Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 128
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Expert Rev Anti Infect Ther ; : 1-17, 2024 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-39381911

RESUMEN

INTRODUCTION: Acinetobacter baumannii complex (Abc) is currently a significant cause of difficult-to-treat pneumonia. Due to the high prevalence rates of carbapenem- and extensively drug-resistant (CR, XDR) phenotypes, limited antibiotic options are available for the effective treatment of pneumonia caused by CR/XDR-Abc. AREAS COVERED: In vitro susceptibility data, relevant pharmacokinetic profiles (especially the penetration ratios from plasma into epithelial-lining fluid), and pharmacodynamic indices of key antibiotics against CR/XDR-Abc are reviewed. EXPERT OPINION: Doubling the routine intravenous maintenance dosages of conventional tigecycline (100 mg every 12 h) and minocycline (200 mg every 12 h) might be recommended for the effective treatment of pneumonia caused by CR/XDR-Abc. Nebulized polymyxin E, novel parenteral rifabutin BV100, and new polymyxin derivatives (SPR206, MRX-8, and QPX9003) could be considered supplementary combination options with other antibiotic classes. Regarding other novel antibiotics, the potency of sulbactam-durlobactam (1 g/1 g infused over 3 h every 6 h intravenously) combined with imipenem-cilastatin, and the ß-lactamase inhibitor xeruborbactam, is promising. Continuous infusion of full-dose cefiderocol is likely an effective treatment regimen for CR/XDR-Abc pneumonia. Zosurabalpin exhibits potent anti-CR/XDR-Abc activity in vitro, but its practical use in clinical therapy remains to be evaluated. The clinical application of antimicrobial peptides and bacteriophages requires validation.

2.
Int J Antimicrob Agents ; : 107363, 2024 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-39455015

RESUMEN

To evaluate the susceptibility profiles of regional meropenem-resistant (MEM-R) potential non-class B carbapenemase-producing Enterobacterales (CPE) isolates (without confirmation by phenotypic tests) against important antibiotics, we extracted data from the 2018-2022 Antimicrobial Testing Leadership and Surveillance. This data included susceptibility information of MEM-R potential non-class B CPE isolates against indicated antibiotics - amikacin [AMK], gentamicin [GM], ceftazidime-avibactam [CZA], colistin [CST], meropenem-vaborbactam [MVB], and tigecycline [TGC] - from sepsis patients hospitalized in ICUs across six major regions. Carbapenemase-encoding genes of the tested CPE isolates, determined by multiplex PCR and Sanger sequencing, were also analyzed. Susceptibility breakpoints recommended by CLSI 2024 and US FDA criteria (for TGC only) against Enterobacterales were employed. A total of 1,500 potential non-class B CPE isolates (89% of which were Klebsiella pneumoniae) were tested globally. Resistance rates to AMK and GM against the evaluated isolates were statistically higher in Africa/the Middle East, Europe, and India compared to other regions. A similar pattern was observed in the susceptibility of these potential CPE isolates to CZA and MVB. High CST resistance rates were noted in Asia, Latin America, and Europe (29%-35%). Furthermore, the proportions of potential CPE isolates carrying genes encoding blaOXA variants were notably higher among the tested CPE isolates in India, Europe, and Africa/the Middle East regions (99.2%, 53.3%, and 96.7%, respectively) compared to other regions. Trends in resistance to important antibiotics among potential non-class B CPE isolates warrant close monitoring.

3.
Nutrients ; 16(18)2024 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-39339761

RESUMEN

BACKGROUND: Hispidin, a polyphenol component mainly derived from the medicinal mushroom species Phellinus and Inonotus, shows promise for biomedical applications, yet its potential in wound healing remains largely unexplored. This research investigates the wound healing effects of hispidin through in vitro and in vivo experiments, while also evaluating its antimicrobial properties and safety profile. METHODS: In vitro scratch assays were conducted to evaluate the impact of hispidin on the migration of NIH-3T3 cells. The wound healing potential of hispidin was assessed in rats using excision wounds, dead space wounds, and linear incisions, treated with various topical ointments including a simple ointment, 2.5% (w/w) and a 5% (w/w) hispidin ointment, and a 0.2% (w/w) nitrofurazone ointment, administered at 0.2 g daily for 14 days. RESULTS: Hispidin demonstrated antimicrobial properties and was particularly effective against Staphylococcus epidermidis. Hispidin enhanced NIH-3T3 cell viability, and promoted wound closure in scratch assays, correlating with increased levels of FGF21, TGF-ß1, EGF, and VEGF. In excision wound models, the 5% (w/w) hispidin ointment improved wound contraction, epithelialization, tissue regeneration, fibroblast activity, and angiogenesis. In the granulation tissue from dead space wound models, hispidin reduced pro-inflammatory cytokines (TNF-α, IL-6, IL-1ß) and lipid peroxidation, while increasing anti-inflammatory cytokines (IL-10) and antioxidant activities (SOD, GPx, CAT), along with connective tissue markers like hydroxyproline, hexosamine, and hexuronic acid. Hispidin also enhanced wound breaking strength in incision models. Acute dermal toxicity studies indicated no adverse effects at 2000 mg/kg. CONCLUSIONS: These findings highlight hispidin's potential in wound care, demonstrating its antimicrobial, regenerative, and safety properties.


Asunto(s)
Cicatrización de Heridas , Animales , Cicatrización de Heridas/efectos de los fármacos , Células 3T3 NIH , Ratones , Ratas , Masculino , Pomadas , Pironas/farmacología , Supervivencia Celular/efectos de los fármacos , Ratas Sprague-Dawley , Staphylococcus epidermidis/efectos de los fármacos , Piel/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Antiinfecciosos/farmacología , Antibacterianos/farmacología
4.
J Microbiol Immunol Infect ; 57(5): 801-811, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39147627

RESUMEN

OBJECTIVES: To understand the microbial profile and investigate the independent predictors for healthcare-associated pneumonia (HCAP) pertinaciously caused by isolates of multidrug-resistant (MDR) Gram-negative bacteria (GNB). METHODS: Multicenter ICU patients who received appropriate antibiotic treatments for preceding pneumonia due to MDR GNB isolates and subsequently developed HCAP caused by either MDR GNB (n = 126) or non-MDR GNB (n = 40) isolates in Taiwan between 2018 and 2023 were enrolled. Between the groups of patients with HCAP due to MDR GNB and non-MDR GNB, the proportions of the following variables, including demographic characteristics, important co-morbidities, nursing home residence, physiological severity, intervals between two hospitalizations, steroid use, the tracheostomy tube use alone, ventilator support, and the predominant GNB species involving HCAP, were analyzed using the chi-square test. Logistic regression was employed to explore the independent predictors for HCAP persistently caused by MDR GNB in the aforementioned variables with a P-value of <0.15 in the univariate analysis. RESULTS: MDR-Klebsiella pneumoniae, Pseudomonas aeruginosa, and Acinetobacter baumannii complex were the three predominant species causing HCAP. Chronic structural lung disorders, diabetes mellitus, intervals of ≤30 days between two hospitalizations, use of the tracheostomy tube alone, and prior pneumonia caused by MDR A. baumannii complex were shown to independently predict the HCAP tenaciously caused by MDR GNB. Conversely, the preceding pneumonia caused by MDR P. aeruginosa was a negative predictor. CONCLUSION: Identifying predictors for HCAP persistently caused by MDR GNB is crucial for prescribing appropriate antibiotics.


Asunto(s)
Antibacterianos , Farmacorresistencia Bacteriana Múltiple , Bacterias Gramnegativas , Infecciones por Bacterias Gramnegativas , Neumonía Asociada a la Atención Médica , Humanos , Taiwán/epidemiología , Masculino , Femenino , Anciano , Bacterias Gramnegativas/efectos de los fármacos , Bacterias Gramnegativas/clasificación , Bacterias Gramnegativas/aislamiento & purificación , Antibacterianos/uso terapéutico , Infecciones por Bacterias Gramnegativas/microbiología , Infecciones por Bacterias Gramnegativas/tratamiento farmacológico , Infecciones por Bacterias Gramnegativas/epidemiología , Persona de Mediana Edad , Neumonía Asociada a la Atención Médica/microbiología , Neumonía Asociada a la Atención Médica/tratamiento farmacológico , Neumonía Asociada a la Atención Médica/epidemiología , Unidades de Cuidados Intensivos/estadística & datos numéricos , Anciano de 80 o más Años , Factores de Riesgo
5.
Arch Med Sci ; 20(2): 632-640, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38757031

RESUMEN

Introduction: Impairments in wound healing commonly occur among patients with diabetes. Herbal medicines have a long history of usage in wound care management. Super green (SG) is a newly discovered natural product obtained from Musa paradisiaca. This study aimed to investigate the efficacy of the topical application of SG in healing surgical wounds in diabetic rats. Material and methods: Wistar rats received a one-time intraperitoneal injection of streptozotocin to induce type 1 diabetes. Full-thickness excisional skin wounds were created on the backs of the rats. The relevant groups were topically treated with the indicated concentrations of SG or vehicle dressing throughout the study duration. Histological analysis was performed and the mRNA levels of proinflammatory cytokines were measured to evaluate the improvement of wound closure. Results: The wound area ratio of the SG (1/6000 dilution)-treated group was greatly reduced compared to that of the vehicle-treated group. The histological analysis showed fewer inflammatory cells, accelerated re-epithelialization, and increased collagen deposition in SG 1/6000-treated wounds. The gene expression levels of tumor necrosis factor-α, interleukin-1ß, and interleukin-6 were decreased and the levels of type I and type III collagen were increased after SG treatment. Conclusions: These results show that the most therapeutically efficacious concentration of SG (1/6000 dilution) can enhance wound repair in diabetic rats. SG has the potential to be a new treatment strategy for diabetic wounds.

