Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
1.
ACS Omega ; 9(34): 36497-36508, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39220477

RESUMEN

Plant oil-based vitrimer is an innovative and sustainable polymer with wide-ranging potential applications in the field of advanced materials. However, its restricted application is caused by the poor mechanical properties and the need for catalysts during preparation. Using renewable cardanol as the raw material, epoxy cardanol glycidyl ether (ECGE) with an end epoxide group was obtained by the clicking reaction and epoxidation reaction. After the application of citric acid (CA), ECGE was successfully cured, resulting in the production of fully biobased ECGE-CA vitrimers. This material does not require a catalyst, possesses self-healing properties, and exhibits high mechanical strength. On account of the introduction of hydroxyl groups in citric acid, plenty of hydrogen bonds are formed, allowing the topological network rearrangement of the material in the absence of a catalyst. Recyclable adhesives and repairable materials, vitrimer polymers have good shape memory, self-healing, and recyclability since of their dynamic ester and hydroxyl bonds.

2.
ACS Appl Mater Interfaces ; 16(34): 45447-45458, 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39138882

RESUMEN

Luminescent wood materials are an emerging class of biomass hybrid host materials owing to the hierarchical porous structure and functionalization versatility. The fluorescence properties are largely dependent on exogenous fluorophores, which are, however, often plagued by notorious aggregation effects. In this work, an efficient strategy for the preparation of luminescent transparent wood materials is developed by incorporating tetraphenylethylene-derived aggregation-induced emission (AIE)-active fluorophores during a delignification-backfill transparency process. These wood hybrids showed unexpected luminescence enhancement that significantly increased the fluorescence quantum yield of the fluorophores up to 99%, much higher than that of the fluorophores in other states such as crystalline solids or doped in a polymer substrate. Mechanistic investigations reveal that in situ polymerization of prepolymerized methyl methacrylate in delignified microporous wood frames produces high molecular weight ordered PMMA polymers, resulting in a rigid molecular environment that improves the luminescence efficiency of TPE-based fluorophores at the interfaces of PMMA polymer and cell walls. By confocal laser scanning microscopy (CLSM), this excellent fluorescence staining capability was furthermore utilized to visualize the intrinsic porous network of wood in three dimensions over a large volume with submicrometer resolution, thus providing an alternative approach to the study of structure-function relationships in such wood hybrids.

3.
Sci Rep ; 14(1): 19955, 2024 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-39198476

RESUMEN

Soil salinization, a prevalent form of environmental stress, leads to significant soil desertification and impacts agricultural productivity by altering the internal soil environment, slowing cellular metabolism, and modifying cellular architecture. This results in a marked reduction in both the yield and diversity of crops. Maize, which is particularly susceptible to salt stress, serves as a critical model for studying these effects, making the elucidation of its molecular responses essential for crop improvement strategies. This study focuses on the phytochrome-interacting factor 3 (PIF3), previously known for its role in freezing tolerance, to assess its function in salt stress tolerance. Utilizing two transcript variants of maize ZmPIF3 (ZmPIF3.1 and ZmPIF3.2), we engineered Arabidopsis transgenic lines to overexpress these variants and analyzed their phenotypic, physiological, biochemical, and transcriptomic responses to salt stress. Our findings reveal that these transgenic lines displayed not only enhanced salt tolerance but also improved peroxide decomposition and reduced cellular membrane damage. Transcriptome analysis indicated significant roles of hormonal and Ca2+ signaling pathways, along with key transcription factors, in mediating the enhanced salt stress response. This research underscores a novel role for ZmPIF3 in plant salt stress tolerance, offering potential avenues for breeding salt-resistant crop varieties.


Asunto(s)
Arabidopsis , Regulación de la Expresión Génica de las Plantas , Plantas Modificadas Genéticamente , Tolerancia a la Sal , Zea mays , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/fisiología , Tolerancia a la Sal/genética , Zea mays/genética , Zea mays/metabolismo , Zea mays/fisiología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Perfilación de la Expresión Génica
4.
Small ; : e2402798, 2024 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-39004884

RESUMEN

The properties of single molecules and molecular aggregates can differ dramatically, leading to a long-standing interest in mesoscale aggregation processes. Herein, a series of acid-base molecular complexes is developed by using a tetraphenylethylene-backboned fluorophore, and investigated the photophysical properties and photochemical activities at different aggregation length scales. This fluorophore, with two basic diethylamine groups and two acidic tetrazole groups, exhibits sparse solubility due to multivalent interactions that cause infinite aggregation. The addition of a third acid leads to the formation of fluorophore/acid complexes with good dispersibility and colloidal stability. This assembly process can be controlled by the use of different acids and their stoichiometry, resulting in aggregates ranging in size from a few to hundreds of nanometers. A crystalline structure is obtained to illustrate the complex properties of the acid-base network. Unlike the single molecule, these complexes show a trend of size-related properties for photoluminescence efficiency and photochemical activity. As the amount of acid added increases, the size of the complexes decreases, the aggregation effect of the complexes on fluorescence emission increases, and the rates of the oxidative photocyclization and photodecomposition slow down. This work may help to understand size-controlled molecular materials at the mesoscale for functional design.

5.
Environ Int ; 188: 108771, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38805914

RESUMEN

Microcystins (MCs) and nitrites are coexisted in the environment and have reproductive toxicity. The combined toxic effect and mechanism of MCs and nitrite on spermatogenesis remain largely unclear. In the present study, co-exposure to microcystin-leucine arginine (MC-LR) and sodium nitrite (NaNO2) aggravated testicular damage of Balb/c mice and mitochondrial impairment of spermatogonia, Sertoli cells, and sperm. Furthermore, MC-LR and NaNO2 reduced sperm density with a synergistic effect. In addition, MC-LR and NaNO2 synergistically induced oxidative stress in the reproductive system by decreasing superoxide dismutase (SOD) activity and glutathione (GSH) levels and increasing levels of mitochondrial reactive oxygen species (mtROS) and reactive oxygen species (ROS). More importantly, mitoquidone mesylate (MitoQ), an inhibitor of mtROS, blocked MC-LR and NaNO2-induced spermatogonia and Sertoli cell apoptosis by inhibiting high expression of Bax, Fadd, Caspase-8, and cleaved-Caspase-3. On the other hand, MitoQ suppressed pyroptosis of Sertoli cells by inhibiting the expression of NLRP3, N-GSDMD, and cleaved-Caspase-1. Additionally, MitoQ alleviated co-exposure-induced sperm density reduction and organ index disorders in F1 generation mice. Together, co-exposure of MC-LR and NaNO2 can enhance spermatogenic disorders by mitochondrial oxidative impairment-mediated germ cell death. This study emphasizes the potential risks of MC-LR and NaNO2 on reproduction in realistic environments and highlights new insights into the cause and treatment of spermatogenic disorders.


Asunto(s)
Apoptosis , Ratones Endogámicos BALB C , Microcistinas , Piroptosis , Especies Reactivas de Oxígeno , Espermatogénesis , Microcistinas/toxicidad , Animales , Masculino , Ratones , Apoptosis/efectos de los fármacos , Espermatogénesis/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Piroptosis/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Testículo/efectos de los fármacos , Testículo/metabolismo , Espermatozoides/efectos de los fármacos , Células de Sertoli/efectos de los fármacos , Células de Sertoli/metabolismo , Nitrito de Sodio , Toxinas Marinas , Espermatogonias/efectos de los fármacos , Espermatogonias/metabolismo
6.
Angew Chem Int Ed Engl ; 63(23): e202402509, 2024 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-38588046

RESUMEN

Membranes are important in the pharmaceutical industry for the separation of antibiotics and salts. However, its widespread adoption has been hindered by limited control of the membrane microstructure (pore architecture and free-volume elements), separation threshold, scalability, and operational stability. In this study, 4,4',4'',4'''-methanetetrayltetrakis(benzene-1,2-diamine) (MTLB) as prepared as a molecular building block for fabricating thin-film composite membranes (TFCMs) via interfacial polymerization. The relatively large molecular size and rigid molecular structure of MTLB, along with its non-coplanar and distorted conformation, produced thin and defect-free selective layers (~27 nm) with ideal microporosities for antibiotic desalination. These structural advantages yielded an unprecedented high performance with a water permeance of 45.2 L m-2 h-1 bar-1 and efficient antibiotic desalination (NaCl/adriamycin selectivity of 422). We demonstrated the feasibility of the industrial scaling of the membrane into a spiral-wound module (with an effective area of 2.0 m2). This module exhibited long-term stability and performance that surpassed those of state-of-the-art membranes used for antibiotic desalination. This study provides a scientific reference for the development of high-performance TFCMs for water purification and desalination in the pharmaceutical industry.


Asunto(s)
Antibacterianos , Membranas Artificiales , Nylons , Antibacterianos/química , Antibacterianos/aislamiento & purificación , Nylons/química , Purificación del Agua/métodos , Filtración/métodos , Permeabilidad
7.
Sci Total Environ ; 918: 170543, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38309369

RESUMEN

Polychlorinated biphenyls (PCBs) are a class of endocrine-disrupting chemicals (EDCs) widely present in the environment. PCBs have been of concern due to their anti/estrogen-like effects, which make them more toxic to the female reproductive system. However, there is still a lack of systematic reviews on the reproductive toxicity of PCBs in females, so the adverse effects and mechanisms of PCBs on the female reproductive system were summarized in this paper. Our findings showed that PCBs are positively associated with lower pregnancy rate, hormone disruption, miscarriage and various reproductive diseases in women. In animal experiments, PCBs can damage the structure and function of the ovaries, uterus and oviducts. Also, PCBs could produce epigenetic effects and be transferred to the offspring through the maternal placenta, causing development retardation, malformation and death of embryos, and damage to organs of multiple generations. Furthermore, the mechanisms of PCBs-induced female reproductive toxicity mainly include receptor-mediated hormone disorders, oxidative stress, apoptosis, autophagy, and epigenetic modifications. Finally, we also present some directions for future research on the reproductive toxicity of PCBs. This detailed information provided a valuable reference for fully understanding the reproductive toxicity of PCBs.


Asunto(s)
Contaminantes Ambientales , Bifenilos Policlorados , Embarazo , Animales , Femenino , Humanos , Bifenilos Policlorados/toxicidad , Bifenilos Policlorados/análisis , Revisiones Sistemáticas como Asunto , Reproducción , Estrógenos , Ovario , Contaminantes Ambientales/análisis
8.
Adv Mater ; 36(19): e2311013, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38341656

RESUMEN

Stimulus-responsive membranes demonstrate promising applications in switchable oil/water emulsion separations. However, they are unsuitable for the treatment of double emulsions like oil-in-water-in-oil (O/W/O) and water-in-oil-in-water (W/O/W) emulsions. For efficient separation of these complicated emulsions, fine control over the wettability, response time, and aperture structure of the membrane is required. Herein, dual-coated fibers consisting of primary photothermal-responsive and secondary CO2-responsive coatings are prepared by two steps. Automated weaving of these fibers produces membranes with photothermal- and CO2-responsive characteristics and narrow pore size distributions. These membranes exhibit fast switching wettability between superhydrophilicity (under CO2 stimulation) and high hydrophobicity (under near-infrared stimulation), achieving on-demand separation of various O/W/O and W/O/W emulsions with separation efficiencies exceeding 99.6%. Two-dimensional low-field nuclear magnetic resonance and correlated spectra technique are used to clarify the underlying mechanism of switchable double emulsion separation. The approach can effectively address the challenges associated with the use of stimulus-responsive membranes for double emulsion separation and facilitate the industrial application of these membranes.

