Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 472
Filtrar
1.
iScience ; 27(4): 109470, 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38715934

RESUMEN

The production of high-demand syngas with tunable ratios by CO2 electroreduction has attracted considerable research interest. However, it is challenging to balance the evolution performance of H2 and CO with wide H2/CO ratios, while maintaining high efficiency. Herein, nitrogen-coordinated hierarchical porous carbon spheres with varying phosphorus content (PxNC-T) are assembled to regulate syngas production performance. The precise introduction of P modulates the local charge distribution of nitrogen-coordinated carbons, thereby accelerating the protonation process of ∗CO2-to-∗COOH and promoting moderate H∗ adsorption. Specifically, syngas with wide H2/CO ratios (0.60-4.98) is obtained over a low potential range (-0.46 to -0.86 V vs. RHE). As a representative, P1.0NC-900 presents a remarkable current density (-152 mA cm-2) at -1.0 V vs. RHE in flow cells and delivers a decent peak power density (1.93 mW cm-2) in reversible Zn-CO2 batteries. Our work provides valuable insights into the rational design of carbon-based catalysts for CO2 reduction.

2.
Behav Brain Res ; : 115064, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38777261

RESUMEN

Post-stroke depression (PSD) is one of the most common mental sequelae after a stroke and can damage the brain. Although PSD has garnered increasing attention in recent years, the precise mechanism remains unclear. Studies have indicated that the expression of DAPK1 is elevated in various neurodegenerative conditions, including depression, ischemic stroke, and Alzheimer's disease. However, the specific molecular mechanism of DAPK1-mediated cognitive dysfunction and neuronal apoptosis in PSD rats is unclear. In this study, we established a rat model of PSD, and then assessed depression-like behaviors and cognitive dysfunction in rats using behavioral tests. In addition, we detected neuronal apoptosis and analyzed the expression of DAPK1 protein and proteins related to the ERK/CREB/BDNF signaling pathway. The findings revealed that MCAO combined with CUMS can induce more severe depression-like behaviors and cognitive dysfunction in rats, while overexpression of DAPK1 may hinder the downstream ERK/CREB/BDNF signaling pathways, resulting in neuronal loss and exacerbation of brain tissue damage. In this study, we will focus on DAPK1 and explore its role in PSD.

3.
Eur Urol Oncol ; 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38762368

RESUMEN

BACKGROUND AND OBJECTIVE: Combinations of immune checkpoint inhibitors and nab-paclitaxel have achieved significant therapeutic effects in the treatment of advanced urothelial carcinoma. Our aim was to assess the efficacy and safety of tislelizumab combined with low-dose nab-paclitaxel in patients with muscle-invasive bladder cancer (MIBC). METHODS: TRUCE-01 was a single-arm phase 2 study that included 62 patients with T2-4a N0/X M0 MIBC tumors with predominant urothelial carcinoma histology. Eligible patients received three 21-d cycles of intravenous 200 mg tislelizumab on day 1 plus intravenous 200 mg nab-paclitaxel on day 2, followed by surgical assessment. The primary study endpoint was a clinical complete response (cCR). Treatment-related adverse event (TRAE) profiles were recorded according to Common Terminology Criteria for Adverse Events version 5.0. KEY FINDINGS AND LIMITATIONS: The safety analysis included all 62 patients and the efficacy analysis included 48 patients. The primary efficacy endpoint (cCR) was met by 25 patients (52%) patients. Among the 62 patients in the safety analysis, six (9.7%) had grade ≥3 TRAEs. CONCLUSIONS: Tislelizumab combined with low-dose nab-paclitaxel showed promising antitumor effectiveness and was generally well tolerated, which makes it an excellent preoperative therapy option for MIBC. PATIENT SUMMARY: We found that a combination of the drugs tislelizumab and low-dose nab-paclitaxel had satisfactory efficacy and safety for preoperative treatment of muscle-invasive bladder cancer.

4.
Diabetes Metab J ; 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38685670

RESUMEN

Background: This study aimed to develop a diabetic kidney disease (DKD) prediction model using long short term memory (LSTM) neural network and evaluate its performance using accuracy, precision, recall, and area under the curve (AUC) of the receiver operating characteristic (ROC) curve. Methods: The study identified DKD risk factors through literature review and physician focus group, and collected 7 years of data from 6,040 type 2 diabetes mellitus patients based on the risk factors. Pytorch was used to build the LSTM neural network, with 70% of the data used for training and the other 30% for testing. Three models were established to examine the impact of glycosylated hemoglobin (HbA1c), systolic blood pressure (SBP), and pulse pressure (PP) variabilities on the model's performance. Results: The developed model achieved an accuracy of 83% and an AUC of 0.83. When the risk factor of HbA1c variability, SBP variability, or PP variability was removed one by one, the accuracy of each model was significantly lower than that of the optimal model, with an accuracy of 78% (P<0.001), 79% (P<0.001), and 81% (P<0.001), respectively. The AUC of ROC was also significantly lower for each model, with values of 0.72 (P<0.001), 0.75 (P<0.001), and 0.77 (P<0.05). Conclusion: The developed DKD risk predictive model using LSTM neural networks demonstrated high accuracy and AUC value. When HbA1c, SBP, and PP variabilities were added to the model as featured characteristics, the model's performance was greatly improved.

5.
Zhen Ci Yan Jiu ; 49(4): 391-397, 2024 Apr 25.
Artículo en Inglés, Chino | MEDLINE | ID: mdl-38649207

RESUMEN

OBJECTIVES: To observe the effect of electroacupuncture (EA) at "Baihui" (GV20) and "Shenting" (GV24) on the rats' behavior and the transforming precursor of brain-derived neurotrophic factor (proBDNF) into mature brain-derived neurotrophic factor (mBDNF) in the hippocampus of rats with learning and memory impairment induced by cerebral ischemia-reperfusion (IR), so as to explore its mechanisms underlying improvement of learning and memory ability. METHODS: SD rats were randomly divided into blank, sham operation, model, and EA groups, with 6 rats in each group. The model of IR was established by occlusion of the middle cerebral artery. EA (1 Hz/20 Hz) was applied to GV24 and GV20 for 30 min, once daily for 14 days. The neurological function was evaluated according to the Zea Longa's score criteria 24 h after modeling and after intervention. Morris water maze test was used to detect the learning and memory function of the rats. TTC staining was used to evaluate the cerebral infarction volume on the affected side. The protein expression levels of proBDNF, mBDNF, tissue plasminogen activator (tPA), tyrosine kinase receptor B (TrkB) and p75 neurotrophin receptor (p75NTR) in hippocampal tissue were detected by Western blot. RESULTS: Compared with the sham operation group, the neurological function score, the percentage of cerebral infarction volume and the expression levels of proBDNF and p75NTR protein in hippocampus were increased (P<0.01), while the times of crossing the original platform and the total distance in the target quadrant, the expression levels of mBDNF, TrkB and tPA protein and the ratio of mBDNF/proBDNF were decreased (P<0.01, P<0.05) in the model group. Compared with the model group, the neurological function score, the percentage of cerebral infarction volume, and the expression levels of proBDNF and p75NTR protein in hippocampus were decreased (P<0.01, P<0.05), while the times of crossing the original platform, the total distance in the target quadrant, and the expression levels of mBDNF, TrkB and tPA protein and the ratio of mBDNF/proBDNF were increased (P<0.05, P<0.01) in the EA group. CONCLUSIONS: EA can alleviate learning and memory impairment in IR rats, which may be related to its function in up-regulating the expression of tPA protein and promoting the transformation of proBDNF to mBDNF, thus improving the synaptic plasticity.