6.
Nutrients ; 16(8)2024 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-38674927

RESUMEN

The excessive activation of glutamate in the brain is a factor in the development of vascular dementia. γ-Oryzanol is a natural compound that has been shown to enhance brain function, but more research is needed to determine its potential as a treatment for vascular dementia. This study investigated if γ-oryzanol can delay or improve glutamate neurotoxicity in an in vitro model of differentiated HT-22 cells and explored its neuroprotective mechanisms. The differentiated HT-22 cells were treated with 0.1 mmol/L glutamate for 24 h then given γ-oryzanol at appropriate concentrations or memantine (10 µmol/L) for another 24 h. Glutamate produced reactive oxygen species and depleted glutathione in the cells, which reduced their viability. Mitochondrial dysfunction was also observed, including the inhibition of mitochondrial respiratory chain complex I activity, the collapse of mitochondrial transmembrane potential, and the reduction of intracellular ATP levels in the HT-22 cells. Calcium influx triggered by glutamate subsequently activated type II calcium/calmodulin-dependent protein kinase (CaMKII) in the HT-22 cells. The activation of CaMKII-ASK1-JNK MAP kinase cascade, decreased Bcl-2/Bax ratio, and increased Apaf-1-dependent caspase-9 activation were also observed due to glutamate induction, which were associated with increased DNA fragmentation. These events were attenuated when the cells were treated with γ-oryzanol (0.4 mmol/L) or the N-methyl-D-aspartate receptor antagonist memantine. The results suggest that γ-oryzanol has potent neuroprotective properties against glutamate excitotoxicity in differentiated HT-22 cells. Therefore, γ-oryzanol could be a promising candidate for the development of therapies for glutamate excitotoxicity-associated neurodegenerative diseases, including vascular dementia.


Asunto(s)
Ácido Glutámico , Mitocondrias , Fármacos Neuroprotectores , Fenilpropionatos , Especies Reactivas de Oxígeno , Ácido Glutámico/toxicidad , Fenilpropionatos/farmacología , Animales , Fármacos Neuroprotectores/farmacología , Ratones , Línea Celular , Especies Reactivas de Oxígeno/metabolismo , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Oryza/química , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Memantina/farmacología , Apoptosis/efectos de los fármacos , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Neuronas/efectos de los fármacos , Neuronas/metabolismo
7.
Pharmaceuticals (Basel) ; 17(4)2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38675498

RESUMEN

The phenolic aldehyde syringaldehyde (SA) has been shown to have an antihyperglycemic effect in diabetic rats due to increased glucose utilization and insulin sensitivity. To understand the direct effect of SA on the GLP-1 receptor, STZ-induced diabetic rats were used. The levels of pro-inflammatory cytokines, liver enzymes, and renal function were measured using specific ELISA kits. The mechanisms of SA effects were investigated using CHO-K1 cells, pancreatic Min-6 cells, and cardiomyocyte H9c2 cells. The results indicated that the antihyperglycemic effect of SA in diabetic rats was abolished by blocking the GLP-1 receptor with an antagonist. SA has a direct effect on the GLP-1 receptor when using CHO-K1 cells transfected with the exogenous GLP-1 receptor gene. In addition, SA stimulated insulin production in Min-6 cells by activating GLP-1 receptors. SA caused a dose-dependent rise in GLP-1 receptor mRNA levels in cardiac H9c2 cells. These in vitro results support the notion that SA has a direct effect on the GLP-1 receptor. Otherwise, SA inhibited the increase of pro-inflammatory cytokines, including interleukins and tumor TNF-α, in type 1 diabetic rats in a dose-dependent manner. Moreover, as with liraglutide, SA reduced plasma lipid profiles, including total cholesterol and triglyceride, in mixed diet-induced type 2 diabetic rats. Intriguingly, chronic treatment with SA (as with liraglutide) reversed the functions of both the liver and the kidney in these diabetic rats. SA displayed less efficiency in reducing body weight and food consumption compared to liraglutide. In conclusion, SA effectively activates GLP-1 receptors, resulting in a reduction in diabetic-related complications in rats. Therefore, it is beneficial to develop SA as a chemical agonist for clinical applications in the future.

8.
Heliyon ; 10(7): e28755, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38586372

RESUMEN

Fish mint, Houttuynia cordata Thunb. (HCT) is an edible vegetable that has also been used in traditional folk medicines. As both a medicinal herb and a dietary source, HCT has been clinically proven to be a pivotal ingredient in formulas administered to alleviate COVID-19 symptoms. With the increasing market demand for imported materials, ensuring the quality consistency of HCT becomes a significant concern. In this study, the growing time for hydroponically-cultivated HCT with seaweed extract and amino acids added (HCTW) reduced by half compared to conventional soil-cultivated HCT (HCTS). Key quantified components in HCTW, flavonoid glycosides and caffeoylquinic acid derivatives, exhibited a 143% increase over HCTS. These crucial constituents were responsible for possessing antioxidant activity (IC50 < 25 µg/mL) and anti-nitrite oxide production (IC50 < 20 µg/mL). An economically-designed hydroponic system with appropriate additives is proposed to replace HCTS with improvements of growth time, overall production yields, and bioactive qualities.

9.
J Glob Antimicrob Resist ; 36: 411-418, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38331030

RESUMEN

OBJECTIVES: To evaluate the susceptibility of globally pneumonia-causing meropenem-resistant (MEM-R) Acinetobacter baumannii isolates against important antibiotics and estimate appropriate dosages of indicated antibiotics. METHODS: We extracted the 2014-2021 Antimicrobial Testing of Leadership Surveillance database regarding the susceptibility of MEM-R A. baumannii isolates causing pneumonia against important antibiotics. The susceptibility and carbapenemase-encoding gene (CPEG) data of pneumonia-causing MEM-R A. baumannii isolates from patients hospitalized in intensive care units of five major regions were analyzed. The susceptibility breakpoints (SBP) recommended by the Clinical and Laboratory Standards Institute (CLSI) in 2022, other necessary criteria [SBP of MIC for colistin, 2 mg/L, in the CLSI 2018; and cefoperazone-sulbactam (CFP-SUL), 16 mg/L], and the pharmacokinetic and pharmacodynamic data of indicated antibiotics were employed. RESULTS: Applying the aforementioned criteria, we observed the susceptible rates of colistin, minocycline, and CFP-SUL against the pneumonia-causing MEM-R A. baumannii isolates globally (n = 2905) were 93.2%, 69.1%, and 26.3%, respectively. Minocycline was significantly more active in vitro (MIC ≤4 mg/L) against the pneumonia-causing MEM-R A. baumannii isolates collected from North and South America compared to those from other regions (>90% vs. 58-72%). Additionally, blaOXA-23 and blaOXA-72 were the predominant CPEG in pneumonia-causing MEM-R A. baumannii isolates. CONCLUSIONS: After deliberative estimations, dosages of 200 mg minocycline intravenously every 12 h (SBP, 8 mg/L), 100 mg tigecycline intravenously every 12 h (SBP, 1 mg/L), and 160 mg nebulized colistin methanesulphonate every 8 h (SBP, 2 mg/L) are needed for the effective treatment of pneumonia-causing MEM-R A. baumannii isolates.


Asunto(s)
Infecciones por Acinetobacter , Acinetobacter baumannii , Antiinfecciosos , Neumonía , Humanos , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Meropenem/farmacología , Meropenem/uso terapéutico , Minociclina/farmacología , Colistina/farmacología , Colistina/uso terapéutico , Liderazgo , Farmacorresistencia Bacteriana Múltiple , Infecciones por Acinetobacter/tratamiento farmacológico , Antiinfecciosos/farmacología , Neumonía/tratamiento farmacológico
10.
Int J Antimicrob Agents ; 63(3): 107090, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38242250

RESUMEN

This study examined the geographic distribution of minimum inhibitory concentrations (MICs) of antifungals against Cryptococcus isolates. Data were collected on the MICs of specific antifungals (amphotericin B, 5-flucytosine, fluconazole, voriconazole, posaconazole, and isavuconazole) against various Cryptococcus species for the period 2010 to 2020 from the Antimicrobial Testing Leadership and Surveillance database. Cryptococcus isolates were collected from samples of blood and cerebrospinal fluid (CSF) from patients hospitalized in different regions worldwide. We applied the epidemiological cutoff values (ECVs) of antifungals against various Cryptococcus species to distinguish wild-type (WT) from non-WT Cryptococcus isolates. A total of 395 isolates of Cryptococcus species cultured from blood (n = 201) or CSF (n = 194) were analyzed. C. grubii (n = 270), C. neoformans (n = 111), and C. gattii (n = 11) were the three predominant species causing bloodstream infections (BSI) or meningitis/meningoencephalitis (MME). The proportion of MICs above the ECV (1 mg/L) for amphotericin B among C. neoformans isolates was significantly lower than that among C. gattii isolates (MICs >0.5 mg/L; P < 0.001), as evaluated using the chi-square test. For most isolates of the three predominant Cryptococcus species, the MICs of new triazoles were ≤0.25 mg/L. The MICs of fluconazole and amphotericin B in the BSI/MME-causing Cryptococcus isolates collected from patients hospitalized in the Asia-Western Pacific region and Europe were significantly lower (i.e., the distributions were more leftward) than those in North America and Latin America. Ongoing monitoring of MIC data for important antifungals against cryptococcosis is crucial.


Asunto(s)
Antiinfecciosos , Cryptococcus gattii , Cryptococcus neoformans , Endrín/análogos & derivados , Humanos , Antifúngicos/farmacología , Anfotericina B , Fluconazol/farmacología , Liderazgo
11.
Pharmaceuticals (Basel) ; 16(10)2023 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-37895888

RESUMEN

Andrographolide (ADG) is contained in bitter plants, and its effects are widely thought to be associated with taste receptors. The current study used animal studies and cell lines to investigate the role of ADG in diabetic models. The Takeda G-protein-coupled receptor (TGR5) was directly influenced by ADG, and this boosted GLP-1 synthesis in CHO-K1 cells transfected with the TGR5 gene. However, this was not seen in TGR5-mutant cells. The human intestinal L-cell line NCI-H716 showed an increase in GLP-1 production in response to ADG. In NCI-H716 cells, the TGR5 inhibitor triamterene reduced the effects of ADG, including the rise in TGR5 mRNA levels that ADG caused. Additionally, as with the antihyperglycemic impact in type-1 diabetic rats, the increase in plasma-active GLP-1 level caused by ADG was enhanced by a DPP-4 inhibitor. The recovery of the hypoglycemic effect in diabetic rats and the increase in plasma GLP-1 caused by ADG were both suppressed by TGR5 blockers. As a result, after activating TGR5, ADG may boost GLP-1 synthesis in diabetic rats, enhancing glucose homeostasis. In Min-6 cells, a pancreatic cell line grown in culture, ADG-induced insulin secretion was also examined. Blocking GLP-1 receptors had little impact, suggesting that ADG directly affects TGR5 activity in Min-6 cells. A TGR5 mRNA level experiment in Min-6 cells further confirmed that TGR5 is activated by ADG. The current study revealed a novel finding suggesting that ADG may activate TGR5 in diabetic rats in a way that results in enhanced insulin and GLP-1 production, which may be helpful for future research and therapies.

12.
Stem Cells Int ; 2023: 7179592, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37638334

RESUMEN

Objectives: Acute respiratory distress syndrome (ARDS) is a critical complication in severe COVID-19 patients. The intravenous infusion (IVF) of umbilical cord- (UC-) mesenchymal stem cells (MSCs), validated to substantially reduce the release of several inflammatory cytokines in vivo, was also shown to exhibit benefits in improving hypoxemia among severe COVID-19 patients. A single dose of IVF-UC-MSCs therapy for severe COVID-19 patients was shown to alleviate the initial ARDS severity, but have 50%-67% case-fatality rates. In Taiwan, few adult patients with severe COVID-19-induced ARDS receiving compassionate adjuvant treatment consisting of either a single dose (1-10 × 106 cells/kg body weight (kg BW)) or three doses (5 × 106 cells/kg BW in each dose) of IVF-UC-MSCs had good outcomes. However, the optimal dosage and rounds of IVF-UC-MSCs administration for the treatment of severe COVID-19 patients with ARDS are undetermined. Methods: We reviewed the 2020-2022 PubMed literature database concerning the clinical efficacy of IVF-UC-MSCs among severe COVID-19 patients. Results: The data of COVID-19 case series in the PubMed literature revealed a notable heterogeneity in the therapeutic dosage (a single dose: 1-10 × 106 cells/kg BW; and three doses: 50-200 × 106 cells/kg BW in each dose) and the post-ARDS days of IVF-UC-MSCs administration (a single dose: 1-12; and multiple doses: 5-14) for the treatment of severe COVID-19-associated ARDS. The survival rates among these severe COVID-19 patients ranged from 50% to 76%. However, an overall rate of 93.1% of significant improvement in hypoxemia was observed for the COVID-19 survivors receiving IVF-UC-MSCs at the initial ARDS stage. Conclusions: According to our analysis, the ideal treatment dosage of IVF-UC-MSCs for severe COVID-19-induced ARDS is likely 5 × 106 cells/kg BW for three cycles within 5 days of ARDS onset in severe COVID-19 patients.

13.
Nutrients ; 15(3)2023 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-36771255

RESUMEN

Degenerative diseases of the brain include Parkinson's disease (PD), which is associated with moveable signs and is still incurable. Hispidin belongs to polyphenol and originates primarily from the medicinal fungi Inonotus and Phellinus, with distinct biological effects. In the study, MES23.5 cells were induced by 1-methyl-4-phenylpyridinium (MPP+) to build a cell model of PD in order to detect the protective effect of hispdin and to specify the underlying mechanism. Pretreatment of MES23.5 cells with 1 h of hispdin at appropriate concentrations, followed by incubation of 24 h with 2 µmol/L MPP+ to induce cell damage. MPP+ resulted in reactive oxygen species production that diminished cell viability and dopamine content. Mitochondrial dysfunction in MS23.5 cells exposed to MPP+ was observed, indicated by inhibition of activity in the mitochondrial respiratory chain complex I, the collapse of potential in mitochondrial transmembrane, and the liberation of mitochondrial cytochrome c. Enabling C-Jun N-terminal kinase (JNK), reducing Bcl-2/Bax, and enhancing caspase-9/caspase-3/PARP cleavage were also seen by MPP+ induction associated with increased DNA fragmentation. All of the events mentioned above associated with MPP+-mediated mitochondrial-dependent caspases cascades were attenuated under cells pretreatment with hispidin (20 µmol/L); similar results were obtained during cell pretreatment with pan-JNK inhibitor JNK-IN-8 (1 µmol/L) or JNK3 inhibitor SR3576 (25 µmol/L). The findings show that hispidin has neuroprotection against MPP+-induced mitochondrial dysfunction and cellular apoptosis and suggest that hispidin can be seen as an assist in preventing PD.


Asunto(s)
Fármacos Neuroprotectores , Enfermedad de Parkinson , Humanos , 1-Metil-4-fenilpiridinio/toxicidad , Neuronas Dopaminérgicas , Enfermedad de Parkinson/etiología , Enfermedad de Parkinson/prevención & control , Línea Celular , Apoptosis , Mitocondrias , Especies Reactivas de Oxígeno/farmacología , Línea Celular Tumoral , Fármacos Neuroprotectores/farmacología
14.
Int J Antimicrob Agents ; 61(5): 106763, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36804370

RESUMEN

The infections caused by multidrug- and extensively drug-resistant (MDR, XDR) bacteria, including Gram-positive cocci (GPC, including methicillin-resistant Staphylococcus aureus, MDR-Streptococcus pneumoniae and vancomycin-resistant enterococci) and Gram-negative bacilli (GNB, including carbapenem-resistant [CR] Enterobacterales, CR-Pseudomonas aeruginosa and XDR/CR-Acinetobacter baumannii complex) can be quite challenging for physicians with respect to treatment decisions. Apart from complicated urinary tract and intra-abdominal infections (cUTIs, cIAIs), bloodstream infections and pneumonia, these difficult-to-treat bacteria also cause infections at miscellaneous sites (bones, joints, native/prosthetic valves and skin structures, etc.). Antibiotics like dalbavancin, oritavancin, telavancin and daptomycin are currently approved for the treatment of acute bacterial skin and skin structural infections (ABSSSIs) caused by GPC. Additionally, ceftaroline, linezolid and tigecycline have been formally approved for the treatment of community-acquired pneumonia and ABSSSI. Cefiderocol and meropenem-vaborbactam are currently approved for the treatment of cUTIs caused by XDR-GNB. The spectra of ceftazidime-avibactam and imipenem/cilastatin-relebactam are broader than that of ceftolozane-tazobactam, but these three antibiotics are currently approved for the treatment of hospital-acquired pneumonia, cIAIs and cUTIs caused by MDR-GNB. Clinical investigations of other novel antibiotics (including cefepime-zidebactam, aztreonam-avibactam and sulbactam-durlobactam) for the treatment of various infections are ongoing. Nevertheless, evidence for adequate antibiotic regimens against osteomyelitis, arthritis and infective endocarditis due to several GPC and MDR-GNB is still mostly lacking. A comprehensive review of PubMed publications was undertaken and the formal indications and off-label use of important conventional and novel antibiotics against MDR/XDR-GPC and GNB isolates cultured from miscellaneous sites are presented in this paper.


Asunto(s)
Antibacterianos , Staphylococcus aureus Resistente a Meticilina , Antibacterianos/uso terapéutico , Antibacterianos/farmacología , Uso Fuera de lo Indicado , Cefalosporinas/farmacología , Farmacorresistencia Bacteriana Múltiple , Carbapenémicos/farmacología , Bacterias Gramnegativas , Pruebas de Sensibilidad Microbiana
15.
Nutrients ; 14(23)2022 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-36501032

RESUMEN

Parkinson's disease (PD) is a progressive disorder that affects brain nerve cells responsible for body motion and remains incurable. p-Hydroxybenzyl alcohol (HBA) is the primary phenolic compound in Gastrodiae Rhizoma, known for its therapeutic benefits against neurodegeneration. However, the protective effect of HBA against Parkinson's disease (PD) remains unclear. The objective of this study was to evaluate the neuroprotective effects of HBA in vitro 6-hydroxydopamine (6-OHDA)-induced PD model in SH-SY5Y cells. SH-SY5Y cells were pretreated with various concentrations of HBA for 1 h and incubated with 100 µmol/L 6-OHDA for 24 h to induce cellular lesions. 2,5-Diphenyl-2H-tetrazolium bromide was used to detect cellular viability. 2',7'-dichlorofluorescin oxidation detects reactive oxygen species (ROS). The enzyme-linked immunosorbent assay was used to determine the activities of superoxide dismutase, catalase, and glutathione peroxidase. The cellular mitochondrial function was identified through the collapse of the mitochondrial membrane potential, the release of cytochrome c, and the synthesis of mitochondrial ATP. Expression of pro-and anti-apoptotic factors was measured by Western blot. HBA enhanced cell viability, blocked ROS overproduction, and reduced antioxidant activities induced by 6-OHDA. HBA also reduced mitochondrial dysfunction and cell death caused by 6-OHDA. Moreover, HBA reversed the 6-OHDA-mediated activation of c-Jun N-terminal kinase, the downregulation of the Bcl-2/Bax ratio, the Apaf-1 upregulation and the induction of caspase-9, caspase-3, and PARP cleavage. This study shows that the protective effects of HBA against 6-OHDA-induced cell injury provide the potential preventive effects of HBA, making it a promising preventive agent for PD.


Asunto(s)
Neuroblastoma , Fármacos Neuroprotectores , Enfermedad de Parkinson , Humanos , Apoptosis , Caspasa 3/metabolismo , Línea Celular Tumoral , Supervivencia Celular , Neuroblastoma/metabolismo , Fármacos Neuroprotectores/farmacología , Oxidopamina , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/metabolismo , Especies Reactivas de Oxígeno/metabolismo , MAP Quinasa Quinasa 4/metabolismo , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo
16.
Plants (Basel) ; 11(20)2022 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-36297743

RESUMEN

Plants for therapeutics and the phytotherapy for disorders are the same thing in practice [...].

17.
Nutrients ; 14(11)2022 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-35684047

RESUMEN

The present study aimed to evaluate the role of diosmetin in alleviating advanced glycation end products (AGEs)-induced Alzheimer's disease (AD)-like pathology and to clarify the action mechanisms. Before stimulation with AGEs (200 µg/mL), SH-SY5Y cells were treated with diosmetin (10 µmol/L), increasing cell viability. The induction of AGEs on the reactive oxygen species overproduction and downregulation of antioxidant enzyme activities, including superoxide dismutase, glutathione peroxidase, and catalase, were ameliorated by diosmetin. Amyloid precursor protein upregulation, accompanied by increased production of amyloid-ß, caused by AGEs, was reversed by diosmetin. In the presence of diosmetin, not only ß-site amyloid precursor protein cleaving enzyme1 expression was lowered, but the protein levels of insulin-degrading enzyme and neprilysin were elevated. Diosmetin protects SH-SY5Y cells from endoplasmic reticulum (ER) stress response to AGEs by suppressing ER stress-induced glucose regulated protein 78, thereby downregulating protein kinase R-like endoplasmic reticulum kinase, eukaryotic initiation factor 2 α, activating transcription factor 4, and C/EBP homologous protein. Diosmetin-pretreated cells had a lower degree of apoptotic DNA fragmentation; this effect may be associated with B-cell lymphoma (Bcl) 2 protein upregulation, Bcl-2-associated X protein downregulation, and decreased activities of caspase-12/-9/-3. The reversion of diosmetin on the AGEs-induced harmful effects was similar to that produced by pioglitazone. The peroxisome proliferator-activated receptor (PPAR)γ antagonist T0070907 (5 µmol/L) abolished the beneficial effects of diosmetin on AGEs-treated SH-SY5Y cells, indicating the involvement of PPARγ. We conclude that diosmetin protects neuroblastoma cells against AGEs-induced ER injury via multiple mechanisms and may be a potential option for AD.


Asunto(s)
Enfermedad de Alzheimer , Neuroblastoma , Enfermedad de Alzheimer/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Apoptosis , Línea Celular Tumoral , Estrés del Retículo Endoplásmico , Flavonoides , Productos Finales de Glicación Avanzada/farmacología , Humanos , Neuroblastoma/patología , PPAR gamma
18.
Pharmaceuticals (Basel) ; 15(2)2022 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-35215286

RESUMEN

Myricetin is a common plant-derived flavonoid, considered an agonist of glucagon-like peptide 1 (GLP-1) receptor. It improves glycemic control and helps reduce body weight in diabetic subjects. The potential mechanisms of action of myricetin in this context might be enhancing the secretion of ß-endorphin (BER) to activate peripheral µ-opioid receptors. Moreover, adropin is a nutritionally regulated peptide hormone, which regulates energy metabolism, and plays a role in ameliorating diabetes. Because their mechanisms of insulin sensitivity are closely related, we hypothesized that myricetin may interact with adropin and plasma BER. The present study investigated the glucose-lowering effect of acute and chronic treatments of myricetin in type-1 diabetic rats. Plasma BER and adropin levels were determined by enzyme-linked immunosorbent assay (ELISA). The secretion of BER was measured in rats who received adrenalectomy. The changes in adropin gene (Enho) or mRNA level of GLP-1 receptor were measured using qPCR analysis. The results showed that myricetin dose-dependently increased plasma BER and adropin levels like the reduction of hyperglycemia after bolus injection as acute treatment. In addition, these effects of myricetin were inhibited by the antagonist of GLP-1 receptor. Moreover, in HepG2 cell line, myricetin induced GLP-1 receptor activation, which modulated the expression of adropin. In diabetic rats, the plasma adropin increased by myricetin is mainly through endogenous ß-endorphin after activation of GLP-1 receptor via bolus injection as acute treatment. Additionally, chronic treatment with myricetin increased adropin secretion in diabetic rats. In conclusion, our results provide a new finding that activation of opioid µ-receptor in the liver may enhance circulating adropin in animals.

19.
Nutrients ; 14(4)2022 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-35215394

RESUMEN

The present study investigates whether hesperetin, a citrus flavonoid, can encounter advanced glycation end-product (AGE)-induced Alzheimer's disease-like pathophysiological changes with the underlying mechanisms. SH-SY5Y cells pretreated with hesperetin before stimulation with AGEs (200 µg/mL) were assessed in the following experiments. Hesperetin (40 µmol/L) elevated the reduced cell viability induced by AGEs. Hesperetin ameliorated reactive oxygen species overproduction and the downregulation of superoxide dismutase, glutathione peroxidase, and catalase, triggered by AGEs. Amyloid precursor protein upregulation, accompanied by the increased production of Aß, caused by AGEs, was reversed by hesperetin. However, hesperetin lowered ß-site APP-cleaving enzyme 1 expression, inducing insulin-degrading and neprilysin expression. In addition, hesperetin downregulated the expressions of the AGEs-induced endoplasmic reticulum (ER) stress proteins, including 78-kDa glucose-regulated protein and C/EBP homologous protein, and lowered the phosphorylation of protein kinase R-like ER kinase and activating transcription factor 4. Hesperetin-pretreated cells had a minor apoptotic DNA fragmentation. Hesperetin is able to upregulate Bcl-2 protein expression, downregulate Bax expression, and decrease caspase-12/-9/-3 activity as well, indicating that it inhibits ER stress-mediated neuronal apoptosis. There is a similar effect between hesperetin and positive rosiglitazone control against Aß aggravation of SH-SY5Y cell injury induced by AGEs. Thus, hesperetin might be a potential agent for treating glycation-induced Aß neurotoxicity.


Asunto(s)
Enfermedad de Alzheimer , Citrus , Diabetes Mellitus , Enfermedad de Alzheimer/tratamiento farmacológico , Apoptosis , Citrus/metabolismo , Estrés del Retículo Endoplásmico , Flavonoides/farmacología , Productos Finales de Glicación Avanzada/metabolismo , Hesperidina , Humanos
20.
Molecules ; 25(19)2020 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-33036367

RESUMEN

Moscatilin can protect rat pheochromocytoma cells against methylglyoxal-induced damage. Elimination of the effect of advanced glycation end-products (AGEs) but activation of AMP-activated protein kinase (AMPK) are the potential therapeutic targets for the neurodegenerative diseases. Our study aimed to clarify AMPK signaling's role in the beneficial effects of moscatilin on the diabetic/hyperglycemia-associated neurodegenerative disorders. AGEs-induced injury in SH-SY5Y cells was used as an in vitro neurodegenerative model. AGEs stimulation resulted in cellular viability loss and reactive oxygen species production, and mitochondrial membrane potential collapse. It was observed that the cleaved forms of caspase-9, caspase-3, and poly (ADP-ribose) polymerase increased in SH-SY5Y cells following AGEs exposure. AGEs decreased Bcl-2 but increased Bax and p53 expression and nuclear factor kappa-B activation in SH-SY5Y cells. AGEs also attenuated the phosphorylation level of AMPK. These AGEs-induced detrimental effects were ameliorated by moscatilin, which was similar to the actions of metformin. Compound C, an inhibitor of AMPK, abolished the beneficial effects of moscatilin on the regulation of SH-SY5Y cells' function, indicating the involvement of AMPK. In conclusion, moscatilin offers a promising therapeutic strategy to reduce the neurotoxicity or AMPK dysfunction of AGEs. It provides a potential beneficial effect with AGEs-related neurodegenerative diseases.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Compuestos de Bencilo/farmacología , FN-kappa B/metabolismo , Adenosina Difosfato/metabolismo , Adenosina Trifosfato/metabolismo , Western Blotting , Supervivencia Celular/efectos de los fármacos , Fragmentación del ADN/efectos de los fármacos , Glutatión/metabolismo , Productos Finales de Glicación Avanzada/farmacología , Humanos , Peroxidación de Lípido/efectos de los fármacos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Enfermedades Neurodegenerativas/metabolismo , Estrés Oxidativo/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Receptor para Productos Finales de Glicación Avanzada
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...