9.
Arch Toxicol ; 98(3): 663-687, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38252150

RESUMEN

Microcystin-LR (MC-LR) is a toxin produced by cyanobacteria, which is widely distributed in eutrophic water bodies and has multi-organ toxicity. Previous cytotoxicity studies have mostly elucidated the effects of MC-LR on intracellular-related factors, proteins, and DNA at the molecular level. However, there have been few studies on the adverse effects of MC-LR on cell ultrastructure and function. Therefore, research on the cytotoxicity of MC-LR in recent years was collected and summarized. It was found that MC-LR can induce a series of cytotoxic effects, including decreased cell viability, induced autophagy, apoptosis and necrosis, altered cell cycle, altered cell morphology, abnormal cell migration and invasion as well as leading to genetic damage. The above cytotoxic effects were related to the damage of various ultrastructure and functions such as cell membranes and mitochondria. Furthermore, MC-LR can disrupt cell ultrastructure and function by inducing oxidative stress and inhibiting protein phosphatase activity. In addition, the combined toxic effects of MC-LR and other environmental pollutants were investigated. This review explored the toxic targets of MC-LR at the subcellular level, which will provide new ideas for the prevention and treatment of multi-organ toxicity caused by MC-LR.


Asunto(s)
Toxinas Marinas , Microcistinas , Microcistinas/toxicidad , Apoptosis , Estrés Oxidativo
10.
Angew Chem Int Ed Engl ; 63(4): e202316315, 2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38030580

RESUMEN

Covalent organic framework (COF) membranes featuring uniform topological structures and devisable functions, show huge potential in water purification and molecular separation. Nevertheless, the inability of uniform COF membranes to be produced on an industrial scale and their nonenvironmentally friendly fabrication method are the bottleneck preventing their industrial applications. Herein, we report a new green and industrially adaptable scraping-assisted interfacial polymerization (SAIP) technique to fabricate scalable and uniform TpPa COF membranes. The process used non-toxic and low-volatility ionic liquids (ILs) as organic phase instead of conventional organic solvents for interfacial synthesis of TpPa COF layer on a support membrane, which can simultaneously achieve the purposes of (i) improving the greenness of membrane-forming process and (ii) fabricating a robust membrane that can function beyond the conventional membranes. This approach yields a large-area, continuous COF membrane (19×25 cm2 ) with a thickness of 78 nm within a brief period of 2 minutes. The resulting membrane exhibited an unprecedented combination of high permeance (48.09 L m-2 h-1 bar-1 ) and antibiotic desalination efficiency (e.g., NaCl/adriamycin separation factor of 41.8), which is superior to the commercial benchmarking membranes.

11.
Small ; 20(20): e2306956, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38100256

RESUMEN

Porous frameworks that display dynamic responsiveness are of interest in the fields of smart materials, information technology, etc. In this work, a novel copper-based dynamic metal-organic framework [Cu3TTBPE6(H2O)2] (H4TTBPE = 1,1,2,2-tetrakis(4″-(1H-tetrazol-5-yl)-[1,1″-biphenyl]-4-yl)ethane), denoted as HNU-1, is reported which exhibits modulable photoelectromagnetic properties. Due to the synergetic effect of flexible tetraarylethylene-backboned ligands and diverse copper-tetrazole coordination chemistries, a complex 3D tunneling network is established in this MOF by the layer-by-layer staggered assembly of triplicate monolayers, showing a porosity of 59%. These features further make it possible to achieve dynamic transitions, in which the aggregate-state MOF can be transferred to different structural states by changing the chemical environment or upon heating while displaying sensitive responsiveness in terms of light absorption, photoluminescence, and magnetic properties.

12.
J Am Chem Soc ; 145(44): 24328-24337, 2023 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-37878504

RESUMEN

We report herein an organic charge transfer cocrystal complex, consisting of a stable radical TPVr and an electron acceptor TCNQF4, as a rare sort of all-organic-based magnetic bistable materials with a thermally activated magnetic hysteresis loop over the temperature range from 170 to 260 K. Detailed X-ray crystallographic studies and theoretical calculations revealed that while a π-associated radical anion dimer was formed upon an integer charge transfer process from TPVr to the TCNQF4 molecules within the cocrystal lattice, the resulting TCNQF4·- π-dimers were found to exhibit varied intradimer π-stacking distances and singly occupied molecular orbital overlaps at different temperatures, thus yielding two different singlet states with distinct singlet-triplet gaps above and below the loop, which eventually contributed to the thermally excited molecular magnetic bistability.

