Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Más filtros













Intervalo de año de publicación
1.
J Dermatol Sci ; 111(3): 109-119, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37661474

RESUMEN

BACKGROUND: Systemic Sclerosis (SSc) is an autoimmune disease characterized by vascular and immune system dysfunction, along with tissue fibrosis. Our previous study found GRB2 was downregulated by salvianolic acid B, a small molecule drug that attenuated skin fibrosis of SSc. OBJECTIVES: Here we aim to investigate the role of GRB2 in SSc. METHODS: The microarray data of SSc skin biopsies in Caucasians were obtained from the Gene Expression Omnibus (GEO) database. The expression of GRB2 was further detected in Chinese SSc and healthy controls. Bleomycin (BLM)-induced skin fibrosis mice were used to explore how GRB2 downregulation affected fibrosis. The apoptosis of EA.hy926 endothelial cells was induced by H2O2 and apoptosis ratio was measured by flow cytometric. Transcriptome and phosphoproteomic analyses were performed to explore the regulated pathway. RESULTS: The expression of GRB2 was significantly enhanced in SSc patient skin, 1.51-fold in Caucasians and 1.40-fold in Chinese. Double immunofluorescence staining showed the endothelial cells of SSc patient's skin highly expressed GRB2. The in vivo study revealed that GRB2 knockdown alleviated skin fibrosis and apoptosis of endothelial cells in BLM mouse skin. The in vitro study showed that GRB2 downregulation inhibited the apoptosis of EA.hy926 and protected them from H2O2-induced hyperpermeability. Moreover, transcriptome and phosphoproteomic analysis suggested the focal adhesion pathway was enriched in GRB2 siRNA transfected endothelial cells. CONCLUSIONS: Our results demonstrated GRB2 highly expressed in endothelial cells of SSc skin, and inhibiting GRB2 could effectively attenuate BLM-induced skin fibrosis and endothelial cell apoptosis. GRB2 is expected to be a new therapeutic target for SSc.


Asunto(s)
Células Endoteliales , Esclerodermia Sistémica , Animales , Humanos , Ratones , Apoptosis , Bleomicina/toxicidad , Modelos Animales de Enfermedad , Células Endoteliales/metabolismo , Fibroblastos/metabolismo , Fibrosis , Proteína Adaptadora GRB2/metabolismo , Proteína Adaptadora GRB2/farmacología , Peróxido de Hidrógeno/metabolismo , Piel/patología
2.
BMC Cancer ; 23(1): 752, 2023 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-37580654

RESUMEN

BACKGROUND: An increasing amount of research has speculated that necroptosis could be a therapeutic strategy for treating cancer. However, understanding the prognostic value of the necroptosis-related long non-coding RNAs (NRLs) in skin cutaneous melanoma (SKCM, hereafter referred to as melanoma) remains poor and needs to be developed. Our research aims to construct a model based on NRLs for the prognosis of patients with melanoma. METHODS: We obtained the RNA-seq and clinical data from The Cancer Genome Atlas (TCGA) database and retrieved 86 necroptosis-related genes from the GeneCards database. The lncRNAs associated with necroptosis were identified via the Pearson correlation coefficient, and the prognostic model of melanoma was constructed using LASSO regression. Next, we employed multiple approaches to verify the accuracy of the model. Melanoma patients were categorized into two groups (high-risk and low-risk) according to the results of LASSO regression. The relationships between the risk score and survival status, clinicopathological correlation, functional enrichment, immune infiltration, somatic mutation, and drug sensitivity were further investigated. Finally, the functions of AL162457.2 on melanoma proliferation, invasion, and migration were validated by in vitro experiments. RESULTS: The prognostic model consists of seven NRLs (EBLN3P, AC093010.2, LINC01871, IRF2-DT, AL162457.2, AC242842.1, HLA-DQB1-AS1) and shows high diagnostic efficiency. Overall survival in the high-risk group was significantly lower than in the low-risk group, and risk scores could be used to predict melanoma survival outcomes independently. Significant differences were evident between risk groups regarding the expression of immune checkpoint genes, immune infiltration, immunotherapeutic response and drug sensitivity analysis. A series of functional cell assays indicated that silencing AL162457.2 significantly inhibited cell proliferation, invasion, and migration in A375 cells. CONCLUSION: Our prognostic model can independently predict the survival of melanoma patients while providing a basis for the subsequent investigation of necroptosis in melanoma and a new perspective on the clinical diagnosis and treatment of melanoma.


Asunto(s)
Melanoma , ARN Largo no Codificante , Neoplasias Cutáneas , Humanos , Melanoma/genética , Melanoma/terapia , Neoplasias Cutáneas/genética , Neoplasias Cutáneas/terapia , ARN Largo no Codificante/genética , Necroptosis/genética , Pronóstico , Melanoma Cutáneo Maligno
3.
J Dermatol Sci ; 111(1): 10-19, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37316358

RESUMEN

BACKGROUND: Adipose tissue-derived stem cells (ASCs) have important clinical significance as regulators of skin scar tissue regeneration. ASCs inhibit keloid formation and increase insulin-like growth factor-binding protein-7 (IGFBP-7) expression. However, whether ASCs inhibit keloid formation through IGFBP-7 remains unclear. OBJECTIVE: We aimed to assess the roles of IGFBP-7 in keloid formation. METHODS: We analyzed the proliferation, migration, and apoptosis of keloid fibroblasts (KFs) treated with recombinant IGFBP-7 (rIGFBP-7) or by co-culture with ASCs using CCK8 assays, transwell assays, and flow cytometry, respectively. In addition, immunohistochemical staining, quantitative polymerase chain reaction, human umbilical vein endothelial cell tube formation, and western blotting experiments were used to assess keloid formation. RESULTS: IGFBP-7 expression was significantly lower in keloid tissues than that in normal skin tissues. Stimulation of KFs with rIGFBP-7 at different concentrations or by co-culture with ASCs resulted in decreased KF proliferation. Additionally, KF stimulation with rIGFBP-7 resulted in increased apoptosis of KFs. IGFBP-7 also reduced angiogenesis in a concentration-dependent manner, and stimulation with different rIGFBP-7 concentrations or co-culture of KFs with ASCs inhibited the expression of transforming growth factor-ß1, vascular endothelial growth factor, collagen I, interleukin (IL)-6, IL-8, B-raf proto-oncogene (BRAF), mitogen-activated protein kinase kinase (MEK), and extracellular signal-regulated kinase (ERK) in KFs. CONCLUSION: Collectively, our findings suggested that ASC-derived IGFBP-7 prevented keloid formation by inhibiting the BRAF/MEK/ERK signaling pathway.


Asunto(s)
Queloide , Humanos , Queloide/patología , Proteínas Proto-Oncogénicas B-raf , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Transducción de Señal , Fibroblastos/metabolismo , Células Madre/metabolismo , Proliferación Celular , Células Cultivadas
4.
BMC Cancer ; 23(1): 388, 2023 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-37127623

RESUMEN

BACKGROUND: In recent years, there has been growing evidence indicating a relationship between liquid-liquid phase separation (LLPS) and cancer development. However, to date, the clinical significance of LLPS in skin cutaneous melanoma (SKCM, hereafter referred to as melanoma) remains to be elucidated. In the current study, the impact of LLPS-related genes on melanoma prognosis has been explored. METHODS: LLPS-related genes were retrieved from the DrLLPS database. The prognostic feature for LLPS in melanoma was developed in The Cancer Genome Atlas (TCGA) dataset and verified in the GSE65904 cohort. Based on risk scores, melanoma patients were categorized into high- and low-risk groups. Thereafter, the differences in clinicopathological correlation, functional enrichment, immune landscape, tumor mutational burden, and impact of immunotherapy between the two groups were investigated. Finally, the role of key gene TROAP in melanoma was validated by in vitro and in vivo experiments. RESULTS: The LLPS-related gene signature was developed based on MLKL, PARVA, PKP1, PSME1, RNF114, and TROAP. The risk score was a crucial independent prognostic factor for melanoma and patients with high-risk scores were related to a worse prognosis. Approximately, all immune-relevant characteristics, such as immune cell infiltration and immune scores, were extremely evident in patients with low-risk scores. The findings from the in vitro and in vivo experiments indicated that the viability, proliferation, and invasion ability of melanoma cells were drastically decreased after the knockdown of TROAP. CONCLUSION: Our gene signature can independently predict the survival of melanoma patients. It provides a basis for the exploration of the relationship between LLPS and melanoma and can offer a fresh perspective on the clinical diagnosis and treatment of the disease.


Asunto(s)
Melanoma , Neoplasias Cutáneas , Humanos , Inmunoterapia , Factores de Riesgo , Pronóstico , Melanoma Cutáneo Maligno
5.
Front Immunol ; 14: 1189520, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37256127

RESUMEN

Background: Mast cells, comprising a crucial component of the tumor immune milieu, modulate neoplastic progression by secreting an array of pro- and antitumorigenic factors. Numerous extant studies have produced conflicting conclusions regarding the impact of mast cells on the prognosis of patients afflicted with lung adenocarcinoma (LUAD). Methods: Employing single-cell RNA sequencing (scRNA-seq) analysis, mast cell-specific marker genes in LUAD were ascertained. Subsequently, a mast cell-related genes (MRGs) signature was devised to stratify LUAD patients into high- and low-risk cohorts based on the median risk value. Further investigations were conducted to assess the influence of distinct risk categories on the tumor microenvironment. The prognostic import and capacity to prognosticate immunotherapy benefits of the MRGs signature were corroborated using four external cohorts. Ultimately, the functional roles of SYAP1 were validated through in vitro experimentation. Results: After scRNA-seq and bulk RNA-seq data analysis, we established a prognostic signature consisting of nine MRGs. This profile effectively distinguished favorable survival outcomes in both the training and validation cohorts. In addition, we identified the low-risk group as a population more effective for immunotherapy. In cellular experiments, we found that silencing SYAP1 significantly reduced the proliferation, invasion and migratory capacity of LUAD cells while increasing apoptosis. Conclusion: Our MRGs signature offers valuable insights into the involvement of mast cells in determining the prognosis of LUAD and may prove instrumental as a navigational aid for immunotherapy selection, as well as a predictor of immunotherapy response in LUAD patients.


Asunto(s)
Adenocarcinoma del Pulmón , Neoplasias Pulmonares , Humanos , Mastocitos , RNA-Seq , Análisis de Expresión Génica de una Sola Célula , Adenocarcinoma del Pulmón/genética , Adenocarcinoma del Pulmón/terapia , Pronóstico , Inmunoterapia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/terapia , Microambiente Tumoral/genética
7.
Front Endocrinol (Lausanne) ; 14: 1163046, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37033251

RESUMEN

Background: Increasing evidence suggests a correlation between glycosylation and the onset of cancer. However, the clinical relevance of glycosylation-related genes (GRGs) in uveal melanoma (UM) is yet to be fully understood. This study aimed to shed light on the impact of GRGs on UM prognosis. Methods: To identify the most influential genes in UM, we employed the AUCell and WGCNA algorithms. The GRGs signature was established by integrating bulk RNA-seq and scRNA-seq data. UM patients were separated into two groups based on their risk scores, the GCNS_low and GCNS_high groups, and the differences in clinicopathological correlation, functional enrichment, immune response, mutational burden, and immunotherapy between the two groups were examined. The role of the critical gene AUP1 in UM was validated through in vitro and in vivo experiments. Results: The GRGs signature was comprised of AUP1, HNMT, PARP8, ARC, ALG5, AKAP13, and ISG20. The GCNS was a significant prognostic factor for UM, and high GCNS correlated with poorer outcomes. Patients with high GCNS displayed heightened immune-related characteristics, such as immune cell infiltration and immune scores. In vitro experiments showed that the knockdown of AUP1 led to a drastic reduction in the viability, proliferation, and invasion capability of UM cells. Conclusion: Our gene signature provides an independent predictor of UM patient survival and represents a starting point for further investigation of GRGs in UM. It offers a novel perspective on the clinical diagnosis and treatment of UM.


Asunto(s)
Aprendizaje Automático , Análisis de la Célula Individual , Humanos , Pronóstico , Glicosilación
9.
Biomolecules ; 12(12)2022 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-36551262

RESUMEN

Anthracycline is a mainstay of treatment for breast cancer patients because of its antitumor activity. However, anthracycline resistance is a critical barrier in treating breast cancer. Thus, it is of great importance to uncover the molecular mechanisms underlying anthracycline resistance in breast cancer. Herein, we integrated transcriptome data, genetic alterations data, and clinical data of The Cancer Genome Atlas (TCGA) to identify the molecular mechanisms involved in anthracycline resistance in breast cancer. Two hundred and four upregulated genes and 1376 downregulated genes were characterized between the anthracycline-sensitive and anthracycline-resistant groups. It was found that drug resistance-associated genes such as ABCB5, CYP1A1, and CYP4Z1 were significantly upregulated in the anthracycline-resistant group. The gene set enrichment analysis (GSEA) suggested that the P53 signaling pathway, DNA replication, cysteine, and methionine metabolism pathways were associated with anthracycline sensitivity. Somatic TP53 mutation was a common genetic abnormality observed in the anthracycline-sensitive group, while CDH1 mutation was presented in the anthracycline-resistant group. Immune infiltration patterns were extremely different between the anthracycline-sensitive and anthracycline-resistant groups. Immune-associated chemokines and cytokines, immune regulators, and human leukocyte antigen genes were significantly upregulated in the anthracycline-sensitive group. These results reveal potential molecular mechanisms associated with anthracycline resistance.


Asunto(s)
Antraciclinas , Antibióticos Antineoplásicos , Neoplasias de la Mama , Resistencia a Antineoplásicos , Perfilación de la Expresión Génica , Transcriptoma , Femenino , Humanos , Antraciclinas/farmacología , Antraciclinas/uso terapéutico , Antibióticos Antineoplásicos/farmacología , Antibióticos Antineoplásicos/uso terapéutico , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Familia 4 del Citocromo P450/genética , Resistencia a Antineoplásicos/genética , Mutación
10.
Comput Intell Neurosci ; 2022: 9026017, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35875746

RESUMEN

In this paper, a better particle filter algorithm is put forth to address the issues of particle filter sample exhaustion and weight degradation. The algorithm frames the received signal and separates the signals in two steps based on the slow-varying properties of system parameters in practical applications, such as phase shift and transmission delay. In addition, the network model and energy consumption model are built while the sensor data is being collected and processed using the industrial IoT's communication mechanism and algorithm. The repeater is chosen as the node with the lowest transmission energy consumption, and the industrial field's sensor data is gathered via the fog server node. The simulation results demonstrate that the proposed algorithm's accuracy rate is 95.54 percent, higher than that of the comparison algorithm. The enhanced algorithm suggested in this paper can simultaneously achieve improved parameter estimation performance and achieve signal separation with low bit error rates. Additionally, the communication system and algorithm can efficiently gather the sensing information from the industrial field, and the indicators like energy consumption and the first dead node are better than other algorithms. It offers an innovative method for enhancing industrial field application.

11.
Tissue Eng Regen Med ; 19(5): 961-968, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35809187

RESUMEN

Senescence is an inevitable natural life process that involves structural and functional degeneration of tissues and organs. Recently, the process of skin aging has attracted much attention. Determining a means to delay or even reverse skin aging has become a research hotspot in medical cosmetology and anti-aging. Dysfunction in the epidermis and fibroblasts and changes in the composition and content of the extracellular matrix are common pathophysiological manifestations of skin aging. Reactive oxygen species and matrix metalloproteinases play essential roles in this process. Stem cells are pluripotent cells that possess self-replication abilities and can differentiate into multiple functional cells under certain conditions. These cells also possess a strong ability to facilitate tissue repair and regeneration. Stem cell transplantation has the potential for application in anti-aging therapy. Increasing studies have demonstrated that stem cells perform functions through paracrine processes, particularly those involving exosomes. Exosomes are nano-vesicular substances secreted by stem cells that participate in cell-to-cell communication by transporting their contents into target cells. In this chapter, the biological characteristics of exosomes were reviewed, including their effects on extracellular matrix formation, epidermal cell function, fibroblast function and antioxidation. Exosomes derived from stem cells may provide a new means to reverse skin aging.


