RESUMEN
Inflammatory bowel disease (IBD) is a group of chronic relapsing diseases associated with inflammatory disorders and microbial dysbiosis of the intestine. The use of traditional Chinese medicine (TCM) to treat colitis has the advantage of fewer side effects, but the molecular mechanism is not clear. Recently, miRNAs have been recognized as novel functional small molecules in plants that have regulatory effects on biological activities. This study mainly investigated the mechanism of action of MIR2911 from Honeysuckle, the main component of TCM preparations for colitis. The results demonstrated that MIR2911 can be absorbed through the diet and secreted within host small extracellular vesicles (sEVs), acting directly on intestinal bacteria, reducing the abundance of Escherichia-Shigella, and improving colitis symptoms. This study provides a new theoretical basis for the molecular mechanism of TCM therapy and identifies a potential new drug a new drug target for the treatment of colitis.
RESUMEN
BACKGROUND: Accurate assessment of the vulnerability of carotid atherosclerotic plaques is crucial for stroke prevention. The three-dimensional (3D) magnetic resonance (MR) vessel wall imaging (VWI) has been increasingly employed to evaluate carotid plaques due to its extensive coverage and isotropic high spatial resolution. However, the accuracy of such technique lacks validation by histology. OBJECTIVE: This study aims to validate the accuracy of 3D multi-contrast MR VWI used variable-flip-angle (VFA) and turbo spin echo (TSE) readout in identifying vulnerable carotid plaques, using histological analysis as a reference. METHODS: Twenty-one male patients (mean age: 64.4 ± 7.2 years) scheduled for carotid endarterectomy (CEA) were recruited for this study. All patients underwent carotid multi-contrast MR VWI, including 3D T1- and T2-weighted variable flip angle-based turbo spin echo (VFA-TSE) sequences, as well as 3D time of flight (TOF) MR angiography (MRA), using a 3.0T MR system. Histological processing was performed for carotid plaque specimens. The presence or absence, along with the area measurements, of lipid-rich necrotic core (LRNC), intraplaque hemorrhage (IPH), and calcifications (CA) were independently evaluated on both MR images and histological sections. Cohen's kappa (κ) analysis was utilized to determine the agreement between 3D multi-contrast MR VWI and histology in identifying carotid plaque compositions before and after excluding compositions bellow certain size threshold. Spearman's correlation analysis was also conducted to assess the agreement in quantifying plaque compositions. RESULTS: A total of 81 slices of MR images were successfully matched with histological sections. Moderate to almost perfect agreements were observed between 3D MR VWI and histology in the identification of LRNC (κ: 0.85 and 0.89), IPH (κ: 0.65 and 0.69), and CA (κ: 0.46 and 0.62) before and after excluding compositions smaller than 0.79 mm2. Strong to very strong correlations were found in the quantification of plaque compositions including LRNC (r=0.88), IPH (r=0.80), and CA (r=0.74) between MR imaging and histology. CONCLUSION: The 3D VFA-TSE multi-contrast MR VWI is capable of accurately characterizing vulnerable carotid atherosclerotic plaques.
RESUMEN
This work reports a simple microfluidic method for splitting a mother droplet into two daughter droplets with high and precise volume ratios. To achieve this, a droplet-splitting microfluidic device embedded with a three-dimensional (3D) conical microstructure is fabricated, in which the high splitting ratios of monodisperse mother droplets are achieved. The volume ratio of the split daughter droplets can reach up to 265. In addition, we examined factors that affect the splitting ratio of the daughter droplets and found that the ratio is affected by the flow rates of the two individual outlet channels, the injection length of the conical microstructure, and the diameter of the original mother droplets. Numerical simulations of these parameters were conducted to gain a clearer understanding of the splitting behavior. The proposed droplet splitting device with a conical microstructure enables on-chip sample extraction and droplet volume control, which can be a powerful tool for various droplet-based applications in microfluidic devices such as viral infectivity assays and sequencing heterogeneous populations.
RESUMEN
The inertial measurement method of pipelines utilizes a Micro-Electro-Mechanical Systems Inertial Measurement Unit (MIMU) to get the three-dimensional trajectory of underground pipelines. The initial attitude is significant for the inertial measurement method of pipelines. The traditional method to obtain the initial attitude uses three-axis magnetometers to measure the Earth's magnetic field. However, the magnetic field in urban underground pipelines is intricate, which leads to the initial attitude being inaccurate. To overcome this challenge, a novel multi-position initial alignment method based on data backtracking for a single-axis FOG and a three-axis Micro-Electro-Mechanical Inertial Measurement Unit (MIMU) is proposed. Firstly, the configuration of the sensors is determined. Secondly, according to the three-point support structure of the pipeline measuring instrument, a three-position alignment scheme is designed. Additionally, an initial alignment algorithm using the data backtracking method is developed. In this algorithm, a rough initial alignment is conducted by the data from single-axis FOG, and a fine initial alignment is conducted by the data from FOG/MIMU. Finally, an experiment was conducted to validate this method. The experiment results indicate that the pitch and roll angle errors are less than 0.05°, and the azimuth angle errors are less than 0.2°. This improved the precision of the 3-D trajectory of underground pipelines.
RESUMEN
Electrochemical synthesis of hydrogen peroxide (H2O2) via the two-electron oxygen reduction reaction (2e--ORR) provides an alternative method to the energy-intensive anthraquinone method. Metal macrocycles with precise coordination are widely used for 2e--ORR electrocatalysis, but they have to be commonly loaded on conductive substrates, thus exposing a large number of 2e--ORR-inactive sites that result in poor H2O2 production rate and efficiency. Herein, guided by first-principle predictions, a substrate-free and two-dimensional conductive metal-organic framework (Ni-TCPP(Co)), composed of CoN4 sites in porphine(Co) centers and Ni2O8 nodes, is designed as a multi-site catalyst for H2O2 electrosynthesis. The approperiate distance between the CoN4 and Ni2O8 sites in Ni-TCPP(Co) weakens the electron transfer between them, thus ensuring their inherent activities and creating high-density active sites. Meanwhile, the intrinsic electronic conductivity and porosity of Ni-TCPP(Co) further facilitate rapid reaction kinetics. Therefore, outstanding 2e--ORR electrocatalytic performance has been achieved in both alkaline and neutral electrolytes (>90 %/85 % H2O2 selectivity within 0-0.8â V vs. RHE and >18.2/18.0â mol g-1 h-1 H2O2 yield under alkaline/neutral conditions), with confirmed feasibility for water purification and disinfection applications. This strategy thus provides a new avenue for designing catalysts with precise coordination and high-density active sites, promoting high-efficiency electrosynthesis of H2O2 and beyond.
RESUMEN
High invasive capacity and acquired tyrosine kinase inhibitors (TKI) resistance of kidney renal clear cell carcinoma (KIRC) cells remain obstacles to prolonging the survival time of patients with advanced KIRC. In the present study, we reported that sine oculis homeobox 1 (SIX1) was upregulated in sunitinib-resistant KIRC cells and metastatic KIRC tissues. Subsequently, we found that SIX1 mediated metastasis and sunitinib resistance via Focal adhesion (FA) signaling, and knockdown of SIX1 enhanced the antitumor efficiency of sunitinib in KIRC. Mechanistically, Integrin subunit beta 1 (ITGB1), an upstream gene of FA signaling, was a direct transcriptional target of SIX1. In addition, we showed that DExH-box helicase 9 (DHX9) was an important mediator for SIX1-induced ITGB1 transcription, and silencing the subunits of SIX1/DHX9 complex significantly reduced transcription of ITGB1. Downregulation of SIX1 attenuated nuclear translocation of DHX9 and abrogated the binding of DHX9 to ITGB1 promoter. Collectively, our results unveiled a new signal axis SIX1/ITGB1/FAK in KIRC and identified a novel therapeutic strategy for metastatic KIRC patients.
Asunto(s)
Carcinoma de Células Renales , ARN Helicasas DEAD-box , Resistencia a Antineoplásicos , Adhesiones Focales , Regulación Neoplásica de la Expresión Génica , Proteínas de Homeodominio , Integrina beta1 , Neoplasias Renales , Metástasis de la Neoplasia , Transducción de Señal , Sunitinib , Humanos , Resistencia a Antineoplásicos/genética , Carcinoma de Células Renales/genética , Carcinoma de Células Renales/patología , Carcinoma de Células Renales/tratamiento farmacológico , Carcinoma de Células Renales/metabolismo , Sunitinib/farmacología , Sunitinib/uso terapéutico , Neoplasias Renales/patología , Neoplasias Renales/genética , Neoplasias Renales/tratamiento farmacológico , Neoplasias Renales/metabolismo , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Línea Celular Tumoral , Integrina beta1/genética , Integrina beta1/metabolismo , Animales , Adhesiones Focales/genética , Adhesiones Focales/metabolismo , ARN Helicasas DEAD-box/genética , ARN Helicasas DEAD-box/metabolismo , Ratones , Transcripción Genética , Integrinas/metabolismo , Integrinas/genética , Quinasa 1 de Adhesión FocalRESUMEN
Aggrephagy describes lysosomal transport and degradation of protein aggregates via cellular macroautophagy, a key mechanism to prevent neurodegenerative diseases. Here, we develop a dual-probe method to visualize the aggrephagy process and resolve its viscosity heterogeneity using fluorescence lifetime imaging (FLIM). The dual-probe system consists of (1) a near-infrared lysosomal targeting FLIM probe (Lyso-P1) that is derived from a rhodamine scaffold with a tailored pKa value to accommodate an acidic lysosomal environment and (2) a green BODIPY-based FLIM probe (Agg-P2) that reports on degradation of cellular aggregates via HaloTag. Both probes exhibit acid-resistant, viscosity-dependent fluorescence intensity and lifetime (τ) responses, which are ready for intensity- and FLIM-based imaging. Photochemical, theoretical, and biochemical characterizations reveal the probes' mechanism-of-actions. In cells, we exploit Lyso-P1 and Agg-P2 to simultaneously quantify both lysosomal and protein aggegates' viscosity changes upon the aggrephagy process via FLIM. We reveal orthogonal changes in microenvironmental viscosities and morphological heterogeneity upon various cellular stresses. Overall, we provide an imaging toolset to quantitatively study aggrephay, which may benefit screening of aggrephay modulators for disease intervention.
Asunto(s)
Colorantes Fluorescentes , Lisosomas , Imagen Óptica , Viscosidad , Colorantes Fluorescentes/química , Humanos , Lisosomas/química , Lisosomas/metabolismo , Agregado de Proteínas , Células HeLa , Compuestos de Boro/química , Rodaminas/químicaRESUMEN
Maturation of the secondary antibody repertoire requires class-switch recombination (CSR), which switches IgM to other immunoglobulins (Igs), and somatic hypermutation, which promotes the production of high-affinity antibodies. Following immune response or infection within the body, activation of T cell-dependent and T cell-independent antigens triggers the activation of activation-induced cytidine deaminase, initiating the CSR process. CSR has the capacity to modify the functional properties of antibodies, thereby contributing to the adaptive immune response in the organism. Ig CSR defects, characterized by an abnormal relative frequency of Ig isotypes, represent a rare form of primary immunodeficiency. Elucidating the molecular basis of Ig diversification is essential for a better understanding of diseases related to Ig CSR defects and could provide clues for clinical diagnosis and therapeutic approaches. Here, we review the most recent insights on the diversification of five Ig isotypes and choose several classic diseases, including hyper-IgM syndrome, Waldenström macroglobulinemia, hyper-IgD syndrome, selective IgA deficiency, hyper-IgE syndrome, multiple myeloma, and Burkitt lymphoma, to illustrate the mechanism of Ig CSR deficiency. The investigation into the underlying mechanism of Ig CSR holds significant potential for the advancement of increasingly precise diagnostic and therapeutic approaches.
RESUMEN
Fibers crystallize and become brittle at high temperatures for a long time, so the surface coating must maintain long-lasting emission performance, which requires superior antioxidant properties of the high-emissivity fillers. To improve the radiation performance of the coating and the tensile strength of the fiber fabric, a double-layer coating with high emissivity was prepared on the surface of flexible aluminum silicate fiber fabric (ASFF) using MoSi2 and SiC as emissive agents. The incorporation of borosilicate glass into the outer coating during high-temperature oxidation of ZrB2 results in superior encapsulation of emitter particles, effectively filling the pores of the coating and significantly reducing the oxidation rate of MoSi2 and SiC. Furthermore, the addition of an intermediate ZrO2 layer enhances the fiber bundle's toughness. The obtained double-coated ASFF exhibits an exceptionally high tensile strength of 57.6 MPa and a high bond strength of 156.2 kPa. After being subjected to a 3 h heating process, the emissivity exhibits a minimal decrease of only 0.032, while still maintaining a high value above 0.9. The thermal insulation composites, consisting of a flexible ASFF matrix and a ZrB2-modified double-layer coating, exhibit significant potential for broad applications in the field of thermal protection.
RESUMEN
Mullite fiber felt is a promising material that may fulfill the demands of advanced flexible external thermal insulation blankets. However, research on the fabrication and performance of mullite fiber felt with high-temperature resistance and thermal stability is still lacking. In this work, mullite fibers were selected as raw materials for the fabrication of mullite fibrous porous materials with a three-dimensional net structure. Said materials' high-temperature resistance and thermal stability were investigated by assessing the effects of various heat treatment temperatures (1100 °C, 1300 °C, and 1500 °C) on the phase composition, microstructure, and performance of their products. When the heat treatment temperature was below 1300 °C, both the phase compositions and microstructures of products exhibited stability. The compressive rebound rate of the product before and after 1100 °C reached 92.9% and 84.5%, respectively. The backside temperature of the as-prepared products was 361.6 °C when tested at 1500 °C for 4000 s. The as-prepared mullite fibrous porous materials demonstrated excellent high-temperature resistance, thermal stability, thermal insulation performance, and compressive rebound capacity, thereby indicating the great potential of the as-prepared mullite fibrous porous materials in the form of mullite fiber felt within advanced flexible external thermal insulation blankets.
RESUMEN
BACKGROUND AND PURPOSE: Triple-negative breast cancer (TNBC) has a poor prognosis due to limited therapeutic options. Recent studies have shown that TNBC is highly dependent on mitochondrial oxidative phosphorylation. The aim of this study was to investigate the potential of coptisine, a novel compound that inhibits the complex I of the mitochondrial electron transport chain (ETC), as a treatment for TNBC. EXPERIMENTAL APPROACH: In this study, mitochondrial metabolism in TNBC was analysed by bioinformatics. In vitro and in vivo experiments (in mice) were conducted to evaluate the potential of coptisine as an ETC complex I-targeting therapeutic agent and to investigate the molecular mechanisms underlying coptisine-induced mitochondrial dysfunction. The therapeutic effect of coptisine was assessed in TNBC cells and xenograft mouse model. KEY RESULTS: We demonstrated that mitochondrial ETC I was responsible for this metabolic vulnerability in TNBC. Furthermore, a naturally occurring compound, coptisine, exhibited specific inhibitory activity against this complex I. Treatment with coptisine significantly inhibited mitochondrial functions, reprogrammed cellular metabolism, induced apoptosis and ultimately inhibited the proliferation of TNBC cells. Additionally, coptisine administration induced prominent growth inhibition that was dependent on the presence of a functional complex I in xenograft mouse models. CONCLUSION AND IMPLICATIONS: Altogether, these findings suggest the promising potential of coptisine as a potent ETC complex I inhibitor to target the metabolic vulnerability of TNBC.
Asunto(s)
Antineoplásicos , Berberina , Proliferación Celular , Complejo I de Transporte de Electrón , Mitocondrias , Neoplasias de la Mama Triple Negativas , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/metabolismo , Neoplasias de la Mama Triple Negativas/patología , Berberina/farmacología , Berberina/análogos & derivados , Berberina/uso terapéutico , Animales , Humanos , Complejo I de Transporte de Electrón/antagonistas & inhibidores , Complejo I de Transporte de Electrón/metabolismo , Femenino , Ratones , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Proliferación Celular/efectos de los fármacos , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Apoptosis/efectos de los fármacos , Ratones Desnudos , Ratones Endogámicos BALB C , Línea Celular Tumoral , Ensayos Antitumor por Modelo de XenoinjertoRESUMEN
Despite diverse therapeutic options for immune thrombocytopaenia (ITP), drug efficacy and selection challenges persist. This study systematically identified potential indicators in ITP patients and followed up on subsequent treatment. We initially analysed 61 variables and identified 12, 14, and 10 candidates for discriminating responders from non-responders in glucocorticoid (N = 215), thrombopoietin receptor agonists (TPO-RAs) (N = 224), and rituximab (N = 67) treatments, respectively. Patients were randomly assigned to training or testing datasets and employing five machine learning (ML) models, with eXtreme Gradient Boosting (XGBoost) area under the curve (AUC = 0.89), Decision Tree (DT) (AUC = 0.80) and Artificial Neural Network (ANN) (AUC = 0.79) selected. Cross-validated with logistic regression and ML finalised five variables (baseline platelet, IP-10, TNF-α, Treg, B cell) for glucocorticoid, eight variables (baseline platelet, TGF-ß1, MCP-1, IL-21, Th1, Treg, MK number, TPO) for TPO-RAs, and three variables (IL-12, Breg, MAIPA-) for rituximab to establish the predictive model. Spearman correlation and receiver operating characteristic curve analysis in validation datasets demonstrated strong correlations between response fractions and scores in all treatments. Scoring thresholds SGlu ≥ 3 (AUC = 0.911, 95% CI, 0.865-0.956), STPO-RAs ≥ 5 (AUC = 0.964, 95% CI 0.934-0.994), and SRitu = 3 (AUC = 0.964, 95% CI 0.915-1.000) indicated ineffectiveness in glucocorticoid, TPO-RAs, and rituximab therapy, respectively. Regression analysis and ML established a tentative and preliminary predictive scoring model for advancing individualised treatment.
Asunto(s)
Púrpura Trombocitopénica Idiopática , Rituximab , Humanos , Púrpura Trombocitopénica Idiopática/tratamiento farmacológico , Púrpura Trombocitopénica Idiopática/diagnóstico , Púrpura Trombocitopénica Idiopática/sangre , Masculino , Femenino , Persona de Mediana Edad , Rituximab/uso terapéutico , Adulto , Anciano , Aprendizaje Automático , Glucocorticoides/uso terapéutico , Medicina de Precisión/métodos , Resultado del TratamientoRESUMEN
Quercetin (QCT) is a flavonoid with significant health benefits, necessitating sensitive detection methods for food safety and quality control. This study presents a novel UiO-66-TCPP ratiometric fluorescent probe for the quantitative and visual detection of QCT. Under optimal conditions, the fluorescence intensity of UiO-66-TCPP decreased linearly with increasing QCT concentration, with a detection limit of 26 nM. The probe demonstrated high specificity, showing no significant interference from various substances and QCT analogues. Practical applicability was confirmed by testing artificially contaminated juice samples, achieving recovery rates between 98.0% and 104.8%. Furthermore, a paper-based sensor was developed by incorporating UiO-66-TCPP onto Whatman#1 chromatography paper. This sensor exhibited stable fluorescence and a reliable, sensitive visual response to QCT concentrations, detectable via a smartphone-based color recognizer application. The UiO-66-TCPP ratiometric fluorescent probe provides a sensitive, specific, and practical method for detecting QCT in food matrices, offering significant potential for both laboratory and on-site applications.
Asunto(s)
Colorantes Fluorescentes , Contaminación de Alimentos , Quercetina , Quercetina/análisis , Colorantes Fluorescentes/química , Contaminación de Alimentos/análisis , Límite de Detección , Espectrometría de FluorescenciaRESUMEN
Treatment of multiple myeloma (MM) has evolved remarkably over the past few decades. Autologous stem cell transplantation, as well as proteasome inhibitors, immunomodulatory drugs, and monoclonal antibodies, has substantially improved the prognosis of patients with MM. Novel therapies, including chimeric antigen receptor-T cells, bispecific T-cell engagers, antibody-drug conjugates, histone deacetylase inhibitors, and nuclear export inhibitors, have provided more options. However, MM remains incurable. T cells are the principal weapons of antitumor immunity, but T cells display a broad spectrum of dysfunctional states during MM. The promising clinical results of T-cell-directed immunotherapies emphasize the significance of enhancing T-cell function in antimyeloma treatment. This review summarizes the potential effects of these antimyeloma agents on T-cell function and discusses possible optimized strategies for MM management by boosting T-cell immunity.
RESUMEN
Ceramic fiber thread is one of the key components in flexible external thermal insulation blankets, and it has been applied in various fields as a flexible ceramic fibrous material with excellent deformability and high-temperature resistance. However, ceramic fiber threads are often subjected to reciprocating friction motion at specific bending angles, making them highly susceptible to abrade and fracture. Enhancing the abrasion resistance performance of ceramic fiber threads under bending conditions is the future trend and remains a significant challenge. Hence, we design and construct a novel polyurethane-modified coating on the ceramic fiber threads to improve their abrasion resistance performance. The effects of the types and concentrations of modifiers on the microstructure, abrasion resistance property, and tensile property of ceramic fiber threads are systematically investigated. The ceramic fiber threads, after modification with hexamethylene diisocyanate waterborne polyurethane (HDI-WPU) with a concentration of 3%, exhibit excellent abrasion resistance properties. The number of friction cycles at fracture of the modified ceramic fiber thread is more than three times, and the tensile strength is more than one and a half times, that of the original ceramic fiber thread, demonstrating the great potential of the HDI-WPU modifier for enhancing the abrasion resistance performance of ceramic fiber threads.