Asunto(s)
Isquemia Encefálica , Factor Neurotrófico Derivado del Encéfalo , Electroacupuntura , Trastornos de la Memoria , Plasticidad Neuronal , Precursores de Proteínas , Daño por Reperfusión , Animales , Humanos , Masculino , Ratas , Puntos de Acupuntura , Isquemia Encefálica/metabolismo , Isquemia Encefálica/terapia , Isquemia Encefálica/genética , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Factor Neurotrófico Derivado del Encéfalo/genética , Hipocampo/metabolismo , Aprendizaje , Memoria , Trastornos de la Memoria/terapia , Trastornos de la Memoria/metabolismo , Trastornos de la Memoria/etiología , Ratas Sprague-Dawley , Receptor trkB/metabolismo , Receptor trkB/genética , Daño por Reperfusión/metabolismo , Daño por Reperfusión/terapia , Daño por Reperfusión/genética
6.
J Cancer Res Clin Oncol ; 150(4): 208, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38647690

RESUMEN

PURPOSE: To investigate and compare the dynamic positron emission tomography (PET) imaging with [18F]Alfatide II Imaging and [11C]Methionine ([11C]MET) in orthotopic rat models of glioblastoma multiforme (GBM), and to assess the utility of [18F]Alfatide II in detecting and evaluating neoangiogenesis in GBM. METHODS: [18F]Alfatide II and [11C]MET were injected into the orthotopic GBM rat models (n = 20, C6 glioma cells), followed by dynamic PET/MR scans 21 days after surgery of tumor implantation. On the PET image with both radiotracers, the MRI-based volume-of-interest (VOI) was manually delineated encompassing glioblastoma. Time-activity curves were expressed as tumor-to-normal brain ratio (TNR) parameters and PET pharmacokinetic modeling (PKM) performed using 2-tissue-compartment models (2TCM). Immunofluorescent staining (IFS), western blotting and blocking experiment of tumor tissue were performed for the validation. RESULTS: Compared to 11C-MET, [18F]Alfatide II presented a persistent accumulation in the tumor, albeit with a slightly lower SUVmean of 0.79 ± 0.25, and a reduced uptake in the contralateral normal brain tissue, respectively. This resulted in a markedly higher tumor-to-normal brain ratio (TNR) of 18.22 ± 1.91. The time-activity curve (TACs) showed a significant increase in radioactive uptake in tumor tissue, followed by a plateau phase up to 60 min for [18F]Alfatide II (time to peak:255 s) and 40 min for [11C]MET (time to peak:135 s) post injection. PKM confirmed significantly higher K1 (0.23/0.07) and K3 (0.26/0.09) in the tumor region compared to the normal brain with [18F]Alfatide II. Compared to [11C]MET imaging, PKM confirmed both significantly higher K1/K2 (1.24 ± 0.79/1.05 ± 0.39) and K3/K4 (11.93 ± 4.28/3.89 ± 1.29) in the tumor region with [18F]Alfatide II. IFS confirmed significant expression of integrin and tumor vascularization in tumor region. CONCLUSION: [18F]Alfatide II demonstrates potential in imaging tumor-associated neovascularization in the context of glioblastoma multiforme (GBM), suggesting its utility as a tool for further exploration in neovascular characterization.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Metionina , Tomografía de Emisión de Positrones , Animales , Glioblastoma/diagnóstico por imagen , Glioblastoma/patología , Glioblastoma/metabolismo , Ratas , Metionina/farmacocinética , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Tomografía de Emisión de Positrones/métodos , Péptidos Cíclicos/farmacocinética , Radiofármacos/farmacocinética , Radioisótopos de Carbono , Masculino , Radioisótopos de Flúor , Modelos Animales de Enfermedad , Línea Celular Tumoral , Humanos
7.
Environ Res ; 252(Pt 2): 118946, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38631470

RESUMEN

Heavy metals pollution is a notable threat to environment and human health. This study evaluated the potential ecological and health risks of heavy metals (Cu, Cr, Cd, Pb, Zn, Ni, and As) and their accumulation in a peanut-soil system based on 34 soil and peanut kernel paired samples across China. Soil As and Cd posed the greatest pollution risk with 47.1% and 17.6% of soil samples exceeding the risk screen levels, respectively, with 26.5% and 20.6% of the soil sites at relatively strong potential ecological risk level, respectively, and with the geo-accumulation levels at several soil sites in the uncontaminated to moderately contaminated categories. About 35.29% and 2.94% of soil sites were moderately and severely polluted based on Nemerow comprehensive pollution index, respectively, and a total of 32.4% of samples were at moderate ecological hazard level based on comprehensive potential ecological risk index values. The Cd, Cr, Ni, and Cu contents exceeded the standard in 11.76, 8.82, 11.76 and 5.88% of the peanut kernel samples, respectively. Soil metals posed more health risks to children than adults in the order As > Ni > Cr > Cu > Pb > Zn > Cd for non-carcinogenic health risks and Ni > Cr â‰« Cd > As > Pb for carcinogenic health risks. The soil As non-cancer risk index for children was greater than the permitted limits at 14 sites, and soil Ni and Cr posed the greatest carcinogenic risk to adults and children at many soil sites. The metals in peanut did not pose a non-carcinogenic risk according to standard. Peanut kernels had strong enrichment ability for Cd with an average bio-concentration factor (BCF) of 1.62. Soil metals contents and significant soil properties accounted for 35-74% of the variation in the BCF values of metals based on empirical prediction models.

