Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Zhongguo Zhong Yao Za Zhi ; 47(7): 1913-1920, 2022 Apr.
Artículo en Chino | MEDLINE | ID: mdl-35534262

RESUMEN

This study explored whether Sagittaria sagittifolia polysaccharides(SSP) activates the nuclear factor erythroid-2-related factor2(Nrf2)/heme oxygenase-1(HO-1) signaling pathway to protect against liver damage jointly induced by multiple heavy metals. First, based on the proportion of dietary intake of six heavy metals in rice available in Beijing market, a heavy metal mixture was prepared for inducing mouse liver injury and HepG2 cell injury. Forty male Kunming mice were divided into five groups: control group, model group, glutathione positive control group, and low-and high-dose SSP groups, with eight mice in each group. After 30 days of intragastric administration, the liver injury in mice was observed by HE staining. In the in vitro experiment, MTT assay was conducted to detect the effects of SSP at 0.25, 0.5, 1, and 2 mg·mL~(-1) on HepG2 cell survival at different time points. The content of alanine transaminase(ALT) and aspartate aminotransferase(AST) in the 48-h cell culture fluid was measured using micro-plate cultivation method, followed by the detection of the change in reactive oxygen species(ROS) content by flow cytometry. The mRNA expression levels of Nrf2 and HO-1 in cells were determined by RT-PCR, and their protein expression by Western blot. HE staining results showed that compared with the model group, the SSP administration groups exhibited significantly alleviated inflammatory cell infiltration and fatty infiltration in the liver, with better outcomes observed in the high-dose SSP group. In the in vitro MTT assay, compared with the model group, SSP at four concentrations all significantly increased the cell survival rate, decreased the ALT, AST, and ROS content(P<0.05), and down-regulated Nrf2 and HO-1 mRNA and protein expression(P<0.05). SSP significantly improves inflammatory infiltration in the liver tissue of mice exposed to a variety of heavy metals and corrects the liver fat degeneration, which may be related to its regulation of the Nrf2/HO-1 signaling pathway, reduction of ROS, and alleviation of oxidative damage.


Asunto(s)
Metales Pesados , Sagittaria , Animales , Hemo-Oxigenasa 1/genética , Hemo-Oxigenasa 1/metabolismo , Hígado , Masculino , Metales Pesados/metabolismo , Ratones , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Estrés Oxidativo , Polisacáridos/farmacología , ARN Mensajero/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Sagittaria/genética , Sagittaria/metabolismo
2.
J Inorg Biochem ; 232: 111810, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35367820

RESUMEN

The hepatic protective role of Sagittaria sagittifolia polysaccharide (SSP) and its possible mechanism were discussed in mice and L02 hepatocytes injured by heavy metals mixture of Cd + Cr (VI) + Pb + Mn + Zn + Cu. After 30-day intervention, blood and liver samples were collected for the relevant assessments. Methyl thiazolyl tetrazolium (MTT) assay showed 24 h was the best protecting point and the SSP protection at 1 mg/mL was strongest in L02 hepatocytes. SSP can alleviated hepatic injury, as evidenced by significantly decreased the activities of aspartate aminotransferase (AST), alanine aminotransferase (ALT), and the malondialdehyde (MDA) content, also increased the superoxide dismutase (SOD) activity and glutathione (GSH), total sulphydryl (T-SH) contents. SSP effectively reduced pathological damage of mice and accumulation of heavy metals in liver, as well as decreased the level of reactive oxygen species (ROS) in L02 hepatocytes. After SSP treatment, the protein expressions or gene transcription of nuclear factor erythroid 2-related factor 2 (Nrf2), NAD(P)H dehydrogenase, quinone 1 (NQO1) and heme oxygenase1 (HO-1) decreased in L02. The protein expression of Nrf2 and NQO1 were increased while HO-1 was decreased in liver. Besides, SSP can attenuates apoptosis through reducing the protein expression of Bcl-2-associated X protein (Bax) and caspase-3, and increasing B-cell lymphoma gene 2 (Bcl-2) and B-cell lymphoma-extra large (Bcl-xl). SSP protects against six-heavy-metal-induced hepatic injury in mice and L02 hepatocytes. Supported by Nrf2 gene silencing, the mechanisms may correlate with activating Nrf2 pathway to mitigate oxidative stress and apoptosis.


Asunto(s)
Linfoma de Células B , Metales Pesados , Sagittaria , Apoptosis , Glutatión/metabolismo , Hemo-Oxigenasa 1/genética , Hemo-Oxigenasa 1/metabolismo , Hemo-Oxigenasa 1/farmacología , Hígado/metabolismo , Linfoma de Células B/metabolismo , Linfoma de Células B/patología , Metales Pesados/metabolismo , Metales Pesados/toxicidad , Factor 2 Relacionado con NF-E2/metabolismo , Estrés Oxidativo , Polisacáridos/metabolismo , Polisacáridos/farmacología , Sagittaria/metabolismo , Transducción de Señal
3.
Molecules ; 23(12)2018 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-30486347

RESUMEN

In this study, a non-targeted metabolic profiling method based on ultra-performance liquid chromatography-high resolution mass spectrometry (UPLC-HRMS) was used to characterize the plasma metabolic profile associated with the protective effects of the Sagittaria sagittifolia polysaccharide (SSP) on isoniazid (INH)-and rifampicin (RFP)-induced hepatotoxicity in mice. Fourteen potential biomarkers were identified from the plasma of SSP-treated mice. The protective effects of SSP on hepatotoxicity caused by the combination of INH and RFP (INH/RFP) were further elucidated by investigating the related metabolic pathways. INH/RFP was found to disrupt fatty acid metabolism, the tricarboxylic acid cycle, amino acid metabolism, taurine metabolism, and the ornithine cycle. The results of the metabolomics study showed that SSP provided protective effects against INH/RFP-induced liver injury by partially regulating perturbed metabolic pathways.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas , Isoniazida/efectos adversos , Metaboloma/efectos de los fármacos , Polisacáridos/farmacología , Rifampin/efectos adversos , Sagittaria/química , Animales , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/prevención & control , Isoniazida/farmacología , Metabolómica , Ratones , Ratones Endogámicos BALB C , Polisacáridos/química , Rifampin/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...