13.
BMJ Open ; 13(7): e070958, 2023 07 24.
Artículo en Inglés | MEDLINE | ID: mdl-37487683

RESUMEN

INTRODUCTION: Guided tissue regeneration (GTR) combined with bone grafting for periodontal regenerative surgery has ideal clinical results for intrabony defect. However, some sites of intrabony defects often suffer from insufficient keratinised gingival width, which affects the efficacy and long-term prognosis of periodontal tissue regeneration. Free gingival graft (FGG) is an effective surgical procedure to widen the keratinised gingiva, but there are few clinical studies on FGG prior to GTR combination with bone grafting to improve clinical outcomes. METHODS: This study is an open-label randomised controlled trial. 68 patients with periodontitis with at least one intrabony defect depth with ≥3 mm are recruited and randomly grouped. In the test group, FGG is performed first, followed by GTR and bone grafting 3 months later; while in the control group, only periodontal tissue regenerative procedures are performed. After completion of all procedures, the patients will be recalled at 3 months, 6 months and 12 months and the relevant clinical and radiographic examinations will be carried out and statistical analysis of the data will also be performed. The present research has received approval from the Ethics Committee of Shanghai Stomatological Hospital (No.2022-007) on 4 August 2022. DISCUSSION: Exploring the effectiveness of the two-stage approach of FGG prior to periodontal tissue regenerative surgery for the treatment of keratinised gingival width deficient intrabony defects can provide a high-level evidence-based basis for the formulation of relevant treatment strategies in clinical practice. ETHICS AND DISSEMINATION: The present research has received approval from the Ethics Committee of Shanghai Stomatological Hospital (No.2022-007) on 4 August 2022. The patients will be incorporated into this trial only after their written informed consent has been obtained. The study will be performed according to the 2013 revision of the Helsinki Declaration of 1975. Personal information of all subjects will be stored in the Department of Periodontology of Shanghai Stomatological Hospital. Data of the present research will be registered with the Clinical Trials Registry Platform. Additionally, we will disseminate the results through scientific journals. TRIAL REGISTRATION: Chinese Clinical Trial Registry, ID: ChiCTR 2200063180. Registered on 1 September 2022.


Asunto(s)
Encía , Procedimientos Quirúrgicos Orales , Periodontitis , Humanos , Pueblo Asiatico , China , Atención Odontológica , Encía/trasplante , Procedimientos Quirúrgicos Orales/métodos , Ensayos Clínicos Controlados Aleatorios como Asunto , Proyectos de Investigación , Colgajos Tisulares Libres , Periodontitis/cirugía
14.
Environ Sci Pollut Res Int ; 30(35): 83113-83137, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37347330

RESUMEN

Endocrine disrupting chemicals (EDCs) are increasingly concerned substance endangering human health and environment. However, there is no unified standard for identifying chemicals as EDCs, which is also controversial internationally. In this review, the procedures for EDC identification in different organizations/countries were described. Importantly, three aspects to be considered in identifying chemical substances as EDCs were summarized, which were mechanistic data, animal experiments, and epidemiological information. The relationships between them were also discussed. To elaborate more clearly on these three aspects of evidence, scientific data on some chemicals including bisphenol A, 1,2-dibromo-4-(1,2 dibromoethyl) cyclohexane and perchlorate were collected and evaluated. Altogether, the above three chemicals were assessed for interfering with hormones and elaborated their health hazards from macroscopic to microscopic. This review is helpful for standardizing the identification procedure of EDCs.


Asunto(s)
Disruptores Endocrinos , Contaminantes Ambientales , Animales , Humanos , Hormonas
15.
Angew Chem Int Ed Engl ; 62(27): e202305011, 2023 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-37158763

RESUMEN

[3]Radialene has a peculiar topology and cross-conjugation system, representing a unique molecular scaffold in organic materials. Herein, we report a special class of stereoisomeric α-cyano triaryl[3]radialenes (CTRs) that show concentration-caused quenching in solution but emit red-shifted and enhanced luminescence in the crystalline state. Clustering of multiple cyano groups and their through-space interactions with the [3]radialene ring significantly extend π-electron communication meanwhile rigidifying the propeller conformation multivalently, thus playing a key role behind the state-dependent luminescence. These radialenes with a substantial electron affinity undergo a reversible electron transfer transition to anionic radicals with good stability, showing switching of photoabsorption, photoluminescence and electron spin resonance (ESR) signal. We also established proof-of-concept applications of CTRs for multimodal information encryption and chemical sensing.

16.
PLoS Pathog ; 19(4): e1011346, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37083862

RESUMEN

Oomycetes are a group of filamentous microorganisms that include some of the biggest threats to food security and natural ecosystems. However, much of the molecular basis of the pathogenesis and the development in these organisms remains to be learned, largely due to shortage of efficient genetic manipulation methods. In this study, we developed modified transformation methods for two important oomycete species, Phytophthora infestans and Plasmopara viticola, that bring destructive damage in agricultural production. As part of the study, we established an improved Agrobacterium-mediated transformation (AMT) method by prokaryotic expression in Agrobacterium tumefaciens of AtVIP1 (VirE2-interacting protein 1), an Arabidopsis bZIP gene required for AMT but absent in oomycetes genomes. Using the new method, we achieved an increment in transformation efficiency in two P. infestans strains. We further obtained a positive GFP transformant of P. viticola using the modified AMT method. By combining this method with the CRISPR/Cas12a genome editing system, we successfully performed targeted mutagenesis and generated loss-of-function mutations in two P. infestans genes. We edited a MADS-box transcription factor-encoding gene and found that a homozygous mutation in MADS-box results in poor sporulation and significantly reduced virulence. Meanwhile, a single-copy avirulence effector-encoding gene Avr8 in P. infestans was targeted and the edited transformants were virulent on potato carrying the cognate resistance gene R8, suggesting that loss of Avr8 led to successful evasion of the host immune response by the pathogen. In summary, this study reports on a modified genetic transformation and genome editing system, providing a potential tool for accelerating molecular genetic studies not only in oomycetes, but also other microorganisms.


Asunto(s)
Ecosistema , Phytophthora infestans , Phytophthora infestans/genética , Agrobacterium tumefaciens/genética , Virulencia/genética , Mutación
17.
Toxicology ; 490: 153507, 2023 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-37030550

RESUMEN

Eutrophication of water bodies can lead to cyanobacterial blooms, with the resultant release of microcystins (MCs), posing a threat to the ecosystem and human health. MCs are environmental toxins with male reproductive toxicity. However, there is a dearth of reviews focusing on sperm or spermatogenesis. In this paper, studies on sperm toxicity caused by MCs in recent 20 years were collected and summarized, aiming at revealing the toxic effects and potential mechanisms of MCs on sperm. Based on the previous findings, MCs can decline sperm quality and count, and cause malformation in vertebrates and invertebrates. The reason might be that MCs cause indirect damage to sperm through impairing the structure and function of the testis. The mechanisms of MCs-induced sperm toxicity mainly result from alterations in genetic material, abnormalities in the structure and function of sperm. The epigenetic modifications such as miRNA and piRNA were also involved in MC-LR-induced sperm damage. In conclusion, MCs exposure is harmful to sperm, but its direct effects and mechanisms on sperm are still not known, which remains a significant research direction. Our review will provide a basis for the protection of male reproductive health damage caused by microcystins.


Asunto(s)
Ecosistema , Microcistinas , Animales , Masculino , Humanos , Microcistinas/toxicidad , Semen , Testículo , Espermatozoides
18.
Angew Chem Int Ed Engl ; 62(22): e202301719, 2023 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-36988141

RESUMEN

Dynamic materials undergoing adaptive solid-state transitions are attractive for soft mechanics and information technology. Here, we report a novel porous framework system based on macrocyclic trimers assembled from open-shell tetraarylethylene building blocks with aryldicyanomethyl radicals as coupling linkers. Under mechanical, thermal, or chemical stimuli, the framework showed adaptability by activating conformational dynamics and radical-based transformations, thus displaying macroscopic responsiveness in terms of light absorption, luminescence, and magnetism. We studied the dynamic processes by variable-temperature nuclear magnetic resonance (VT-NMR), variable-temperature electron spin resonance (VT-ESR), and superconducting quantum interference device (SQUID) measurement and further established a proof-of-concept application for multi-modal information encryption. The strategy may open avenues for rational design of solid-state photoelectromagnetic dynamic materials by merging dynamic covalent coupling chemistry and functional aggregation principles.

19.
Adv Healthc Mater ; 12(20): e2202827, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-36977522

RESUMEN

Cardiovascular disease remains the leading cause of mortality worldwide. The inability of cardiac tissue to regenerate after an infarction results in scar tissue formation, leading to cardiac dysfunction. Therefore, cardiac repair has always been a popular research topic. Recent advances in tissue engineering and regenerative medicine offer promising solutions combining stem cells and biomaterials to construct tissue substitutes that could have functions similar to healthy cardiac tissue. Among these biomaterials, plant-derived biomaterials show great promise in supporting cell growth due to their inherent biocompatibility, biodegradability, and mechanical stability. More importantly, plant-derived materials have reduced immunogenic properties compared to popular animal-derived materials (e.g., collagen and gelatin). In addition, they also offer improved wettability compared to synthetic materials. To date, limited literature is available to systemically summarize the progression of plant-derived biomaterials in cardiac tissue repair. Herein, this paper highlights the most common plant-derived biomaterials from both land and marine plants. The beneficial properties of these materials for tissue repair are further discussed. More importantly, the applications of plant-derived biomaterials in cardiac tissue engineering, including tissue-engineered scaffolds, bioink in 3D biofabrication, delivery vehicles, and bioactive molecules, are also summarized using the latest preclinical and clinical examples.


Asunto(s)
Materiales Biocompatibles , Andamios del Tejido , Animales , Materiales Biocompatibles/farmacología , Ingeniería de Tejidos/métodos , Medicina Regenerativa/métodos , Colágeno
20.
Ecotoxicol Environ Saf ; 256: 114845, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37001189

RESUMEN

As a common pollutant in the water environment, microcystin leucine arginine (MC-LR) can enter semen and damage the sperm in animals. However, the mechanism by which MC-LR damages human sperm is unclear. Therefore, human sperm samples were obtained from the Henan Provincial Sperm Bank and exposed to different concentrations (0, 1, 10, and 100 µg/L) of MC-LR for 1, 2, 4, and 6 h, to invegest the effects and potential mechanism of MC-LR on sperm. The results showed that MC-LR mainly accumulated in the neck and flagellum of human sperm. Compared to the control group, the sperm capacitation rate and motility were significantly decreased in the 100 µg/L group. After exposure of 100 µg/L of MC-LR, the central microtubule and microtubule doublet of sperm flagellum were blurred, asymmetrical, or even lost. Furthermore, the expression levels of flagellin DNAH17, SPEF2, SPAG16, SPAG6, and CFAP44 in human sperm were reduced. Also, the phosphorylation levels of CaMKKß and AMPK can be inhibited by MC-LR. These findings revealed that MC-LR can induce functional and structural damage in human sperm, and the Ca2+/CaMKKß/AMPK pathway may be involved in this process. This study will provide a basis for prevention and treatment of male fertility declines caused by MC-LR.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Arginina , Animales , Humanos , Masculino , Arginina/farmacología , Quinasa de la Proteína Quinasa Dependiente de Calcio-Calmodulina , Leucina , Microcistinas/farmacología , Fosforilación , Semen , Espermatozoides , Señalización del Calcio
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...