8.
Regen Biomater ; 11: rbae023, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38559647

RESUMEN

Polyetherketoneketone (PEKK), a high-performance thermoplastic special engineering material, maintains bone-like mechanical properties and has received considerable attention in the biomedical field. The 3D printing technique enables the production of porous scaffolds with a honeycomb structure featuring precisely controlled pore size, porosity and interconnectivity, which holds significant potential for applications in tissue engineering. The ideal pore architecture of porous PEKK scaffolds has yet to be elucidated. Porous PEKK scaffolds with five pore sizes P200 (225 ± 9.8 µm), P400 (411 ± 22.1 µm), P600 (596 ± 23.4 µm), P800 (786 ± 24.2 µm) and P1000 (993 ± 26.0 µm) were produced by a 3D printer. Subsequently, the optimum pore size, the P600, for mechanical properties and osteogenesis was selected based on in vitro experiments. To improve the interfacial bioactivity of porous PEKK scaffolds, hydroxyapatite (HAp) crystals were generated via in situ biomimetic mineralization induced by the phase-transited lysozyme coating. Herein, a micro/nanostructured surface showing HAp crystals on PEKK scaffold was developed. In vitro and in vivo experiments confirmed that the porous PEKK-HAp scaffolds exhibited highly interconnected pores and functional surface structures that were favorable for biocompatibility and osteoinductivity, which boosted bone regeneration. Therefore, this work not only demonstrates that the pore structure of the P600 scaffold is suitable for PEKK orthopedic implants but also sheds light on a synergistic approach involving 3D printing and biomimetic mineralization, which has the potential to yield customized 3D PEKK-HAp scaffolds with enhanced osteoinductivity and osteogenesis, offering a promising strategy for bone tissue engineering.

9.
BMC Genomics ; 25(Suppl 1): 401, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38658824

RESUMEN

BACKGROUND: Most of the important biological mechanisms and functions of transmembrane proteins (TMPs) are realized through their interactions with non-transmembrane proteins(nonTMPs). The interactions between TMPs and nonTMPs in cells play vital roles in intracellular signaling, energy metabolism, investigating membrane-crossing mechanisms, correlations between disease and drugs. RESULTS: Despite the importance of TMP-nonTMP interactions, the study of them remains in the wet experimental stage, lacking specific and comprehensive studies in the field of bioinformatics. To fill this gap, we performed a comprehensive statistical analysis of known TMP-nonTMP interactions and constructed a deep learning-based predictor to identify potential interactions. The statistical analysis describes known TMP-nonTMP interactions from various perspectives, such as distributions of species and protein families, enrichment of GO and KEGG pathways, as well as hub proteins and subnetwork modules in the PPI network. The predictor implemented by an end-to-end deep learning model can identify potential interactions from protein primary sequence information. The experimental results over the independent validation demonstrated considerable prediction performance with an MCC of 0.541. CONCLUSIONS: To our knowledge, we were the first to focus on TMP-nonTMP interactions. We comprehensively analyzed them using bioinformatics methods and predicted them via deep learning-based solely on their sequence. This research completes a key link in the protein network, benefits the understanding of protein functions, and helps in pathogenesis studies of diseases and associated drug development.


