Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 89
Filtrar
1.
Phytomedicine ; 133: 155882, 2024 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-39096545

RESUMEN

BACKGROUND: Treating Idiopathic pulmonary fibrosis (IPF) remains challenging owing to its relentless progression, grim prognosis, and the scarcity of effective treatment options. Emerging evidence strongly supports the critical role of accelerated senescence in alveolar epithelial cells (AECs) in driving the progression of IPF. Consequently, targeting senescent AECs emerges as a promising therapeutic strategy for IPF. PURPOSE: Curcumin analogue EF24 is a derivative of curcumin and shows heightened bioactivity encompassing anti-inflammatory, anti-tumor and anti-aging properties. The objective of this study was to elucidate the therapeutic potential and underlying molecular mechanisms of EF24 in the treatment of IPF. METHODS: A549 and ATII cells were induced to become senescent using bleomycin. Senescence markers were examined using different methods including senescence-associated ß-galactosidase (SA-ß-gal) staining, western blotting, and q-PCR. Mice were intratracheally administrated with bleomycin to induce pulmonary fibrosis. This was validated by micro-computed tomography (CT), masson trichrome staining, and transmission electron microscope (TEM). The role and underlying mechanisms of EF24 in IPF were determined in vitro and in vivo by evaluating the expressions of PTEN, AKT/mTOR/NF-κB signaling pathway, and mitophagy using western blotting or flow cytometry. RESULTS: We identified that the curcumin analogue EF24 was the most promising candidate among 12 compounds against IPF. EF24 treatment significantly reduced senescence biomarkers in bleomycin-induced senescent AECs, including SA-ß-Gal, PAI-1, P21, and the senescence-associated secretory phenotype (SASP). EF24 also effectively inhibited fibroblast activation which was induced by senescent AECs or TGF-ß. We revealed that PTEN activation was integral for EF24 to inhibit AECs senescence by suppressing the AKT/mTOR/NF-κB signaling pathway. Additionally, EF24 improved mitochondrial dysfunction through induction of mitophagy. Furthermore, EF24 administration significantly reduced the senescent phenotype induced by bleomycin in the lung tissues of mice. Notably, EF24 mitigates fibrosis and promotes overall health benefits in both the acute and chronic phases of IPF, suggesting its therapeutic potential in IPF treatment. CONCLUSION: These findings collectively highlight EF24 as a new and effective therapeutic agent against IPF by inhibiting senescence in AECs.

2.
Bioresour Technol ; 409: 131248, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39127364

RESUMEN

The combination of microalgal culture and wastewater treatment is an emerging topic. This study investigated the use of different microalgae to treat different types of dairy farm wastewater. The results showed that the removal of ammonia nitrogen and total phosphorus by mixed microalgae was over 99% and 80%, respectively. The highest production of protein in biomass and extracellular polymeric substances was observed in high-concentration wastewater. In the phycosphere, the abundance of Proteobacteria and Cyanobacteria increased, while that of Bacteroidota decreased. Phycosphere bacteria were strongly correlated with microalgal growth and the composition of extracellular polymeric substances, especially with bound extracellular polymeric substances relative to soluble extracellular polymeric substances. Genes associated with photosynthesis and respiration in phycosphere bacteria were upregulated, contributing to the material exchange capacity in the microalgal-bacterial systems. The interaction between microalgae and phycosphere bacteria thus represents the core of the binary cultivation system-based wastewater treatment and requires further investigation.


Asunto(s)
Bacterias , Industria Lechera , Microalgas , Aguas Residuales , Purificación del Agua , Microalgas/metabolismo , Microalgas/crecimiento & desarrollo , Aguas Residuales/microbiología , Bacterias/metabolismo , Bacterias/genética , Purificación del Agua/métodos , Fósforo/metabolismo , Granjas , Nitrógeno/metabolismo , Biomasa
3.
Artículo en Inglés | MEDLINE | ID: mdl-39178057

RESUMEN

Ammonia, with high energy density and easy transportation, holds significant potential to become an integral part of future energy systems. Among tremendous strategies, electrocatalytic ammonia production is no doubt an efficient and eco-friendly method. One particularly intriguing class of electrocatalysts for reducing nitrate to ammonia is transition metal oxides, which have been heavily researched. However, how these catalysts' oxygen vacancy (VO) affects their performance remains elusive. To address this, taking titania (the most important catalyst) as an example, we carried out experimental investigations and simulations. Contrary to the prevailing belief that the concentrated VO would increase the catalytic efficiency of nitrate reduction, it was found that a relatively low level of VO is favorable for maximizing catalytic efficiency. At low cathodic voltages, titania with minimal VO delivered both the highest reduction efficiency and the best selectivity among the different titania samples in this paper. In addition to outlining the merits of lower electron transfer resistance and accelerated reaction dynamics, we also put forth a previously unmentioned factor, the adsorption of hydrogen or the creation of an ordered hydrogen bond network, which put up a hydrogen-rich atmosphere for following nitrate reduction. Further simulation study revealed that within the hydrogen-rich atmosphere isolated VO serves as the ideal active center to enable the lowest energy barriers for the reduction of nitrate into ammonia. These findings offer fresh insights into the working mechanism of oxide-based electrocatalysts for ammonia production.

4.
Environ Pollut ; 359: 124560, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39019313

RESUMEN

As a signaling molecule, Nitric oxide (NO) has been widely used in abiotic stress mitigation studies.Pistia stratiotes showed a good synergistic removal effect on heavy metals, nitrogen and phosphorus, but the high concentration of copper(Cu) in swine wastewater inhibited the comprehensive removal ability of Pistia stratiotes. At present, it is not clear how the addition of NO regulates the stress resistance mechanism of Pistia stratiotes to copper in swine wastewater, and the microbial response mechanism accompanying this process is not yet clear. Therefore, in the concentration range of 0.31∼4 mg·L-1Cu2+ and NO concentration of 0,0.05 and 0.1 mg L-1, the removal effect of Pistia stratiotes on copper from swine wastewater was studied. The results showed as follows: The treatment of non-available copper in groups M and H increased by 10.67% and 22.31%, respectively, compared with that in group L. The critical point of inhibiting effect of NO on growth rate was 2.03 mg·L-1Cu. By measuring three-dimensional fluorescence spectrum, combined with parallel factor analysis and principal component analysis, it was confirmed that exogenous addition of NO affected the humification degree of dissolved organic matter(DOM) and promoted the chelation of organic matter with copper. With the increase of Cu concentration, the Reyranella and Prosthecobacter with certain copper resistance gradually gained advantages. Redundancy analysis(RDA) showed that Emiticicia had a strong correlation with the removal rates of ammonia nitrogen, total phosphorus and copper in swine wastewater, while hgcI_clade had a strong correlation with the removal rates of total nitrogen. In conclusion, controlling the dosage of NO can effectively improve the tolerance and removal effect of Pistia stratiotes on copper in swine wastewater, which is of great significance for promoting the treatment and resource transformation of swine wastewater.

5.
Transl Cancer Res ; 13(4): 1954-1968, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38737677

RESUMEN

Background: Cancer has the highest mortality rate among gynecological cancers and poses a serious threat to women's lives. However, the treatment options for ovarian cancer are still limited, and exploring effective targeted biomarkers is particularly important for predicting and treating ovarian cancer. Therefore, it is necessary to explore the molecular mechanisms of the occurrence and development of ovarian cancer. Methods: This investigation encompassed the analysis of gene expression profiles, measurement of transcription levels of potential target genes in peripheral blood samples from ovarian cancer patients and characterization of the ovarian cancer-related secretory protein sphingomyelin phosphodiesterase acid-like 3B (SMPDL3B). Through bioinformatics analysis, potential target genes were identified, and their association with overall survival (OS) and progression-free survival (PFS) in ovarian cancer patients was assessed utilizing relevant databases. Subsequently, differences in target gene expression in ovarian cancer tissue samples were validated through protein blotting and quantitative real-time PCR (qRT-qPCR). Cell proliferation assays using the cell count kit-8 (CCK-8) method, as well as transwell chamber assay and pre coated matrix gel chamber assay were employed to elucidate the role of SMPDL3B in ovarian cancer cell migration and invasion. Results: This study revealed a substantial upregulation of SMPDL3B in the serum of ovarian cancer patients, correlating with an unfavorable prognosis. High SMPDL3B expression was linked not only to increased proliferation of ovarian cancer cells, but also enhanced migration and invasion. Remarkably, the knockdown the human alkaline ceramidase 2 (ACER2) gene in cancer cells with heightened SMPDL3B expression significantly inhibited cell proliferation, migration, and invasion induced by SMPDL3B activation (P<0.05), highlighting the functional interplay between ACER2 and SMPDL3B in ovarian cancer. Conclusions: In summary, this study proposes SMPDL3B as a prognostic marker for ovarian cancer, with implications for potential therapeutic intervention targeting the ACER2-SMPDL3B axis.

6.
ACS Nano ; 18(22): 14403-14413, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38775684

RESUMEN

The highly reversible plating/stripping of Zn is plagued by dendrite growth and side reactions on metallic Zn anodes, retarding the commercial application of aqueous Zn-ion batteries. Herein, a distinctive nano dual-phase diamond (NDPD) comprised of an amorphous-crystalline heterostructure is developed to regulate Zn deposition and mechanically block dendrite growth. The rich amorphous-crystalline heterointerfaces in the NDPD endow modified Zn anodes with enhanced Zn affinity and result in homogeneous nucleation. In addition, the unparalleled hardness of the NDPD effectively overcomes the high growth stress of dendrites and mechanically impedes their proliferation. Moreover, the hydrophobic surfaces of the NDPD facilitate the desolvation of hydrate Zn2+ and prevent water-mediated side reactions. Consequently, the Zn@NDPD presents an ultrastable lifespan exceeding 3200 h at 5 mA cm-2 and 1 mAh cm-2. The practical application potential of Zn@NDPD is further demonstrated in full cells. This work exhibits the great significance of a chemical-mechanical synergistic anode modification strategy in constructing high-performance aqueous Zn-ion batteries.

7.
Microbiol Spectr ; 12(7): e0379223, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38809029

RESUMEN

The entomopathogenic fungus Beauveria bassiana provides an eco-friendly substitute to chemical insecticides for mosquito control. Nevertheless, its widespread application has been hindered by its comparatively slow efficacy in eliminating mosquitoes. To augment the potency of B. bassiana against Aedes mosquitoes, a novel recombinant strain, Bb-Cyt1Aa, was developed by incorporating the Bacillus thuringiensis toxin gene Cyt1Aa into B. bassiana. The virulence of Bb-Cyt1Aa was evaluated against Aedes aegypti and Aedes albopictus using insect bioassays. Compared to the wild-type (WT) strain, the median lethal time (LT50) for A. aegypti larvae infected with Bb-Cyt1Aa decreased by 33.3% at a concentration of 1 × 108 conidia/mL and by 22.2% at 1 × 107 conidia/mL. The LT50 for A. aegypti adults infected with Bb-Cyt1Aa through conidia ingestion was reduced by 37.5% at 1 × 108 conidia/mL and by 33.3% at 1 × 107 conidia/mL. Likewise, the LT50 for A. aegypti adults infected with Bb-Cyt1Aa through cuticle contact decreased by 33.3% and 30.8% at the same concentrations, respectively. Furthermore, the Bb-Cyt1Aa strain also demonstrated increased toxicity against both larval and adult A. albopictus, when compared to the WT strain. In conclusion, our study demonstrated that the expression of B. thuringiensis toxin Cyt1Aa in B. bassiana enhanced its virulence against Aedes mosquitoes. This suggests that B. bassiana expressing Cyt1Aa has potential value for use in mosquito control. IMPORTANCE: Beauveria bassiana is a naturally occurring fungus that can be utilized as a bioinsecticide against mosquitoes. Cyt1Aa is a delta-endotoxin protein produced by Bacillus thuringiensis that exhibits specific and potent insecticidal activity against mosquitoes. In our study, the expression of this toxin Cyt1Aa in B. bassiana enhances the virulence of B. bassiana against Aedes aegypti and Aedes albopictus, thereby increasing their effectiveness in killing mosquitoes. This novel strain can be used alongside chemical insecticides to reduce dependence on harmful chemicals, thereby minimizing negative impacts on the environment and human health. Additionally, the potential resistance of B. bassiana against mosquitoes in the future could be overcome by acquiring novel combinations of exogenous toxin genes. The presence of B. bassiana that expresses Cyt1Aa is of significant importance in mosquito control as it enhances genetic diversity, creates novel virulent strains, and contributes to the development of safer and more sustainable methods of mosquito control.


Asunto(s)
Aedes , Toxinas de Bacillus thuringiensis , Bacillus thuringiensis , Beauveria , Endotoxinas , Proteínas Hemolisinas , Larva , Control de Mosquitos , Control Biológico de Vectores , Animales , Beauveria/genética , Beauveria/patogenicidad , Beauveria/metabolismo , Aedes/microbiología , Control de Mosquitos/métodos , Toxinas de Bacillus thuringiensis/genética , Proteínas Hemolisinas/genética , Proteínas Hemolisinas/metabolismo , Bacillus thuringiensis/genética , Bacillus thuringiensis/metabolismo , Endotoxinas/genética , Endotoxinas/metabolismo , Control Biológico de Vectores/métodos , Larva/microbiología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Virulencia/genética , Esporas Fúngicas/genética , Insecticidas/farmacología , Insecticidas/metabolismo
8.
Int J Cardiol ; 406: 132016, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38599466

RESUMEN

BACKGROUND: Epicardial adipose tissue(EAT) is associated with inflammation in previous studies but is unknown in patients with ST-segment elevation myocardial infarction(STEMI).This study investigated the correlation between epicardial fat and inflammatory cells obtained by cardiac magnetic resonance (CMR) and the effect on atrial arrhythmias in patients with STEMI. METHODS: This was a single-center, retrospective study. We consecutively selected patients who all completed CMR after Percutaneous Coronary Intervention (PCI) from January 2019 to December 2022 and then had regular follow-ups at 1, 3, 6, 9, and 12 months. The enrolled patients were grouped according to the presence or absence of atrial arrhythmia and divided into atrial and non-atrial arrhythmia groups. RESULTS: White blood cell, neutrophil, lymphocyte, C-reactive protein, EATV, LVES, LVED were higher in the atrial arrhythmia group than in the non-atrial arrhythmia group, and LVEF was lower than that in the non-atrial arrhythmia group (p < 0.05); EATV was significantly positively correlated with each inflammatory indices (white blood cell: r = 0.415 p < 0.001, neutrophil:r = 0.386 p < 0.001, lymphocyte:r = 0.354 p < 0.001, C-reactive protein:r = 0.414 p < 0.001); one-way logistic regression analysis showed that risk factors for atrial arrhythmias were age, heart rate, white blood cell, neutrophil, lymphocyte, C-reactive protein, EATV, LVES, LVED; multifactorial logistic regression analysis showed that neutrophil, lymphocyte, C-reactive protein, EATV, and LVES were independent risk factors for atrial arrhythmias; ROC analysis showed that the area under the curve (AUC) for neutrophil was 0.862; the AUC for lymphocyte was 1.95; and the AUC for C-reactive protein was 0.862. reactive protein was 0.852; AUC for LVES was 0.683; and AUC for EATV was 0.869. CONCLUSION: In patients with STEMI, EAT was significantly and positively correlated with inflammatory indices; neutrophil, lymphocyte, C-reactive protein, EATV, and LVES were independent risk factors for atrial arrhythmias and had good predictive value.


Asunto(s)
Tejido Adiposo , Inflamación , Pericardio , Infarto del Miocardio con Elevación del ST , Humanos , Masculino , Femenino , Pericardio/diagnóstico por imagen , Pericardio/patología , Persona de Mediana Edad , Estudios Retrospectivos , Infarto del Miocardio con Elevación del ST/sangre , Infarto del Miocardio con Elevación del ST/cirugía , Infarto del Miocardio con Elevación del ST/diagnóstico por imagen , Tejido Adiposo/diagnóstico por imagen , Anciano , Inflamación/sangre , Imagen por Resonancia Cinemagnética/métodos , Arritmias Cardíacas/etiología , Arritmias Cardíacas/fisiopatología , Arritmias Cardíacas/sangre , Fibrilación Atrial/fisiopatología , Fibrilación Atrial/sangre , Intervención Coronaria Percutánea , Estudios de Seguimiento , Proteína C-Reactiva/metabolismo , Proteína C-Reactiva/análisis , Tejido Adiposo Epicárdico
9.
Environ Pollut ; 349: 123864, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38554837

RESUMEN

The livestock sector is responsible for a significant amount of wastewater globally. The microalgal-bacterial consortium (MBC) treatment has gained increasing attention as it is able to eliminate pollutants to yield value-added microalgal products. This review offers a critical discussion of the source of pollutants from livestock wastewater and the environmental impact of these pollutants. It also discusses the interactions between microalgae and bacteria in treatment systems and natural habitats in detail. The effects on MBC on the removal of various pollutants (conventional and emerging) are highlighted, focusing specifically on analysis of the removal mechanisms. Notably, the various influencing factors are classified into internal, external, and operating factors, and the mutual feedback relationships between them and the target (removal efficiency and biomass) have been thoroughly analysed. Finally, a wastewater recycling treatment model based on MBC is proposed for the construction of a green livestock farm, and the application value of various microalgal products has been analysed. The overall aim was to indicate that the use of MBC can provide cost-effective and eco-friendly approaches for the treatment of livestock wastewater, thereby advancing the path toward a promising microalgal-bacterial-based technology.


Asunto(s)
Bacterias , Ganado , Microalgas , Eliminación de Residuos Líquidos , Aguas Residuales , Aguas Residuales/química , Microalgas/metabolismo , Eliminación de Residuos Líquidos/métodos , Animales , Bacterias/metabolismo , Contaminantes Químicos del Agua/metabolismo , Consorcios Microbianos/fisiología , Biodegradación Ambiental
10.
Sci Adv ; 10(9): eadk5047, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38416835

RESUMEN

Modern synthetic technology generally invokes high temperatures to control the hydration level of ceramics, but even the state-of-the-art technology can still only control the overall hydration content. Magically, natural organisms can produce bioceramics with tailorable hydration profiles and crystallization traits solely from amorphous precursors under physiological conditions. To mimic the biomineralization tactic, here, we report pressure-controlled hydration and crystallization in fabricated ceramics, solely from the amorphous precursors of purely inorganic gels (PIGs) synthesized from biocompatible aqueous solutions with most common ions in organisms (Ca2+, Mg2+, CO32-, and PO43-). Transparent ceramic tablets are directly produced by compressing the PIGs under mild pressure, while the pressure regulates the hydration characteristics and the subsequent crystallization behaviors of the synthesized ceramics. Among the various hydration species, the moderately bound and ordered water appears to be a key in regulating the crystallization rate. This nature-inspired study offers deeper insights into the magic behind biomineralization.

11.
J Am Chem Soc ; 146(8): 5355-5365, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38358943

RESUMEN

The twin boundary, a common lattice plane of mirror-symmetric crystals, may have high reactivity due to special atomic coordination. However, twinning platinum and iridium nanocatalysts are grand challenges due to the high stacking fault energies that are nearly 1 order of magnitude larger than those of easy-twinning gold and silver. Here, we demonstrate that Turing structuring, realized by selective etching of superthin metal film, provides 14.3 and 18.9 times increases in twin-boundary densities for platinum and iridium nanonets, comparable to the highly twinned silver nanocatalysts. The Turing configurations with abundant low-coordination atoms contribute to the formation of nanotwins and create a large active surface area. Theoretical calculations reveal that the specific atom arrangement on the twin boundary changes the electronic structure and reduces the energy barrier of water dissociation. The optimal Turing-type platinum nanonets demonstrated excellent hydrogen-evolution-reaction performance with a 25.6 mV overpotential at 10.0 mA·cm-2 and a 14.8-fold increase in mass activity. And the bifunctional Turing iridium catalysts integrated in the water electrolyzer had a mass activity 23.0 times that of commercial iridium catalysts. This work opens a new avenue for nanocrystal twinning as a facile paradigm for designing high-performance nanocatalysts.

12.
Biomed Pharmacother ; 173: 116310, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38394851

RESUMEN

Gastric cancer (GC) is a malignant tumor that originates from the epithelium of the gastric mucosa. The latest global cancer statistics show that GC ranks fifth in incidence and fourth in mortality among all cancers, posing a serious threat to public health. While early-stage GC is primarily treated through surgery, chemotherapy is the frontline option for advanced cases. Currently, commonly used chemotherapy regimens include FOLFOX (oxaliplatin + leucovorin + 5-fluorouracil) and XELOX (oxaliplatin + capecitabine). However, with the widespread use of chemotherapy, an increasing number of cases of drug resistance have emerged. This article primarily explores the potential mechanisms of chemotherapy resistance in GC patients from five perspectives: cell death, tumor microenvironment, non-coding RNA, epigenetics, and epithelial-mesenchymal transition. Additionally, it proposes feasibility strategies to overcome drug resistance from four angles: cancer stem cells, tumor microenvironment, natural products, and combined therapy. The hope is that this article will provide guidance for researchers in the field and bring hope to more GC patients.


Asunto(s)
Neoplasias Gástricas , Humanos , Neoplasias Gástricas/tratamiento farmacológico , Neoplasias Gástricas/genética , Oxaliplatino/uso terapéutico , Desoxicitidina , Capecitabina/uso terapéutico , Fluorouracilo/uso terapéutico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Leucovorina/uso terapéutico , Resistencia a Medicamentos , Microambiente Tumoral
13.
Foods ; 13(2)2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38254526

RESUMEN

Wheat bran (WB) is the primary by-product of wheat processing and contains a high concentration of bioactive substances such as polyphenols. This study analyzed the qualitative and quantitative components of polyphenols in wheat bran and their effects on ulcerative colitis (UC) using the dextran sulfate sodium (DSS)-induced colitis model in mice. The potential mechanism of wheat bran polyphenols (WBP) was also examined. Our findings indicate that the main polyphenol constituents of WBP were phenolic acids, including vanillic acid, ferulic acid, caffeic acid, gallic acid, and protocatechuic acid. Furthermore, WBP exerted remarkable protective effects against experimental colitis. This was achieved by reducing the severity of colitis and improving colon morphology. Additionally, WBP suppressed colonic inflammation via upregulation of the anti-inflammatory cytokine IL-10 and downregulation of pro-inflammatory cytokines (TNF-α, IL-6, IL-1ß) in colon tissues. Mechanistically, WBP ameliorated DSS-induced colitis in mice by inhibiting activation of the MAPK/NF-κB pathway. In addition, microbiome analysis results suggested that WBP modulated the alteration of gut microbiota caused by DSS, with an enhancement in the ratio of Firmicutes/Bacteroidetes and adjustments in the number of Helicobacter, Escherichia-Shigella, Akkermansia, Lactobacillus, Lachnospiraceae_NK4A136_group at the genus level. To conclude, the findings showed that WBP has excellent prospects in reducing colonic inflammation in UC mice.

14.
Food Chem X ; 20: 101016, 2023 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-38144789

RESUMEN

Ice wine has prominent fruity sweetness and unique, rich aroma compared to wine. The sweetness was accumulating, the acidity and astringency tended to soften of grape berry during the freezing period. The process gave the ice wine balanced taste, with prominent honey sweetness, accompanied by refreshing alcoholic taste, soft acidity and astringency. Eleven key aroma compounds were identified in ice wine through GC-MS and ROAV values. The key aroma compounds were analyzed with Pearson correlation coefficient and fragrance mechanism were speculated. Ethyl acetate and 1-octen-3-ol derived from the aroma of grape, are produced by anaerobic metabolism and lipoxygenase pathways of pyruvate and linoleic acid, respectively. Ester aromas, 2-phenylethanol and 2-methylbutanal were derived from the brewing process, were produced by octanoic acid, caproic acid, phenylalanine and isoleucine through lipid metabolism, Ehrlich pathway and Strecker pathway, respectively. Proposed corresponding control methods based on factors that affect the formation of ice wine aromas.

15.
Cell Discov ; 9(1): 101, 2023 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-37794085

RESUMEN

Schistosoma parasites, causing schistosomiasis, exhibit typical host specificity in host preference. Many mammals, including humans, are susceptible to infection, while the widely distributed rodent, Microtus fortis, exhibits natural anti-schistosome characteristics. The mechanisms of host susceptibility remain poorly understood. Comparison of schistosome infection in M. fortis with the infection in laboratory mice (highly sensitive to infection) offers a good model system to investigate these mechanisms and to gain an insight into host specificity. In this study, we showed that large numbers of leukocytes attach to the surface of human schistosomes in M. fortis but not in mice. Single-cell RNA-sequencing analyses revealed that macrophages might be involved in the cell adhesion, and we further demonstrated that M. fortis macrophages could be mediated to attach and kill schistosomula with dependence on Complement component 3 (C3) and Complement receptor 3 (CR3). Importantly, we provided direct evidence that M. fortis macrophages could destroy schistosomula by trogocytosis, a previously undescribed mode for killing helminths. This process was regulated by Ca2+/NFAT signaling. These findings not only elucidate a novel anti-schistosome mechanism in M. fortis but also provide a better understanding of host parasite interactions, host specificity and the potential generation of novel strategies for schistosomiasis control.

16.
J Agric Food Chem ; 71(43): 16067-16078, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37861789

RESUMEN

Green pea hull is a processing byproduct of green pea and rich in polyphenols. Nonalcoholic fatty liver disease (NAFLD) is a chronic metabolic disease characterized by accumulation of lipids in the liver for which there are no effective treatment strategies. Here, a mouse model of NAFLD induced by a DSS+high-fat diet (HFD) was established to investigate the effect of green pea hull polyphenol extract (EGPH). The results show that EGPH relief of NAFLD was a combined effect, including reducing hepatic fat accumulation, improving antioxidant activity and blood lipid metabolism, and maintaining glucose homeostasis. Increased intestinal permeability aggravated NAFLD. Combined metabolomics and transcriptomic analysis showed that vitamin B6 is the key target substance for EGPH to alleviate NAFLD, and it may be the intestinal flora metabolite. After EGPH intervention, the level of vitamin B6 in mice was significantly increased, and more than 60% in the blood enters the liver, which activated or inhibited PPAR and TLR4/NF-κB signaling pathways to relieve NAFLD. Our research could be a win-win for expanding the use of green pea hull and the search for NAFLD prophylactic drugs.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Ratones , Animales , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/genética , Enfermedad del Hígado Graso no Alcohólico/metabolismo , FN-kappa B/genética , FN-kappa B/metabolismo , Pisum sativum/genética , Pisum sativum/metabolismo , Receptor Toll-Like 4/metabolismo , Receptores Activados del Proliferador del Peroxisoma , Polifenoles/metabolismo , Hígado/metabolismo , Metabolismo de los Lípidos , Vitamina B 6/metabolismo , Vitamina B 6/farmacología , Vitamina B 6/uso terapéutico , Dieta Alta en Grasa , Ratones Endogámicos C57BL
17.
Angew Chem Int Ed Engl ; 62(48): e202309930, 2023 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-37828577

RESUMEN

Metal-organic framework-based materials are promising single-site catalysts for electrocatalytic nitrate (NO3 - ) reduction to value-added ammonia (NH3 ) on account of well-defined structures and functional tunability but still lack a molecular-level understanding for designing the high-efficient catalysts. Here, we proposed a molecular engineering strategy to enhance electrochemical NO3 - -to-NH3 conversion by introducing the carbonyl groups into 1,2,4,5-tetraaminobenzene (BTA) based metal-organic polymer to precisely modulate the electronic state of metal centers. Due to the electron-withdrawing properties of the carbonyl group, metal centers can be converted to an electron-deficient state, fascinating the NO3 - adsorption and promoting continuous hydrogenation reactions to produce NH3 . Compared to CuBTA with a low NO3 - -to-NH3 conversion efficiency of 85.1 %, quinone group functionalization endows the resulting copper tetraminobenzoquinone (CuTABQ) distinguished performance with a much higher NH3 FE of 97.7 %. This molecular engineering strategy is also universal, as verified by the improved NO3 - -to-NH3 conversion performance on different metal centers, including Co and Ni. Furthermore, the assembled rechargeable Zn-NO3 - battery based on CuTABQ cathode can deliver a high power density of 12.3 mW cm-2 . This work provides advanced insights into the rational design of metal complex catalysts through the molecular-level regulation for NO3 - electroreduction to value-added NH3 .

18.
Food Funct ; 14(15): 7195-7208, 2023 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-37462466

RESUMEN

Diets rich in various active ingredients may be an effective intervention strategy for non-alcoholic fatty liver disease (NAFLD). The green pea hull (GPH) is a processing by-product of green peas rich in dietary fiber and polyphenols. Here, a mouse model of NAFLD induced by DSS + high-fat diet (HFD) was established to explore the intervention effect of the GPH. The results showed that dietary supplements with the GPH can inhibit obesity and reduce lipid accumulation in the mouse liver to prevent liver fibrosis. GPH intervention can improve liver antioxidant capacity, reduce blood lipid deposition and maintain glucose homeostasis. DSS-induced disruption of the intestinal barrier aggravates NAFLD, which may be caused by the influx of large amounts of LPS. A multi-omics approach combining metabolomics and transcriptomic analysis indicated that glycine was the key target and its content was decreased in the liver after GPH intervention, and that dietary supplements with the GPH can relieve NAFLD via the SHMT2/glycine/mTOR/PPAR-γ signaling pathway, which was further supported by liver-associated protein expression. In conclusion, our study demonstrated that dietary GPH can significantly ameliorate NAFLD, and the future development of related food products can enhance the economic value of the GPH.

19.
Adv Mater ; : e2304878, 2023 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-37401112

RESUMEN

Metal hexacyanoferrates are recognized as superior cathode materials for zinc and zinc hybrid batteries, particularly the Prussian blue analog (PBA). However, PBA development is hindered by several limitations, including small capacities (<70 mAh g-1 ) and short lifespans (<1000 cycles). These limitations generally arise due to incomplete activation of redox sites and structure collapse during intercalation/deintercalation of metal ions in PBAs. According to this study, the adoption of a hydroxyl-rich (OH-rich) hydrogel electrolyte with extended electrochemical stability windows (ESWs) can effectively activate the redox site of low-spin Fe of the Kx Fey Mn1-y [Fe(CN)6 ]w ·zH2 O (KFeMnHCF) cathode while tuning its structure. Additionally, the strong adhesion of the hydrogel electrolyte inhibits KFeMnHCF particles from falling off the cathode and dissolving. The easy desolvation of metal ions in the developed OH-rich hydrogel electrolytes can lead to a fast and reversible intercalation/deintercalation of metal ions in the PBA cathode. As a result, the Zn||KFeMnHCF hybrid batteries achieve the unprecedented characteristics of 14 500 cycles, a 1.7 V discharge plateau, and a 100 mAh g-1 discharge capacity. The results of this study provide a new understanding of the development of zinc hybrid batteries with PBA cathode materials and present a promising new electrolyte material for this application.

20.
Front Oncol ; 13: 1173863, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37324006

RESUMEN

Objective: As one of the cancers that seriously threatens women's health, ovarian cancer has a high morbidity and mortality rate. Surgery and chemotherapy are the basic treatment strategies for ovarian cancer, and chemotherapy resistance is a significant factor in affecting the prognosis, survival cycle, and recurrence of ovarian cancer. This article aims to analyze articles about ovarian cancer and drug resistance via bibliometric software, offering new ideas and directions for researchers in this field. Methods: Both Citespace and Vosviewer are bibliometric software on the Java platform. Articles were collected on ovarian cancer and drug resistance in the Web of Science Core Collection database from 2013 to 2022. The countries, institutions, journals, authors, keywords, and references were analyzed, and the development status of this field was indicated from multiple perspectives. Results: Studies on ovarian cancer and drug resistance generally showed an increasing trend from 2013 to 2022. The People's Republic of China and Chinese institutions contributed more to this field. Gynecologic Oncology published the most articles, and the journal with the most citations was Cancer Research. Li Li was the author with the most publications, and Siegel RL was the author with the most citations. Through burst detection, it can be found that the research hotspots in this field mainly focused on the in-depth exploration of the drug resistance mechanism of ovarian cancer and the progress of PARP inhibitors and bevacizumab in the treatment of ovarian cancer. Conclusions: Many studies on the mechanism of drug resistance in ovarian cancer have been discovered; however, the deeper mechanism remains to be explored. Compared with traditional chemotherapy drugs, PARP inhibitors and bevacizumab have shown better efficacy, but PARP inhibitors have initially shown drug resistance. The future direction of this field should be to overcome the resistance of existing drugs and actively develop new ones.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...