Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; 63(38): e202406848, 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-38972850

RESUMEN

The synthesis of group IV metallocene precatalysts for the polymerization of propylene generally yields two different isomers: The racemic isomer that produces isotactic polypropylene (iPP) and the meso isomer that produces atactic polypropylene (aPP). Due to its poor physical properties, aPP has very limited applications. To avoid obtaining blends of both polymers and thus diminish the mechanical and thermal properties of iPP, the meso metallocene complexes need to be separated from the racemic ones tediously-rendering the metallocene-based polymerization of propylene industrially far less attractive than the Ziegler/Natta process. To overcome this issue, we established an isomerization protocol to convert meso metallocene complexes into their racemic counterparts. This protocol increased the yield of iPP by 400 % while maintaining the polymer's excellent physical properties and was applicable to both hafnocene and zirconocene complexes, as well as different precatalyst activation methods. Through targeted variation of the ligand frameworks, methoxy groups at the indenyl moieties were found to be the structural motifs responsible for an isomerization to take place-this experimental evidence was confirmed by density functional theory calculations. Liquid injection field desorption ionization mass spectrometry, as well as 1H and 29Si nuclear magnetic resonance studies, allowed the proposal of an isomerization mechanism.

2.
Macromol Rapid Commun ; 43(17): e2200185, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35531966

RESUMEN

In this work, the synthesis of limonene lactam starting from limonene epoxide and its subsequent ring-opening polymerization (ROP) to novel polyamides is presented. Sustainable, biobased materials are gaining interest as replacements of conventional, petroleum-based materials, and even more important, as high-performance materials for new applications. Terpenes-structurally advanced biobased compounds-are therefore of great interest. In this research, limonene lactam, a novel biobased monomer for preparing sustainable polyamides via ROP, can be synthesized. Limonene lactam possesses an isopropylene and a methyl side group, thus stereocenters posing special challenges and requirements for synthesis, analysis and polymerization. However, these difficult-to-synthesize structural elements can generate novel polymers with unique properties, e.g., functionalizability. In this work, a sustainable monomer synthesis is established, and simplified to industrial needs. For the sterically demanding in-bulk ROP to limonene polyamides, various initiators and conditions are tested. Polyamides with more than 100 monomer units are successfully synthesized and confirmed via nuclear magnetic resonance (NMR) spectroscopy and gel permeations chromatography (GPC). Differential scanning calorimetry (DSC) and thermal gravimetric analysis (TGA) are used to analyze its thermal properties. In summary, a sustainable monomer synthesis is established, and promising polyamides with intact double bond and interesting thermal properties are achieved.


Asunto(s)
Lactamas , Nylons , Lactamas/química , Limoneno , Nylons/química , Polimerizacion , Terpenos/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...