Asunto(s)
Biología Computacional , Proteínas de la Membrana , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Biología Computacional/métodos , Aprendizaje Profundo , Humanos , Mapas de Interacción de Proteínas
10.
J Integr Plant Biol ; 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38501444

RESUMEN

ACYL-CoA-BINDING PROTEINs (ACBPs) play crucial regulatory roles during plant response to hypoxia, but their molecular mechanisms remain poorly understood. Our study reveals that ACBP4 serves as a positive regulator of the plant hypoxia response by interacting with WRKY70, influencing its nucleocytoplasmic shuttling in Arabidopsis thaliana. Furthermore, we demonstrate the direct binding of WRKY70 to the ACBP4 promoter, resulting in its upregulation and suggesting a positive feedback loop. Additionally, we pinpointed a phosphorylation site at Ser638 of ACBP4, which enhances submergence tolerance, potentially by facilitating WRKY70's nuclear shuttling. Surprisingly, a natural variation in this phosphorylation site of ACBP4 allowed A. thaliana to adapt to humid conditions during its historical demographic expansion. We further observed that both phosphorylated ACBP4 and oleoyl-CoA can impede the interaction between ACBP4 and WRKY70, thus promoting WRKY70's nuclear translocation. Finally, we found that the overexpression of orthologous BnaC5.ACBP4 and BnaA7.WRKY70 in Brassica napus increases submergence tolerance, indicating their functional similarity across genera. In summary, our research not only sheds light on the functional significance of the ACBP4 gene in hypoxia response, but also underscores its potential utility in breeding flooding-tolerant oilseed rape varieties.

11.
J Nanobiotechnology ; 22(1): 101, 2024 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-38462598

RESUMEN

BACKGROUND: Radiotheranostics differs from the vast majority of other cancer therapies in its capacity for simultaneous imaging and therapy, and it is becoming more widely implemented. A balance between diagnostic and treatment requirements is essential for achieving effective radiotheranostics. Herein, we propose a proof-of-concept strategy aiming to address the profound differences in the specific requirements of the diagnosis and treatment of radiotheranostics. RESULTS: To validate the concept, we designed an s-tetrazine (Tz) conjugated prostate-specific membrane antigen (PSMA) ligand (DOTA-PSMA-Tz) for 68Ga or 177Lu radiolabeling and tumor radiotheranostics, a trans-cyclooctene (TCO) modified Pd@Au nanoplates (Pd@Au-PEG-TCO) for signal amplification, respectively. We then demonstrated this radiotheranostic strategy in the tumor-bearing mice with the following three-step procedures: (1) i.v. injection of the [68Ga]Ga-PSMA-Tz for diagnosis; (2) i.v. injection of the signal amplification module Pd@Au-PEG-TCO; (3) i.v. injection of the [177Lu]Lu-PSMA-Tz for therapy. Firstly, this strategy was demonstrated in 22Rv1 tumor-bearing mice via positron emission tomography (PET) imaging with [68Ga]Ga-PSMA-Tz. We observed significantly higher tumor uptake (11.5 ± 0.8%ID/g) with the injection of Pd@Au-PEG-TCO than with the injection [68Ga]Ga-PSMA-Tz alone (5.5 ± 0.9%ID/g). Furthermore, we validated this strategy through biodistribution studies of [177Lu]Lu-PSMA-Tz, with the injection of the signal amplification module, approximately five-fold higher tumor uptake of [177Lu]Lu-PSMA-Tz (24.33 ± 2.53% ID/g) was obtained when compared to [177Lu]Lu-PSMA-Tz alone (5.19 ± 0.26%ID/g) at 48 h post-injection. CONCLUSION: In summary, the proposed strategy has the potential to expand the toolbox of pretargeted radiotherapy in the field of theranostics.


Asunto(s)
Neoplasias Colorrectales , Radiofármacos , Masculino , Animales , Ratones , Radioisótopos de Galio , Distribución Tisular , Línea Celular Tumoral , Neoplasias Colorrectales/patología
12.
Brief Bioinform ; 25(3)2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38546325