RESUMEN
Degenerative diseases are closely related to the changes of protein conformation beyond the steady state. The development of feasible tools for quantitative detection of changes in the cellular environment is crucial for investigating the process of protein conformational variations. Here, we have developed a near-infrared AIE probe based on the rhodamine fluorophore, which exhibits dual responses of fluorescence intensity and lifetime to local viscosity changes. Notably, computational analysis reveals that NRhFluors fluorescence activation is due to inhibition of the RACI mechanism in viscous environment. In the chemical regulation of rhodamine fluorophores, we found that variations of electron density distribution can effectively regulate CI states and achieve fluorescence sensitivity of NRhFluors. In addition, combined with the AggTag method, the lifetime of probe A9-Halo exhibits a positive correlation with viscosity changes. This analytical capacity allows us to quantitatively monitor protein conformational changes using fluorescence lifetime imaging (FLIM) and demonstrate that mitochondrial dysfunction leads to reduced protein expression in HEK293 cells. In summary, this work developed a set of near-infrared AIE probes activated by the RACI mechanism, which can quantitatively detect cell viscosity and protein aggregation formation, providing a versatile tool for exploring disease-related biological processes and therapeutic approaches.
RESUMEN
The hydrologic cycle has wide impacts on the ocean salinity and circulation, carbon and nitrogen cycles, and the ecosystem. Under anthropogenic global warming, previous studies showed that the intensification of the hydrologic cycle is a robust feature. Whether this trend persists in hothouse climates, however, is unknown. Here, we show in climate models that mean precipitation first increases with rising surface temperature, but the precipitation trend reverses when the surface is hotter than ~320 to 330 kelvin. This nonmonotonic phenomenon is robust to the cause of warming, convection scheme, ocean dynamics, atmospheric mass, planetary rotation, gravity, and stellar spectrum. The weakening occurs because of the existence of an upper limitation of outgoing longwave emission and the continuously increasing shortwave absorption by H2O and is consistent with atmospheric dynamics featuring the strong increase of atmospheric stratification and marked reduction of convective mass flux. These results have wide implications for the climate evolutions of Earth, Venus, and potentially habitable exoplanets.
RESUMEN
Growth hormone inducible transmembrane protein (GHITM), one member of Bax inhibitory protein-like family, has been rarely studied, and the clinical importance and biological functions of GHITM in kidney renal clear cell carcinoma (KIRC) still remain unknown. In the present study, we found that GHITM was downregulated in KIRC. Aberrant GHITM downregulation related to clinicopathological feature and unfavourable prognosis of KIRC patients. GHITM overexpression inhibited KIRC cell proliferation, migration and invasion in vitro and in vivo. Mechanistically, GHITM overexpression could induce the downregulation of Notch1, which acts as an oncogene in KIRC. Overexpression of Notch1 effectively rescued the inhibitory effect induced by GHITM upregulation. More importantly, GHITM could regulate PD-L1 protein abundance and ectopic overexpression of GHITM enhanced the antitumour efficiency of PD-1 blockade in KIRC, which provided new insights into antitumour therapy. Furthermore, we also showed that YY1 could decrease GHITM level via binding to its promoter. Taken together, our study revealed that GHITM was a promising therapeutic target for KIRC, which could modulate malignant phenotype and sensitivity to PD-1 blockade of renal cancer cells via Notch signalling pathway.
Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Humanos , Carcinoma de Células Renales/tratamiento farmacológico , Carcinoma de Células Renales/genética , Riñón , Neoplasias Renales/tratamiento farmacológico , Neoplasias Renales/genética , Fenotipo , Receptor de Muerte Celular Programada 1RESUMEN
Two new triterpene fatty acid esters, 3ß-palmityloxy-12,27-cyclofriedoolean-14-en-11α-ol (1) and 3ß-palmityloxy-19α-hydroxyursane (2), together with 3ß-hydroxy-11-oxo-olean-12-enyl palmitate (3) were isolated from the potent anti-inflammatory active fraction of the petroleum ether-soluble part of Cirsium setosum ethanol extract. Compound 1 was found to be a rare 12,27-cyclopropane triterpenoid. Their structures were determined through spectral data analysis combined with literature reports. Furthermore, in vitro experiment, compounds 1-3 exhibited significant inhibitory effects on nitric oxide production in lipopolysaccharide-activated mouse RAW264.7 macrophages.