, was found to harbor heterozygous deletion of exons 7-9 of the OTC gene. Based on the guidelines from the American College of Medical Genetics and Genomics (ACMG), the variant was classified as likely pathogenic (PVS1+PM2_Supporting+PP4). The proband was diagnosed with OTCD , which was in keeping with her acute encephalopathy and metabolic abnormalities (manifesting as hyperammonemia, decreased blood citrulline, and increased urine orotic acid). Prenatal diagnosis was carried out for the subsequent pregnancy. The fetus did not harbor the exons 7-9 deletion of the OTC gene, but was found to carry a duplication in Xq28 region (which encompassed the whole region of MECP2 duplication syndrome) and was positive for the SRY sequence. The same duplication was also found in the proband and her mother. Considering the possible existence of X-chromosome inactivation, the proband was diagnosed with two X-linked recessive disorders including OTCD and MECP2 duplication syndrome, and the fetus was determined as a male affected with the MECP2 duplication syndrome. CONCLUSION: Discoveries of the pathogenic variants underlying the OTCD and MECP2 duplication syndrome have enabled clinical intervention, treatment, genetic counseling and prenatal diagnosis for this pedigree.


Asunto(s)
Transferasas de Carboxilo y Carbamoilo , Discapacidad Intelectual Ligada al Cromosoma X , Enfermedad por Deficiencia de Ornitina Carbamoiltransferasa , Niño , Femenino , Humanos , Recién Nacido , Masculino , Embarazo , China , Variaciones en el Número de Copia de ADN , Ornitina , Enfermedad por Deficiencia de Ornitina Carbamoiltransferasa/diagnóstico , Enfermedad por Deficiencia de Ornitina Carbamoiltransferasa/genética , Linaje , Diagnóstico Prenatal
17.
J Biol Chem ; 300(3): 105782, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38395304

RESUMEN

Intracellular vesicle fusion is driven by the soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) and their cofactors, including Sec1/Munc18 (SM), α-SNAP, and NSF. α-SNAP and NSF play multiple layers of regulatory roles in the SNARE assembly, disassembling the cis-SNARE complex and the prefusion SNARE complex. How SM proteins coupled with NSF and α-SNAP regulate SNARE-dependent membrane fusion remains incompletely understood. Munc18c, an SM protein involved in the exocytosis of the glucose transporter GLUT4, binds and activates target (t-) SNAREs to accelerate the fusion reaction through a SNARE-like peptide (SLP). Here, using an in vitro reconstituted system, we discovered that α-SNAP blocks the GLUT4 SNAREs-mediated membrane fusion. Munc18c interacts with t-SNAREs to displace α-SNAP, which overcomes the fusion inhibition. Furthermore, Munc18c shields the trans-SNARE complex from NSF/α-SNAP-mediated disassembly and accelerates SNARE-dependent fusion kinetics in the presence of NSF and α-SNAP. The SLP in domain 3a is indispensable in Munc18c-assisted resistance to NSF and α-SNAP. Together, our findings demonstrate that Munc18c protects the prefusion SNARE complex from α-SNAP and NSF, promoting SNARE-dependent membrane fusion through its SLP.


Asunto(s)
Fusión de Membrana , Proteínas Munc18 , Proteínas SNARE , Proteínas Solubles de Unión al Factor Sensible a la N-Etilmaleimida , Fusión de Membrana/fisiología , Proteínas Munc18/metabolismo , Proteínas Sensibles a N-Etilmaleimida/genética , Proteínas Sensibles a N-Etilmaleimida/metabolismo , Orgánulos/metabolismo , Péptidos/metabolismo , Proteínas SNARE/metabolismo , Proteínas Solubles de Unión al Factor Sensible a la N-Etilmaleimida/genética , Animales , Ratones
18.
bioRxiv ; 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38187616

RESUMEN

Innate immune responses against microbial pathogens in both plants and animals are regulated by intracellular receptors known as Nucleotide-binding Leucine-rich Repeats (NLR) proteins. In plants, these NLRs play a crucial role in recognizing pathogen effectors, thereby initiating the activation of immune defense mechanisms. Notably, certain NLRs serve as "helper" NLR immune receptors (hNLR), working in tandem with "sensor" NLR immune receptors (sNLR) counterparts to orchestrate downstream signaling events to express disease resistance. In this study, we reconstituted and determined the cryo-EM structure of the hNLR required for cell death 4 (NRC4) resistosome. The auto-active NRC4 formed a previously unanticipated hexameric configuration, triggering immune responses associated with Ca 2+ influx into the cytosol. Furthermore, we uncovered a dodecameric state of NRC4, where the coil-coil (CC) domain is embedded within the complex, suggesting an inactive state, and expanding our understanding of the regulation of plant immune responses. One Sentence Summary: The hexameric NRC4 resistosome mediates cell death associated with cytosolic Ca 2+ influx.

19.
Sensors (Basel) ; 24(2)2024 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-38257561

RESUMEN

In recent years, strain sensors have penetrated various fields. The capability of sensors to convert physical signals into electrical signals is of great importance in healthcare. However, it is still challenging to obtain sensors with high sensitivity, large operating range and low cost. In this paper, a stretchable strain sensor made of a double-layer conductive network, including a biomimetic multilayer graphene-Ecoflex (MLG-Ecoflex) substrate and a multilayer graphene-carbon nanotube (MLG-CNT) composite up-layer was developed. The combined action of the two layers led to an excellent performance with an operating range of up to 580% as well as a high sensitivity (gauge factor (GFmax) of 1517.94). In addition, a pressure sensor was further designed using the bionic vein-like structure with a multi-layer stacking of MLG-Ecoflex/MLG-CNT/MLG-Ecoflex to obtain a relatively high deformation along the direction of thickness. The device presented a high sensing performance (up to a sensitivity of 0.344 kPa-1) capable of monitoring small movements of the human body such as vocalizations and gestures. The good performance of the sensors together with a simple fabrication procedure (flip-molding) make it of potential use for some applications, for example human health monitoring and other areas of human interaction.


Asunto(s)
Biónica , Grafito , Humanos , Movimiento (Física) , Movimiento , Biomimética
20.
J Control Release ; 366: 505-518, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38184233

RESUMEN

Vascular endothelial growth factor (VEGF) not only serves as an autocrine survival factor for tumor cells themselves, but also stimulates angiogenesis by paracrine pathway. Strategies targeting VEGF holds tremendous potential for tumor therapy, however, agents targeting VEGF are limited by intolerable side effects, together with incomplete and temporary blocking of VEGF, resulting in unsatisfactory and unsustained therapeutic outcomes. Herein, hierarchical-unlocking virus-esque NanoCRISPR (HUNGER) is constructed for complete, permanent and efficient intracellular disruption of autocrine and paracrine pathway of VEGF, thereby eliciting notable tumor inhibition and antiangiogenesis. After intravenous administration, HUNGER exhibits prolonged blood circulation and hyaluronic acid-CD44 mediated tumor-targeting capability. Subsequently, when matrix metalloproteinase-2 is overexpressed in the tumor microenvironment, the PEG layer will be removed. The cell-penetrating peptide R8 endows HUNGER deep tumor penetration and specific cellular uptake. Upon cellular internalization, HUNGER undergoes hyaluronidase-triggered deshielding in lysosome, lysosomal escape is realized swiftly, and then the loaded CRISPR/Cas9 plasmid (>8 kb) is transported to nucleus efficiently. Consequentially, complete, permanent and efficient intracellular disruption of autocrine and paracrine pathway of VEGF ensures inhibition of angiogenesis and tumor growth with inappreciable toxicity. Overall, this work opens a brand-new avenue for anti-VEGF therapy and presents a feasible strategy for in vivo delivery of CRISPR/Cas9 system.


Asunto(s)
Neoplasias , Neovascularización Patológica , Factor A de Crecimiento Endotelial Vascular , Humanos , Transporte Biológico , Inmunoterapia , Metaloproteinasa 2 de la Matriz , Neoplasias/irrigación sanguínea , Neoplasias/tratamiento farmacológico , Microambiente Tumoral , Factor A de Crecimiento Endotelial Vascular/antagonistas & inhibidores , Neovascularización Patológica/tratamiento farmacológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...