RESUMEN

Expression quantitative trait loci (eQTLs) are used to inform the mechanisms of transcriptional regulation in eukaryotic cells. However, the specificity of genome-wide eQTL identification is limited by stringent control for false discoveries. Here, we described a method based on the non-homogeneous Poisson process to identify 125 489 regions with highly frequent, multiple eQTL associations, or 'eQTL-hotspots', from the public database of 59 human tissues or cell types. We stratified the eQTL-hotspots into two classes with their distinct sequence and epigenomic characteristics. Based on these classifications, we developed a machine-learning model, E-SpotFinder, for augmented discovery of tissue- or cell-type-specific eQTL-hotspots. We applied this model to 36 tissues or cell types. Using augmented eQTL-hotspots, we recovered 655 402 eSNPs and reconstructed a comprehensive regulatory network of 2 725 380 cis-interactions among eQTL-hotspots. We further identified 52 012 modules representing transcriptional programs with unique functional backgrounds. In summary, our study provided a framework of epigenome-augmented eQTL analysis and thereby constructed comprehensive genome-wide networks of cis-regulations across diverse human tissues or cell types.


Asunto(s)
Epigenoma , Epigenómica , Humanos , Bases de Datos Factuales , Células Eucariotas , Aprendizaje Automático
13.
Foods ; 13(6)2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38540924

RESUMEN

The aim of this study was to explore the immunomodulatory effect of Polygonatum sibiricum saponin (PS) in a cyclophosphamide-induced (Cy) immunosuppression mice model. Oral administration of PS by gavage effectively alleviated weight loss caused by Cy and increased the index of immune organs. PS promoted the proliferation of splenic lymphocytes and T cell subsets (CD3+, CD355+, CD4+/CD8+) and relieved the xylene-induced inflammatory response and Cy-induced increase of serum hemolysin. Moreover, PS increased serum levels of lactate dehydrogenase and acid phosphatase. PS elevated serum level of cytokines and immunoglobulins (TNF-α, IFN-γ, IL-4, IL-6, IL-ß, SIgA, and IgG) and the expression of mRNA of IL-10, TNF-α, and IL-6 in the spleen. Increased mRNA expression of tight junction protein (ZO-1, Mucin2, Occludin) expression and protein expression of IL-6/MyD88/TLR4 in the small intestine showed that PS exhibited a restorative effect on intestinal mucosal injury caused by cyclophosphamide. Oral PS prevented Cy-induced decline in leukocytes, red blood cells, lymphocytes, hemoglobin concentrations, and neutrophils, providing evidence for alleviating hematopoietic disorders. In addition, PS increased SOD and NO levels, reduced MDA levels, and improved oxidative damage in the liver. These findings demonstrate that PS has the potential to be developed as a supplemental agent for alleviating immunosuppression caused by chemotherapeutic agents.

14.
Plant Mol Biol ; 114(2): 30, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38503847

RESUMEN

To cope with flooding-induced hypoxia, plants have evolved different strategies. Molecular strategies, such as the N-degron pathway and transcriptional regulation, are known to be crucial for Arabidopsis thaliana's hypoxia response. Our study uncovered a novel molecular strategy that involves a single transcription factor interacting with two identical cis-elements, one located in the promoter region and the other within the intron. This unique double-element adjustment mechanism has seldom been reported in previous studies. In humid areas, WRKY70 plays a crucial role in A. thaliana's adaptation to submergence-induced hypoxia by binding to identical cis-elements in both the promoter and intron regions of WRKY33. This dual binding enhances WRKY33 expression and the activation of hypoxia-related genes. Conversely, in arid regions lacking the promoter cis-element, WRKY70 only binds to the intron cis-element, resulting in limited WRKY33 expression during submergence stress. The presence of a critical promoter cis-element in humid accessions, but not in dry accessions, indicates a coordinated regulation enabling A. thaliana to adapt and thrive in humid habitats.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regiones Promotoras Genéticas/genética , Hipoxia/genética , Regulación de la Expresión Génica de las Plantas
15.
J Plant Physiol ; 295: 154210, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38460401

RESUMEN

Grain size, a crucial trait that determines rice yield and quality, is typically regulated by multiple genes. Although numerous genes controlling grain size have been identified, the precise and dynamic regulatory network governing grain size is still not fully understood. In this study, we unveiled a novel regulatory module composed of OsHB5, OsAPL and OsMADS27/OsWRKY102, which plays a crucial role in modulating grain size in rice. As a positive regulator of grain size, OsAPL has been found to interact with OsHB5 both in vitro and in vivo. Through chromatin immunoprecipitation-sequencing, we successfully mapped two potential targets of OsAPL, namely OsMADS27, a positive regulator in grain size and OsWRKY102, a negative regulator in lignification that is also associated with grain size control. Further evidence from EMSA and chromatin immunoprecipitation-quantitative PCR experiments has shown that OsAPL acts as an upstream transcription factor that directly binds to the promoters of OsMADS27 and OsWRKY102. Moreover, EMSA and dual-luciferase reporter assays have indicated that the interaction between OsAPL and OsHB5 enhances the repressive effect of OsAPL on OsMADS27 and OsWRKY102. Collectively, our findings discovered a novel regulatory module, OsHB5-OsAPL-OsMADS27/OsWRKY102, which plays a significant role in controlling grain size in rice. These discoveries provide potential targets for breeding high-yield and high-quality rice varieties.


Asunto(s)
Oryza , Oryza/genética , Oryza/metabolismo , Sitios de Carácter Cuantitativo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Grano Comestible/metabolismo , Fenotipo
16.
3D Print Addit Manuf ; 11(1): 24-39, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38389685

RESUMEN

Invar 36 exhibits extremely low thermal expansion coefficients at low temperatures but also low yield strength (YS), which greatly restricts its application as a structural material. In this study, a small fraction of pure titanium powder particles was added into Invar 36 by powder mixing and selective laser melting (SLM) with the aim of further improving tensile strengths of Invar 36. It was found that increased laser power led to increased grain size and to slight decrease in YS in Invar 36. During SLM, amorphous SiO2 nanoparticles were formed and homogeneously distributed in Invar 36. With the addition of 2 at% Ti powder particles, grains became larger and the crystallographic texture along <001> and <111> increased to some extent. Moreover, the bottom of solidified melt pools was segregated with Ti while the matrix was homogeneously decorated by a great number of nano-sized spherical Ti2O3 particles. These particles were found to have effectively impeded dislocation motion during plastic deformation, leading to significant improvement in 0.2% YS and ultimate tensile strength. The above precipitation led to consumption of a small amount of Ni from the matrix, which caused a minor compromise in thermal expansion properties. Nonetheless, the newly synthesized Invar 36-Ti alloy still exhibits low thermal expansion coefficients at low temperatures and remarkably enhanced tensile strengths.

17.
Behav Sci (Basel) ; 14(2)2024 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-38392469

RESUMEN

Children with autism exhibit more pronounced symptoms of both problem behaviors and motor coordination difficulties. Yoga, recognized as an effective intervention modality, can be valuable after assessing its efficacy in addressing problem behaviors and motor coordination challenges, ultimately contributing to symptom alleviation in autism. The randomized controlled trial (RCT) was used to divide 17 children with autism into an intervention group (n = 9) and a control group (n = 8). The intervention group participated in an 8-week yoga intervention training (three sessions/week, 45-50 min/session), and the control group did not participate in yoga training but only in daily program activities. Pre-test, mid-test, post-test, and after delayed test, teachers assessed the effect of yoga intervention on problem behaviors of children with autism through the Aberrant Behavior Checklist (ABC) and the effect of yoga intervention on motor coordination through the Movement Assessment Battery for Children-Second Edition (MABC2). Results show that the yoga intervention is effective in reducing problem behaviors and improving motor coordination in children with autism. Yoga intervention significantly reduces irritability and social withdrawal in children with autism. Yoga intervention had the most significant improvement in ball skills and static and dynamic balance.

18.
Plant Physiol Biochem ; 207: 108420, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38324953

RESUMEN

Cyclic electron transport (CET) around photosystem I (PSI) mediated by the NADH dehydrogenase-like (NDH) complex is closely related to plant salt tolerance. However, whether overexpression of a core subunit of the NDH complex affects the photosynthetic electron transport under salt stress is currently unclear. Here, we expressed the NDH complex L subunit (Ndhl) genes ZmNdhl1 and ZmNdhl2 from C4 plant maize (Zea mays) or OsNdhl from C3 plant rice (Oryza sativa) using a constitutive promoter in rice. Transgenic rice lines expressing ZmNdhl1, ZmNdhl2, or OsNdhl displayed enhanced salt tolerance, as indicated by greater plant height, dry weight, and leaf relative water content, as well as lower malondialdehyde content compared to wild-type plants under salt stress. Fluorescence parameters such as post-illumination rise (PIR), the prompt chlorophyll a fluorescence transient (OJIP), modulated 820-nm reflection (MR), and delayed chlorophyll a fluorescence (DF) remained relatively normal in transgenic plants during salt stress. These results indicate that expression of ZmNdhl1, ZmNdhl2, or OsNdhl increases cyclic electron transport activity, slows down damage to linear electron transport, alleviates oxidative damage to the PSI reaction center and plastocyanin, and reduces damage to electron transport on the receptor side of PSI in rice leaves under salt stress. Thus, expression of Ndhl genes from maize or rice improves salt tolerance by enhancing photosynthetic electron transport in rice. Maize and rice Ndhl genes played a similar role in enhancing salinity tolerance and avoiding photosynthetic damage.


Asunto(s)
Oryza , Tolerancia a la Sal , Transporte de Electrón , Tolerancia a la Sal/genética , Clorofila A/metabolismo , NADH Deshidrogenasa/genética , NADH Deshidrogenasa/metabolismo , Fotosíntesis , Complejo de Proteína del Fotosistema I/metabolismo , Oryza/genética , Oryza/metabolismo
19.
Insect Sci ; 2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38388801

RESUMEN

The two-spotted spider mite (Tetranychus urticae) is one of the most well-known pesticide-resistant agricultural pests, with resistance often attributed to changes such as target-site mutations and detoxification activation. Recent studies show that pesticide resistance can also be influenced by symbionts, but their involvement in this process in spider mites remains uncertain. Here, we found that infection with Wolbachia, a well-known bacterial reproductive manipulator, significantly increased mite survival after exposure to the insecticides abamectin, cyflumetofen, and pyridaben. Wolbachia-infected (WI) mites showed higher expression of detoxification genes such as P450, glutathione-S-transferase (GST), ABC transporters, and carboxyl/cholinesterases. RNA interference experiments confirmed the role of the two above-mentioned detoxification genes, TuCYP392D2 and TuGSTd05, in pesticide resistance. Increased GST activities were also observed in abamectin-treated WI mites. In addition, when wild populations were treated with abamectin, WI mites generally showed better survival than uninfected mites. However, genetically homogeneous mites with different Wolbachia strains showed similar survival. Finally, abamectin treatment increased Wolbachia abundance without altering the mite's bacterial community. This finding highlights the role of Wolbachia in orchestrating pesticide resistance by modulating host detoxification. By unraveling the intricate interplay between symbionts and pesticide resistance, our study lays the groundwork for pioneering strategies to combat agricultural pests.

20.
ACS Appl Bio Mater ; 7(2): 1240-1249, 2024 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-38323544

RESUMEN

The relatively high linear energy transfer of Auger electrons, which can cause clustered DNA damage and hence efficient cell death, makes Auger emitters excellent candidates for attacking metastasized tumors. Moreover, gammas or positrons are usually emitted along with the Auger electrons, providing the possibility of theragnostic applications. Despite the promising properties of Auger electrons, only a few radiopharmaceuticals employing Auger emitters have been developed so far. This is most likely explained by the short ranges of these electrons, requiring the delivery of the Auger emitters to crucial cell parts such as the cell nucleus. In this work, we combined the Auger emitter 125I and ultrasmall gold nanoparticles to prepare a novel radiopharmaceutical. The 125I labeled gold nanoparticles were shown to accumulate at the cell nucleus, leading to a high tumor-killing efficiency in both 2D and 3D tumor cell models. The results from this work indicate that ultrasmall nanoparticles, which passively accumulate at the cell nucleus, have the potential to be applied in targeted radionuclide therapy. Even better tumor-killing efficiency can be expected if tumor-targeting moieties are conjugated to the nanoparticles.


Asunto(s)
Nanopartículas del Metal , Neoplasias , Humanos , Radiofármacos/uso terapéutico , Oro , Nanopartículas del Metal/uso terapéutico , Radioisótopos de Yodo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA