Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Nanoscale Horiz ; 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38668875

RESUMEN

Optoelectronic devices present a promising avenue for emulating the human visual system. However, existing devices struggle to maintain optical image information after removing external stimuli, preventing the integration of image perception and memory. The development of optoelectronic memory devices offers a feasible solution to bridge this gap. Simultaneously, the artificial vision for perceiving and storing ultraviolet (UV) images is particularly important because UV light carries information imperceptible to the naked eye. This study introduces a multi-level UV optoelectronic memory based on gallium nitride (GaN), seamlessly integrating UV sensing and memory functions within a single device. The embedded SiO2 side-gates around source and drain regions effectively extend the lifetime of photo-generated carriers, enabling dual-mode storage of UV signals in terms of threshold voltage and ON-state current. The optoelectronic memory demonstrates excellent robustness with the retention time exceeding 4 × 104 s and programming/erasing cycles surpassing 1 × 105. Adjusting the gate voltage achieves five distinct storage states, each characterized by excellent retention, and efficiently modulates erasure times for rapid erasure. Furthermore, the integration of the GaN optoelectronic memory array successfully captures and stably stores specific UV images for over 7 days. The study marks a significant stride in optoelectronic memories, showcasing their potential in applications requiring prolonged retention.

2.
RSC Adv ; 13(46): 32694-32698, 2023 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-37942456

RESUMEN

The third-generation semiconductor gallium nitride (GaN) has drawn wide attention due to its high electron mobility property. However, the classical mobility calculation methods such as Hall effect and transfer length method have limitations in accurately extracting the mobility of GaN High Electron Mobility Transistor (HEMT) due to their inability to consider the resistance in non-gate region or their high fabrication costs. This work proposes an effective yet accurate computational-fitting method for extracting the mobility of GaN HEMT. The method consists of measuring the total resistance between source and drain at different gate voltages over a very small range of overdrive voltage variations, when the sum of the transconductance and capacitance of the device is regarded as constants, and fitting a unique function of the total resistance with respect to the overdrive voltage to determine the carrier mobility and the non-gate resistance. The feasibility and reliability of the method has been also verified.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA