Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nat Genet ; 53(6): 881-894, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33972779

RESUMEN

Esophageal squamous cell carcinomas (ESCCs) harbor recurrent chromosome 3q amplifications that target the transcription factor SOX2. Beyond its role as an oncogene in ESCC, SOX2 acts in development of the squamous esophagus and maintenance of adult esophageal precursor cells. To compare Sox2 activity in normal and malignant tissue, we developed engineered murine esophageal organoids spanning normal esophagus to Sox2-induced squamous cell carcinoma and mapped Sox2 binding and the epigenetic and transcriptional landscape with evolution from normal to cancer. While oncogenic Sox2 largely maintains actions observed in normal tissue, Sox2 overexpression with p53 and p16 inactivation promotes chromatin remodeling and evolution of the Sox2 cistrome. With Klf5, oncogenic Sox2 acquires new binding sites and enhances activity of oncogenes such as Stat3. Moreover, oncogenic Sox2 activates endogenous retroviruses, inducing expression of double-stranded RNA and dependence on the RNA editing enzyme ADAR1. These data reveal SOX2 functions in ESCC, defining targetable vulnerabilities.


Asunto(s)
Adenosina Desaminasa/metabolismo , Epigenoma , Neoplasias Esofágicas/genética , Carcinoma de Células Escamosas de Esófago/genética , Proteínas de Unión al ARN/metabolismo , Factores de Transcripción SOXB1/metabolismo , Regiones no Traducidas 3'/genética , Animales , Secuencia de Bases , Carcinogénesis/genética , Línea Celular Tumoral , Transformación Celular Neoplásica/genética , Inhibidor p16 de la Quinasa Dependiente de Ciclina/metabolismo , Retrovirus Endógenos/genética , Elementos de Facilitación Genéticos/genética , Regulación Neoplásica de la Expresión Génica , Genoma Humano , Humanos , Interferones/metabolismo , Intrones/genética , Factores de Transcripción de Tipo Kruppel/genética , Ratones , Organoides/patología , Unión Proteica , ARN Bicatenario/metabolismo , Factores de Transcripción SOXB1/genética , Proteína p53 Supresora de Tumor/metabolismo
2.
Clin Cancer Res ; 26(13): 3431-3442, 2020 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-32209571

RESUMEN

PURPOSE: Lung squamous cell carcinoma (LSCC) is a deadly disease for which only a subset of patients responds to immune checkpoint blockade (ICB) therapy. Therefore, preclinical mouse models that recapitulate the complex genetic profile found in patients are urgently needed. EXPERIMENTAL DESIGN: We used CRISPR genome editing to delete multiple tumor suppressors in lung organoids derived from Cre-dependent SOX2 knock-in mice. We investigated both the therapeutic efficacy and immunologic effects accompanying combination PD-1 blockade and WEE1 inhibition in both mouse models and LSCC patient-derived cell lines. RESULTS: We show that multiplex gene editing of mouse lung organoids using the CRISPR-Cas9 system allows for efficient and rapid means to generate LSCCs that closely mimic the human disease at the genomic and phenotypic level. Using this genetically defined mouse model and three-dimensional tumoroid culture system, we show that WEE1 inhibition induces DNA damage that primes the endogenous type I IFN and antigen presentation system in primary LSCC tumor cells. These events promote cytotoxic T-cell-mediated clearance of tumor cells and reduce the accumulation of tumor-infiltrating neutrophils. Beneficial immunologic features of WEE1 inhibition are further enhanced by the addition of anti-PD-1 therapy. CONCLUSIONS: We developed a mouse model system to investigate a novel combinatory approach that illuminates a clinical path hypothesis for combining ICB with DNA damage-inducing therapies in the treatment of LSCC.


Asunto(s)
Carcinoma de Células Escamosas/patología , Modelos Animales de Enfermedad , Neoplasias Pulmonares/patología , Pulmón/efectos de los fármacos , Pulmón/patología , Ratones Transgénicos , Organoides/efectos de los fármacos , Animales , Biomarcadores , Biomarcadores de Tumor , Carcinoma de Células Escamosas/tratamiento farmacológico , Carcinoma de Células Escamosas/metabolismo , Línea Celular Tumoral , Terapia Combinada , Edición Génica , Expresión Génica , Ingeniería Genética , Humanos , Inmunohistoquímica , Inmunoterapia , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/metabolismo , Linfocitos Infiltrantes de Tumor/inmunología , Linfocitos Infiltrantes de Tumor/metabolismo , Linfocitos Infiltrantes de Tumor/patología , Ratones , Ensayos Antitumor por Modelo de Xenoinjerto
3.
Nat Genet ; 52(2): 219-230, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-32025000

RESUMEN

Somatic alterations in cancer genes are being detected in normal and premalignant tissue, thus placing greater emphasis on gene-environment interactions that enable disease phenotypes. By combining early genetic alterations with disease-relevant exposures, we developed an integrative mouse model to study gastric premalignancy. Deletion of Trp53 in gastric cells confers a selective advantage and promotes the development of dysplasia in the setting of dietary carcinogens. Organoid derivation from dysplastic lesions facilitated genomic, transcriptional and functional evaluation of gastric premalignancy. Cell cycle regulators, most notably Cdkn2a, were upregulated by p53 inactivation in gastric premalignancy, serving as a barrier to disease progression. Co-deletion of Cdkn2a and Trp53 in dysplastic gastric organoids promoted cancer phenotypes but also induced replication stress, exposing a susceptibility to DNA damage response inhibitors. These findings demonstrate the utility of mouse models that integrate genomic alterations with relevant exposures and highlight the importance of gene-environment interactions in shaping the premalignant state.


Asunto(s)
Lesiones Precancerosas/patología , Neoplasias Gástricas/etiología , Proteína p53 Supresora de Tumor/genética , Adenocarcinoma/genética , Adenocarcinoma/patología , Animales , Esófago de Barrett/genética , Esófago de Barrett/patología , Línea Celular Tumoral , Inhibidor p16 de la Quinasa Dependiente de Ciclina/genética , Exposición a Riesgos Ambientales/efectos adversos , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/patología , Humanos , Metilnitrosourea/toxicidad , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Mutación , Neoplasias Experimentales/inducido químicamente , Neoplasias Experimentales/genética , Neoplasias Experimentales/patología , Organoides/patología , Lesiones Precancerosas/genética , Neoplasias Gástricas/tratamiento farmacológico , Neoplasias Gástricas/patología
4.
Nat Med ; 24(7): 968-977, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29808010

RESUMEN

The role of KRAS, when activated through canonical mutations, has been well established in cancer1. Here we explore a secondary means of KRAS activation in cancer: focal high-level amplification of the KRAS gene in the absence of coding mutations. These amplifications occur most commonly in esophageal, gastric and ovarian adenocarcinomas2-4. KRAS-amplified gastric cancer models show marked overexpression of the KRAS protein and are insensitive to MAPK blockade owing to their capacity to adaptively respond by rapidly increasing KRAS-GTP levels. Here we demonstrate that inhibition of the guanine-exchange factors SOS1 and SOS2 or the protein tyrosine phosphatase SHP2 can attenuate this adaptive process and that targeting these factors, both genetically and pharmacologically, can enhance the sensitivity of KRAS-amplified models to MEK inhibition in both in vitro and in vivo settings. These data demonstrate the relevance of copy-number amplification as a mechanism of KRAS activation, and uncover the therapeutic potential for targeting of these tumors through combined SHP2 and MEK inhibition.


Asunto(s)
Neoplasias Esofágicas/genética , Amplificación de Genes , Quinasas de Proteína Quinasa Activadas por Mitógenos/antagonistas & inhibidores , Proteína Tirosina Fosfatasa no Receptora Tipo 11/antagonistas & inhibidores , Proteínas Proto-Oncogénicas p21(ras)/genética , Neoplasias Gástricas/genética , Animales , Línea Celular Tumoral , Modelos Animales de Enfermedad , Neoplasias Esofágicas/patología , Humanos , Ratones , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Piperidinas/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Proteína Tirosina Fosfatasa no Receptora Tipo 11/metabolismo , Piridonas/farmacología , Pirimidinas/farmacología , Pirimidinonas/farmacología , Neoplasias Gástricas/patología
5.
Nat Commun ; 8: 13897, 2017 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-28059068

RESUMEN

Oesophageal squamous cell carcinoma is a deadly disease where systemic therapy has relied upon empiric chemotherapy despite the presence of genomic alterations pointing to candidate therapeutic targets, including recurrent amplification of the gene encoding receptor tyrosine kinase epidermal growth factor receptor (EGFR). Here, we demonstrate that EGFR-targeting small-molecule inhibitors have efficacy in EGFR-amplified oesophageal squamous cell carcinoma (ESCC), but may become quickly ineffective. Resistance can occur following the emergence of epithelial-mesenchymal transition and by reactivation of the mitogen-activated protein kinase (MAPK) pathway following EGFR blockade. We demonstrate that blockade of this rebound activation with MEK (mitogen-activated protein kinase kinase) inhibition enhances EGFR inhibitor-induced apoptosis and cell cycle arrest, and delays resistance to EGFR monotherapy. Furthermore, genomic profiling shows that cell cycle regulators are altered in the majority of EGFR-amplified tumours and a combination of cyclin-dependent kinase 4/6 (CDK4/6) and EGFR inhibitors prevents the emergence of resistance in vitro and in vivo. These data suggest that upfront combination strategies targeting EGFR amplification, guided by adaptive pathway reactivation or by co-occurring genomic alterations, should be tested clinically.


Asunto(s)
Carcinoma de Células Escamosas/tratamiento farmacológico , Quinasa 4 Dependiente de la Ciclina/antagonistas & inhibidores , Quinasa 6 Dependiente de la Ciclina/antagonistas & inhibidores , Receptores ErbB/antagonistas & inhibidores , Neoplasias Esofágicas/tratamiento farmacológico , Proteínas Quinasas Activadas por Mitógenos/antagonistas & inhibidores , Animales , Carcinoma de Células Escamosas/patología , Línea Celular Tumoral , Quinasa 4 Dependiente de la Ciclina/metabolismo , Quinasa 6 Dependiente de la Ciclina/metabolismo , Resistencia a Antineoplásicos/efectos de los fármacos , Activación Enzimática/efectos de los fármacos , Transición Epitelial-Mesenquimal/efectos de los fármacos , Receptores ErbB/genética , Clorhidrato de Erlotinib/farmacología , Clorhidrato de Erlotinib/uso terapéutico , Neoplasias Esofágicas/patología , Carcinoma de Células Escamosas de Esófago , Amplificación de Genes , Humanos , Ratones , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Fenotipo , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Resultado del Tratamiento , Ensayos Antitumor por Modelo de Xenoinjerto
6.
Cancer Immunol Res ; 3(10): 1123-1129, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26081225

RESUMEN

Esophageal adenocarcinoma is an increasingly common disease with a dismal 5-year survival rate of 10% to 15%. In the first systematic evaluation of the PD-1 pathway in esophageal adenocarcinoma, we identify expression of PD-L2 in cancer cells in 51.7% of esophageal adenocarcinomas. Epithelial PD-L1 was expressed on only 2% of cases, although PD-L1(+) immune cells were observed in 18% of esophageal adenocarcinomas. We also evaluated expression in the precursor lesion of esophageal adenocarcinoma, Barrett's esophagus, which emerges following gastric reflux-induced esophageal inflammation, and found PD-L2 expression in Barrett's esophagus but not in non-Barrett's esophagus esophagitis. Because the progression from squamous esophagitis to Barrett's esophagus is accompanied by a transition from a TH1 to TH2 immune response, we hypothesized that the TH2 cytokines IL4/IL13 could contribute to PD-L2 induction. We confirmed that these cytokines can augment PD-L2 expression in esophageal adenocarcinoma cell lines. These results suggest that the inflammatory environment in Barrett's esophagus and esophageal adenocarcinoma may contribute to the expression of PD-L2. Furthermore, the potential for PD-1 receptor blockade to be effective in esophageal adenocarcinomas with epithelial PD-L2 or immune cell PD-L1 expression should be evaluated in clinical trials.


Asunto(s)
Adenocarcinoma/metabolismo , Esófago de Barrett/metabolismo , Neoplasias Esofágicas/metabolismo , Membrana Mucosa/metabolismo , Proteína 2 Ligando de Muerte Celular Programada 1/metabolismo , Adenocarcinoma/genética , Adenocarcinoma/patología , Anciano , Animales , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Esófago de Barrett/genética , Esófago de Barrett/patología , Biomarcadores , Línea Celular Tumoral , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/patología , Femenino , Expresión Génica , Xenoinjertos , Humanos , Inmunohistoquímica , Interleucina-13/metabolismo , Interleucina-4/metabolismo , Masculino , Ratones , Persona de Mediana Edad , Membrana Mucosa/patología , Clasificación del Tumor , Metástasis de la Neoplasia , Estadificación de Neoplasias , Proteína 2 Ligando de Muerte Celular Programada 1/genética , Receptor de Muerte Celular Programada 1/genética , Receptor de Muerte Celular Programada 1/metabolismo , Reproducibilidad de los Resultados , Transducción de Señal , Carga Tumoral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...