Asunto(s)
Exosomas , Envejecimiento de la Piel , Fibroblastos , Especies Reactivas de Oxígeno , Células Madre
12.
Front Oncol ; 12: 1088931, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36733364

RESUMEN

Background: Cuproptosis, a unique kind of cell death, has implications for cancer therapy, particularly lung adenocarcinoma (LUAD). Long non-coding RNAs (lncRNAs) have been demonstrated to influence cancer cell activity by binding to a wide variety of targets, including DNA, RNA, and proteins. Methods: Cuproptosis-related lncRNAs (CRlncRNAs) were utilized to build a risk model that classified patients into high-and low-risk groups. Based on the CRlncRNAs in the model, Consensus clustering analysis was used to classify LUAD patients into different subtypes. Next, we explored the differences in overall survival (OS), the tumor immune microenvironment (TIME), and the mutation landscape between different risk groups and molecular subtypes. Finally, the functions of LINC00592 were verified through in vitro experiments. Results: Patients in various risk categories and molecular subtypes showed statistically significant variations in terms of OS, immune cell infiltration, pathway activity, and mutation patterns. Cell experiments revealed that LINC00592 knockdown significantly reduced LUAD cell proliferation, invasion, and migration ability. Conclusion: The development of a trustworthy prediction model based on CRlncRNAs may significantly aid in the assessment of patient prognosis, molecular features, and therapeutic modalities and may eventually be used in clinical applications.

13.
Inorg Chem ; 60(20): 15659-15666, 2021 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-34590478

RESUMEN

The fractional oxidation state [M(dmit)2] (dmit2- = 2-thioxo-1, 3-dithiole-4, 5-dithiolate) salts have long attracted attention in the molecular metal area owing to high conductivity and even superconductivity. In this study, we achieved a mixed-valence salt (1) of [Ni(dmit)2]0.5- with monovalent 1,3-N,N-dimethyl-imidazolium (DiMIm+) by a solvent evaporation approach under ambient conditions. The mixed valence of [Ni(dmit)2]0.5- has been characterized by an analysis of the IR spectrum and crystal structure. In the crystal structure of 1, two [Ni(dmit)2]0.5- anions overlap in an eclipsed mode to form a [Ni(dmit)2]21- dimer, featuring a radical bearing an S = 1/2 spin; the dimeric radicals stack into a column along the b axis, and the adjacent columns connect together via the lateral-to-lateral S···S contacts along the a axis, and through the head-to-head S···S contacts along the [101] direction. Salt 1 shows the magnetic behavior of an S = 1/2 Heisenberg antiferromagnetic uniform linear chain with J/kB = -47.5(4) K and a semiconducting feature with σ = 2.52 × 10-3 S cm-1 at 293 K, 2.32 × 10-2 S cm-1 at 373 K, and Ea = 0.22 eV, as well as broadband photoconductivity under irradiation of green and white lights. This study suggests the possibility of designing new photoconductors based on the mixed-valence [Ni(dmit)2]0.5- salt.

14.
Bioengineered ; 12(1): 4159-4173, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34288815

RESUMEN

To identify how circular RNA circRNA_0082835 impacts melanoma cells and lymphatic metastasis to observe whether it exerts effects through its action mechanism of sponging microRNA miR-429. Clinical baseline information was collected, and clinical samples were used for detection on circRNA_0082835 and EZH2. The expression of circRNA_0082835, EZH2, and miR-429 was detected by quantitative real-time PCR (RT-qPCR). Cell proliferation was tested with cell counting kit-8 (CCK-8). Flow cytometry was applied to examination of cell cycle levels. Cell invasion and migration were observed by transwell and wound healing. The expression of Wnt/ß-catenin pathway, cell cycle and epithelial-mesenchymal transition (EMT) marker proteins was analyzed by western blot. Dual-luciferase determined the binding of miR-429 and circ_0082835. As a result, the expression of circRNA_0082835 was increased and that of miR-429 was decreased with the increase in lymphatic metastasis level. CircRNA_0082835 expression was downregulated by circ_0082835 interference, upregulated by EZH2 interference and also downregulated after transfection of both shRNA-circ_0082835 and shRNA-EZH2. Inhibiting circ_0082835 and EZH2 suppressed the proliferation, invasion and migration, regulated the cell cycle levels, inhibited Wnt/ß-catenin and attenuated EMT in melanoma cells. Inhibition of circ_0082835 and/or EZH2 elevated miR-429 expression. The binding among miR-429 and circ_0082835 was verified. MiR-429 inhibitor reversed the effect of circ_0082835 interference while having no significant impact on EZH2. In conclusion, circRNA_0082835 sponges miR-429 to affect the anti-tumor effect of miR-429 in primary melanoma and lymphatic metastasis.


Asunto(s)
Progresión de la Enfermedad , Metástasis Linfática/genética , Melanoma/genética , Melanoma/patología , MicroARNs/metabolismo , ARN Circular/metabolismo , Adulto , Anciano , Ciclo Celular/genética , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Proteína Potenciadora del Homólogo Zeste 2/metabolismo , Transición Epitelial-Mesenquimal/genética , Femenino , Regulación Neoplásica de la Expresión Génica , Técnicas de Silenciamiento del Gen , Humanos , Masculino , MicroARNs/genética , Persona de Mediana Edad , Invasividad Neoplásica , Estadificación de Neoplasias , ARN Circular/genética , Vía de Señalización Wnt/genética
15.
Braz J Med Biol Res ; 53(11): e10009, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32965322

RESUMEN

The epidermis, the outermost layer of the skin, is the first barrier that comes into contact with the external environment. It plays an important role in resisting the invasion of harmful substances and microbial infections. The skin changes with age and external environmental factors. This study aimed to investigate epidermal stem cells during the process of aging. This study enrolled 9 volunteers with benign pigmented nevus for clinical dermatologic surgery. The phenotypes associated with skin aging changes such as skin wrinkles and elasticity of the unexposed/healthy parts near benign pigmented skin were measured, and epidermal stem cells from this region were isolated for transcriptome sequencing. The results showed that epidermal stem cells could be obtained by magnetic activated cell sorting (MACS) with high purity. Results of the transcriptome sequencing revealed that aquaporin (AQP)5 significantly decreased in the epidermal stem cells with age, and further functional experiments revealed that AQP5 could promote the proliferation and dedifferentiation of HaCaT, but did not influence cell apoptosis. In summary, AQP5 regulated the proliferation and differentiation of epidermal stem cells in skin aging, and it may play an important role in the balance of proliferation and differentiation. However, further studies are needed to determine the mechanism by which AQP5 regulates the proliferation and differentiation of epidermal skin cells in aging.


Asunto(s)
Acuaporina 5/metabolismo , Envejecimiento de la Piel , Diferenciación Celular , Proliferación Celular , Epidermis , Humanos , Células Madre
16.
RSC Adv ; 10(15): 9046-9051, 2020 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-35496546

RESUMEN

Herein we report the first example of the proton conductivity of an open-framework metal phosphate (NH3(CH2)3NH3)2-[Fe4(OH)3(HPO4)2(PO4)3]·4H2O under aqua-ammonia vapor. Its optimized proton conductivity is 5 × 10-2 S cm-1 at 313 K and aqua-ammonium vapor from 1 M NH3·H2O solution. That is approximately two orders of magnitude greater than the maximum value under water vapor (8.0 × 10-4 S cm-1 at 317 K and 99% RH). The proton transfer mechanism has been proposed in terms of the structural analyses, activation energy calculations, and PXRD determinations.

17.
Braz. j. med. biol. res ; 53(11): e10009, 2020. tab, graf
Artículo en Inglés | LILACS, ColecionaSUS | ID: biblio-1132495

RESUMEN

The epidermis, the outermost layer of the skin, is the first barrier that comes into contact with the external environment. It plays an important role in resisting the invasion of harmful substances and microbial infections. The skin changes with age and external environmental factors. This study aimed to investigate epidermal stem cells during the process of aging. This study enrolled 9 volunteers with benign pigmented nevus for clinical dermatologic surgery. The phenotypes associated with skin aging changes such as skin wrinkles and elasticity of the unexposed/healthy parts near benign pigmented skin were measured, and epidermal stem cells from this region were isolated for transcriptome sequencing. The results showed that epidermal stem cells could be obtained by magnetic activated cell sorting (MACS) with high purity. Results of the transcriptome sequencing revealed that aquaporin (AQP)5 significantly decreased in the epidermal stem cells with age, and further functional experiments revealed that AQP5 could promote the proliferation and dedifferentiation of HaCaT, but did not influence cell apoptosis. In summary, AQP5 regulated the proliferation and differentiation of epidermal stem cells in skin aging, and it may play an important role in the balance of proliferation and differentiation. However, further studies are needed to determine the mechanism by which AQP5 regulates the proliferation and differentiation of epidermal skin cells in aging.


Asunto(s)
Humanos , Envejecimiento de la Piel , Acuaporina 5/metabolismo , Células Madre , Diferenciación Celular , Proliferación Celular , Epidermis
18.
Dalton Trans ; 48(46): 17210-17216, 2019 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-31728458

RESUMEN

As a class of anionic oxoclusters of early transition metals in their highest oxidation states, polyoxometalates (POMs) show considerable structural versatility and unique chemical and physical properties, making them promising multifunctional materials. In this study, a Keggin-type POM has been achieved, with a formula of [(H2O)0.3@K6(H2O)12]H4.45[PV7.45Mo4.55O40]·11H2O (1), and its microcrystals and nanocrystals have been obtained, respectively. This POM was characterized by elemental analysis for C, H and N, ICP-MS, TG, PXRD, SEM, X-band EPR and XPS techniques. Single crystal X-ray diffraction analysis demonstrated that 1 shows a rare extended structure with a high-connected three-dimensional (3D) all inorganic network of a Keggin-type POM, built from {Mo4.55V7.45PO40}10.45- polyoxoanions and {(H2O)0.3@K6(H2O)12}6+ clusters with CsCl-type crystal structure. In addition, to the best of our knowledge, 1 shows the highest ratio of vanadium to molybdenum among Keggin-type POMs reported thus far. Most interestingly, 1 exhibits intrinsic proton conduction below the freezing point of water, with a proton conductivity of 6.90 × 10-7 S cm-1 at 249 K and further reaching 3.36 × 10-6 S cm-1 at 272 K and Ea = 0.44 eV at 249-272 K.

19.
Dalton Trans ; 48(36): 13841-13849, 2019 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-31482896

RESUMEN

New luminescent Pb(ii)-coordination polymers (Pb(ii)-CPs), [Pb(2-anc)2]n (1) and [Pb(3-qlc)2(H2O)2]n (2) (2-anc = 2-aminonicotinate, 3-qlc = 3-quinolinecarboxylate), were synthesized by a solvothermal reaction and characterized using microanalysis, IR spectrometry and thermogravimetric analysis. Single crystal structure analysis revealed that the Pb2+ ion displays a hemi-directed coordination geometry in 1 and a holo-directed coordination geometry in 2. The difference between the coordination spheres of 1 and 2 is related to the steric hindrance effect of the ligands. A two-dimensional (2D) corrugated layer structure is formed in 1, and the neighboring layers are further extended into a three-dimensional (3D) van der Waals crystal by ππ interactions between the pyridyl rings in the neighboring layers. In contrast, a one-dimensional (1D) coordination polymeric chain is formed in 2, and the adjacent chains are connected in a 2D network by hydrogen bonds. The photophysical properties of 1 and 2 were studied at ambient conditions, disclosing that 1 emits phosphorescence at 548 nm with a millisecond-scale emission lifetime and an absolute quantum yield of 2.2%; 2 emits only blue fluorescence with an absolute quantum yield of 3.5% and nanosecond-scale emission lifetime. The reasons for the difference in the photophysical nature of 1 and 2 are discussed in regards to the electron band structure and density of states analysis.

20.
J Cosmet Dermatol ; 18(5): 1487-1494, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31347758

RESUMEN

BACKGROUND: Regenerative Epithelial Suspension can lead to the restoration of wound and repigmentation, which can be gained by ReCell medical device to treat scar and depigmentation diseases. OBJECTIVES: To report the effectivity of ReCell combined with microdermabrasion in scar and depigmentation diseases and review the literature of this new technology. METHODS: We gave a differential donor/recipient ratio of about 1:20-30 with vitiligo, 1:40 with postburn construction, 1:80 with acne scar, and 1:120 with adult congenital melanocytic nevus, 1:80 with pediatrics, respectively. Photographs of patients before treatment and 3 months following the last treatment session were used to evaluate the effectivity. RESULTS: A total of 8 patients including vitiligo vulgaris, postburn reconstruction, acne scars, and congenital melanocytic nevi treated by ReCell technology combined with microdermabrasion showed significant improvement in skin texture and color. And 17 studies of the research on ReCell technology were totally included in the systematic review. CONCLUSION: Our investigation showed that Regenerative Epithelial Suspension gained by ReCell technology combined with microdermabrasion may improve scar and depigmentation diseases.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA