Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 254
Filtrar
1.
Angew Chem Int Ed Engl ; : e202407895, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38949843

RESUMEN

The diterpene synthase AfAS was identified from Aspergillus fumigatiaffinis. Its amino acid sequence and - according to a structural model - active site architecture are highly similar to those of the fusicocca-2,10(14)-diene synthase PaFS, but AfAS produces a structurally much more complex diterpene with a novel 6-5-5-5 tetracyclic skeleton called asperfumene. The cyclisation mechanism of AfAS was elucidated through isotopic labelling experiments and DFT calculations. The reaction cascade proceeds in its initial steps through similar intermediates as for the PaFS cascade, but then diverges through an unusual vicinal deprotonation-reprotonation process that triggers a skeletal rearrangement at the entrance to the steps leading to the unique asperfumene skeleton. The structural model revealed only one major difference between the active sites: The PaFS residue F65 is substituted by I65 in AfAS. Intriguingly, site-directed mutagenesis experiments with both diterpene synthases revealed that position 65 serves as a bidirectional functional switch for the biosynthesis of tetracyclic asperfumene versus structurally less complex diterpenes.

2.
Sci Total Environ ; 942: 173755, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-38851336

RESUMEN

In order to realize the low-carbon development policy, the large-scale development and utilization of nuclear energy is very essential. Uranium is the key resource for nuclear industry. The extracting and recycling uranium from seawater and nuclear wastewater is necessary for secure uranium reserves, ensure energy security, control pollution and protect the environment. The novel nanomaterial MXene possesses the layered structure, high specific surface area, and modifiable surface terminal groups, which allowed it to enrich uranium. In addition, good photovoltaic and photothermal properties improves the ability to adsorb uranium. The excellent radiation resistance of the MAX phase strongly indicates the potential use of MXene as an effective uranium adsorbent. However, there are relatively few reviews on its application in uranium extraction and recovery. This review focuses on the recent advances in the use of MXene-based materials as highly efficient adsorbents for the recovery of uranium from seawater and nuclear wastewater. First, the structural, synthetic and characterization aspects of MXene materials are introduced. Subsequently, the adsorptive properties of MXene-based materials are evaluated in terms of uranium extraction recovery capability, selectivity, and reproducibility. Furthermore, the interaction mechanisms between uranium and MXene absorbers are discussed. Finally, the challenges for MXene materials in uranium adsorption applications are proposed for better design of new types of MXene-based adsorbents.

3.
bioRxiv ; 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-38895246

RESUMEN

In this study, using RNA-Seq gene expression data and advanced machine learning techniques, we identified distinct gene expression profiles between male and female pancreatic ductal adenocarcinoma (PDAC) patients. Building upon this insight, we developed sex-specific 3-year survival predictive models along with a single comprehensive model. These sex-specific models outperformed the single general model despite the smaller sample sizes. We further refined our models by using the most important features extracted from these initial models. The refined sex-specific predictive models achieved improved accuracies of 92.62% for males and 91.96% for females, respectively, versus an accuracy of 87.84% from the refined comprehensive model, further highlighting the value of sex-specific analysis. Based on these findings, we created Gap-App, a web application that enables the use of individual gene expression profiles combined with sex information for personalized survival predictions. Gap-App, the first online tool aiming to bridge the gap between complex genomic data and clinical application and facilitating more precise and individualized cancer care, marks a significant advancement in personalized prognosis. The study not only underscores the importance of acknowledging sex differences in personalized prognosis, but also sets the stage for the shift from traditional one-size-fits-all to more personalized and targeted medicine. The GAP-App service is freely available at www.gap-app.org.

4.
J Biomed Res ; : 1-10, 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38807485

RESUMEN

Core 1 synthase glycoprotein-N-acetylgalactosamine 3-ß-galactosyltransferase 1 (C1GALT1) is known to play a critical role in the development of gastric cancer, but few studies have elucidated associations between genetic variants in C1GALT1 and gastric cancer susceptibility. By using the genome-wide association study data from the database of Genotype and Phenotype (dbGAP), we evaluated these associations with a logistic regression model and identified that the rs35999583 in C1GALT1 was associated with gastric cancer risk (odd ratio, 0.83; 95% confidence interval [CI], 0.75-0.92; P = 3.95 × 10 -4]. C1GALT1 mRNA expression was significantly higher in gastric tumor tissues, and gastric cancer patients with higher C1GALT1 mRNA levels had the worse overall survival rates (hazards ratio, 1.33; 95% CI, 1.05-1.68; P log-rank = 1.90 × 10 -2). Furthermore, we found that C1GALT1 copy number variations differed in various immune cells and C1GALT1 mRNA expression was positively correlated with the infiltrating levels of CD4 + T cells and macrophages. These results highlight that genetic variants of C1GALT1 may play an important role in gastric cancer risk and provide a new insight for C1GALT1 to be a promising predictor of gastric cancer susceptibility and immune status.

5.
Bull Entomol Res ; : 1-12, 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38751346

RESUMEN

The Argentine ant (Linepithema humile) and the little fire ant (Wasmannia auropunctata) are among the top 100 invasive alien species globally, causing significant ecological and economic harm. Therefore, it is crucial to study their potential geographic distribution worldwide. This study aimed to predict their global distribution under current and future climate conditions. We used distribution data from various sources, including CABI, GBIF, and PIAKey, and key climate variables selected from 19 environmental factors to model their potential geographic distribution using MaxEnt. The AUC values were 0.925 and 0.937 for L. humile and W. auropunctata, respectively, indicating good predictive performance. Suitable areas for L. humile were mainly in southern North America, northern South America, Europe, central Asia, southern Oceania, and parts of Africa, while W. auropunctata suitable areas were mostly in southern North America, most of South America, a small part of Europe, southern Asia, central Africa, and some parts of Oceania. Under climate change scenario, suitable areas for L. humile increased, while highly suitable areas for W. auropunctata decreased. The top four countries with the largest areas of overlapping suitable habitat under current climate were Brazil, China, Australia, and Argentina, while under future SSP585 climate scenario, the top four countries were Brazil, China, Indonesia, and Argentina. Some countries, such as Estonia and Finland, will see an overlapping adaptation area under climate change. In conclusion, this study provides insight into controlling the spread and harm of L. humile and W. auropunctata.

6.
J Colloid Interface Sci ; 670: 223-233, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-38761575

RESUMEN

Macrophages can kill bacteria and viruses by releasing free radicals, which provides a possible approach to construct antifouling coatings with dynamic surfaces that release free radicals if the breaking of dynamic covalent bonds is precisely regulated. Herein, inspired by the defensive behavior of macrophages of releasing free radicals to kill bacteria and viruses, a marine antifouling coating composed of polyurethane incorporating dimethylglyoxime (PUx-DMG) is prepared by precise regulation of dynamic oxime-urethane covalent bonds. The obtained alkyl radical (R·) derived from the cleavage of the oxime-urethane bonds manages to effectively suppress the attachment of marine biofouling. Moreover, the intrinsic dynamic surface makes it difficult for biofouling to adhere and ultimately achieves sustainable antifouling property. Notably, the PU50-DMG coating not only presents efficient antibacterial and antialgae properties, but also prevents macroorganisms from settling in the sea for up to 4 months. This provides a pioneer broad-spectrum strategy to explore the marine antifouling coatings.


Asunto(s)
Antibacterianos , Incrustaciones Biológicas , Macrófagos , Propiedades de Superficie , Incrustaciones Biológicas/prevención & control , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Animales , Antibacterianos/farmacología , Antibacterianos/química , Poliuretanos/química , Poliuretanos/farmacología , Ratones , Oximas/química , Oximas/farmacología , Células RAW 264.7 , Tamaño de la Partícula , Pruebas de Sensibilidad Microbiana , Estructura Molecular
7.
Int J Mol Sci ; 25(7)2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38612848

RESUMEN

The rational design of advanced electrocatalysts at the molecular or atomic level is important for improving the performance of hydrogen evolution reactions (HERs) and replacing precious metal catalysts. In this study, we describe the fabrication of electrocatalysts based on Fe, Co, or Ni single atoms supported on titanium carbide (TiC) using the molten salt method, i.e., TiC-FeSA, TiC-CoSA, or TiC-NiSA, to enhance HER performance. The introduction of uniformly distributed transition-metal single atoms successfully reduces the overpotential of HERs. Overpotentials of TiC-FeSA at 10 mA cm-2 are 123.4 mV with 61.1 mV dec-1 Tafel slope under acidic conditions and 184.2 mV with 85.1 mV dec-1 Tafel slope under alkaline conditions, which are superior to TiC-NiSA and TiC-CoSA. TiC samples loaded with transition-metal single atoms exhibit high catalytic activity and long stability under acidic and basic conditions. Density functional theory calculations indicate that the introduction of transition-metal single atoms effectively reduces the HER barrier of TiC-based electrocatalysts.


Asunto(s)
Hierro , Níquel , Titanio , Cobalto , Hidrógeno
8.
J Control Release ; 368: 413-429, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38431093

RESUMEN

Exosomes continue to attract interest as a promising nanocarrier drug delivery technology. They are naturally derived nanoscale extracellular vesicles with innate properties well suited to shuttle proteins, lipids, and nucleic acids between cells. Nonetheless, their clinical utility is currently limited by several major challenges, such as their inability to target tumor cells and a high proportion of clearance by the mononuclear phagocyte system (MPS) of the liver and spleen. To overcome these limitations, we developed "Smart Exosomes" that co-display RGD and CD47p110-130 through CD9 engineering (ExoSmart). The resultant ExoSmart demonstrates enhanced binding capacity to αvß3 on pancreatic ductal adenocarcinoma (PDAC) cells, resulting in amplified cellular uptake in in vitro and in vivo models and increased chemotherapeutic efficacies. Simultaneously, ExoSmart significantly reduced liver and spleen clearance of exosomes by inhibiting macrophage phagocytosis via CD47p110-130 interaction with signal regulatory proteins (SIRPα) on macrophages. These studies demonstrate that an engineered exosome drug delivery system increases PDAC therapeutic efficacy by enhancing active PDAC targeting and prolonging circulation times, and their findings hold tremendous translational potential for cancer therapy while providing a concrete foundation for future work utilizing novel peptide-engineered exosome strategies.


Asunto(s)
Carcinoma Ductal Pancreático , Exosomas , Neoplasias Pancreáticas , Humanos , Exosomas/metabolismo , Antígeno CD47 , Línea Celular Tumoral , Neoplasias Pancreáticas/patología , Carcinoma Ductal Pancreático/patología
9.
Langmuir ; 40(10): 5420-5432, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38423092

RESUMEN

The superhydrophobic surface and slippery liquid-infused porous surface (SLIPS)/lubricant-infused surface (LIS) have attracted increasing attention owing to their multifunctionality. However, their practical applications face several problems such as complex and inefficient preparation technology, loss of lubricant, and fragile microstructures. Therefore, new strategies for preparing microstructures must be developed for constructing superhydrophobic and lubricant-infused coatings. Herein, a low-cost and high-efficiency method for developing superhydrophobic and lubricant-infused coatings based on in situ grown TiO2 on the surface of a hollow kapok fiber (KF) is reported. The anti-icing, antifouling, and anticorrosion performance of the superhydrophobic and lubricant-infused coatings are compared. The superhydrophobic coating reduces the formation and accumulation of ice. The lubricant-infused coating exhibits an extremely low ice adhesion strength and durable anti-icing properties. The superhydrophobic and lubricant-infused coatings show the outstanding antifouling property of diatom; the superhydrophobic surface exhibits superior stability over LIS without an external force field. The lubricant-infused coating shows excellent corrosion resistance and durability when immersed in a 3.5% NaCl solution. The superhydrophobic coating loses its protection as a result of the corrosion media permeating the metal substrate via the electrolytic cell and coating interface, and the lubricant-infused coating provides lasting corrosion resistance because of the lubricant filling into the interface. Although the superhydrophobic coating is fragile and the lubricant-infused coating will lose lubricant, this simple and convenient approach can be repeated to keep the coatings active. This study provides new inspiration for the fabrication of superhydrophobic surfaces and LIS based on natural products.

10.
Nanomaterials (Basel) ; 14(3)2024 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-38334576

RESUMEN

New and efficient sensors of nerve agents are urgently demanded to prevent them from causing mass casualties in war or terrorist attacks. So, in this work, a novel hierarchical nanoheterostructure was synthesized via the direct growth of α-Fe2O3 nanorods onto multiwall carbon nanotube (MWCNT) backbones. Then, the composites were functionalized with hexafluoroisopropanol (HFIP) and successfully applied to detect dimethyl methylphosphonate (DMMP)-sarin simulant gas. The observations show that the HFIP-α-Fe2O3@MWCNT hybrids exhibit outstanding DMMP-sensing performance, including low operating temperature (220 °C), high response (6.0 to 0.1 ppm DMMP), short response/recovery time (8.7 s/11.9 s), as well as low detection limit (63.92 ppb). The analysis of the sensing mechanism demonstrates that the perfect sensing performance is mainly due to the synergistic effect of the chemical interaction of DMMP with the heterostructure and the physical adsorption of DMMP by hydrogen bonds with HFIP that are grafted on the α-Fe2O3@MWCNTs composite. The huge specific surface area of HFIP-α-Fe2O3@MWCNTs composite is also one of the reasons for this enhanced performance. This work not only offers a promising and effective method for synthesizing sensitive materials for high-performance gas sensors but also provides insight into the sensing mechanism of DMMP.

11.
Chemosphere ; 351: 141191, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38218238

RESUMEN

Seawater reserves about 4.5 billion tons of uranium, if properly extracted, could be a sustainable green energy resource for hundreds of years, alternating its limited terrestrial ore and reducing the CO2 emitted from fossil fuels. The current seawater uranium adsorbents suffer neither economically viable nor adsorption efficiency, requiring more development to harvest satisfactorily uranium from seawater. Amidoxime-based fibrous adsorbents are the most promising adsorbents of seawater uranium due to abundant chelating sites. However, they suffer from severe shrinkage and stiffness once they dry, losing porous architecture and mechanical properties. Herein, an economical and scalable two-nozzle electrospinning technology was applied to produce poly amidoxime nanofibers (PAO NFs) supported by Poly acrylonitrile nanofibers (PAN NFs) as composite PAO/PAN nanofibrous mats with high structure stability. These PAO/PAN mats, with rapid wettability and excellent mechanical strength, show promising uranium adsorption capacities of 369.8 mg/g at seawater pH level, much higher than PAO and PAN NFs. The uranium adsorption capacity of the PAO/PAN mat reached 5.16 mg/g after 7 days of circulating (10 ppm uranium) spiked natural seawater. Importantly, the composite mat maintained its fibrous structure after five adsorption-desorption cycles with more than 80 % of its adsorption capacity, confirming its recyclability and stability. Therefore, the composite PAO/PAN mat fulfills the basic requirements for effectively and economically trapping uranium from seawater, which could be a matrix for further development.


Asunto(s)
Acrilonitrilo , Nanofibras , Oximas , Uranio , Uranio/química , Nanofibras/química , Agua de Mar/química , Adsorción
12.
J Med Chem ; 66(24): 16515-16545, 2023 12 28.
Artículo en Inglés | MEDLINE | ID: mdl-38092421

RESUMEN

Survivin, a homodimeric protein and a member of the IAP family, plays a vital function in cell survival and cycle progression by interacting with various proteins and complexes. Its expression is upregulated in cancers but not detectable in normal tissues. Thus, it has been regarded and validated as an ideal cancer target. However, survivin is "undruggable" due to its lack of enzymatic activities or active sites for small molecules to bind/inhibit. Academic and industrial laboratories have explored different strategies to overcome this hurdle over the past two decades, with some compounds advanced into clinical testing. These strategies include inhibiting survivin expression, its interaction with binding partners and homodimerization. Here, we provide comprehensive analyses of these strategies and perspective on different small molecule survivin inhibitors to help drug discovery targeting "undruggable" proteins in general and survivin specifically with a true survivin inhibitor that will prevail in the foreseeable future.


Asunto(s)
Proteínas Inhibidoras de la Apoptosis , Neoplasias , Humanos , Survivin/metabolismo , Proteínas Inhibidoras de la Apoptosis/metabolismo , Neoplasias/metabolismo , Descubrimiento de Drogas , Dimerización , Apoptosis
13.
Infect Drug Resist ; 16: 6941-6950, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37928608

RESUMEN

Objective: We performed a comparative analysis of respiratory function and hemodynamics among patients with Acquired Immunodeficiency Syndrome (AIDS)-associated respiratory failure and those with non-AIDS-associated respiratory failure. Methods: Data were collected from critically ill patients diagnosed with Acquired Immunodeficiency Syndrome who were admitted to the Intensive Care Unit (ICU) of Beijing Ditan Hospital, affiliated with Capital Medical University, between January 1, 2019, and December 31, 2019. We simultaneously gathered data from non-AIDS patients admitted to the ICU of Beijing Liangxiang Hospital within the same timeframe. A comparative study was performed to analyze clinical data from these two patient groups, encompassing parameters related to respiratory mechanics and hemodynamic indicators. Results: A total of 12 patients diagnosed with Acquired Immunodeficiency Syndrome (AIDS) and experiencing respiratory failure, along with 23 patients with respiratory failure independent of AIDS, were included in our study. Subsequently, a comparative analysis of clinical information was conducted between the two patient cohorts. Our findings demonstrate non-statistically significant differences between the two patient groups when assessing various indicators, encompassing peak airway pressure, plateau pressure, mean pressure, compliance, oxygenation index, and arterial partial pressure of carbon dioxide (P>0.05). Additionally, the comparison of multiple indicators encompassing mean arterial pressure, central venous pressure, cardiac output index, intrathoracic blood volume index, global end-diastolic volume index, extravascular lung water content, and pulmonary vascular permeability index revealed no statistically significant differences between the two patient groups (P>0.05). Ultimately, the Galileo respiratory system was utilized to assess the pressure-volume (P-V) curve of the experimental cohort, revealing a consistent and seamless trajectory devoid of noticeable points of inflection. Conclusion: No statistically significant differences were found in the respiratory function and hemodynamic profiles between patients diagnosed with AIDS presenting respiratory failure and those experiencing respiratory failure unrelated to AIDS. Additionally, the pressure-volume curve of individuals diagnosed with AIDS presenting respiratory failure displayed a seamless and uninterrupted trajectory devoid of discernible points of inflection. Hence, there might be constraints when utilizing P-V curve-based adjustments for positive end-expiratory pressure (PEEP) during mechanical ventilation in individuals diagnosed with AIDS presenting respiratory failure.

14.
Sci Adv ; 9(38): eadj0839, 2023 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-37729411

RESUMEN

Precision chemistry demands miniaturized catalytic systems for sophisticated reactions with well-defined pathways. An ideal solution is to construct a nanoreactor system functioning as a chemistry laboratory to execute a full chemical process with molecular precision. However, existing nanoscale catalytic systems fail to in situ control reaction kinetics in a closed-loop manner, lacking the precision toward ultimate reaction efficiency. We find an inter-electrochemical gating effect when operating DNA framework-constructed enzyme cascade nanoreactors on a transistor, enabling in situ closed-loop reaction monitoring and modulation electrically. Therefore, a comprehensive system is developed, encapsulating nanoreactors, analyzers, and modulators, where the gate potential modulates enzyme activity and switches cascade reaction "ON" or "OFF." Such electric field-effect property enhances catalytic efficiency of enzyme by 343.4-fold and enables sensitive sarcosine assay for prostate cancer diagnoses, with a limit of detection five orders of magnitude lower than methodologies in clinical laboratory. By coupling with solid-state electronics, this work provides a perspective to construct intelligent nano-systems for precision chemistry.


Asunto(s)
Bioensayo , Electricidad , Masculino , Humanos , Catálisis , Inteligencia , Nanotecnología
15.
Int J Biol Macromol ; 253(Pt 2): 126866, 2023 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-37703982

RESUMEN

Uranium is a critical element of the nuclear industry, and while extracting it from seawater is considered the most promising way to meet the growing demand for uranium, there are still some problems that still need to be solved. This work designed a UiO-66(Ce)-CdS/PEI-modified chitosan composite sponge (USPS) with an adsorption-photocatalytic synergistic effect to extract uranium efficiently. On the one hand, the drawback that the powder material is difficult to be recycled is solved. On the other hand, the uranium extraction capacity of the substrate sponge is improved. Compared with the unmodified PCS sponge, the uranium extraction capacity of the USPS-4 composite sponge is 1.63 fold higher than that of the PCS sponge. In addition, the USPS-4 composite sponge exhibits excellent selectivity and regenerability. The mechanism of uranium extraction can be summarized as the coordination chelation of uranium with active functional groups in the adsorption process and the reduction of hexavalent uranium by photogenerated electrons in the photocatalytic process. This study provides a new strategy for designing and preparing a novel material with high uranium extraction performance, easy separation, and recovery.


Asunto(s)
Quitosano , Estructuras Metalorgánicas , Uranio , Adsorción
16.
Platelets ; 34(1): 2258988, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37722393

RESUMEN

This retrospective study aimed to evaluate whether anti-glycoproteins (GPs) autoantibodies can be used as predictors of response to high-dose dexamethasone combined with rituximab (DXM-RTX) in the treatment of primary immune thrombocytopenia (ITP) patients. One-hundred twenty-six ITP patients were included and retrospectively analyzed, 66.7% of anti-GPIb/IX and 65.9% of anti-GPIIb/IIIa autoantibodies. Results showed that overall response (OR) and complete response (CR) rates of patients without anti-GPIb/IX autoantibodies to DXM-RTX were significantly higher than those with anti-GPIb/IX autoantibodies at 4 weeks (OR: 73.8% vs. 47.6%, CR: 50.0% vs. 26.2%; P < 0.05) and 6 months (OR: 71.4% vs. 45.2%, CR: 42.9% vs. 25.0%; P < .05). Furthermore, patients with anti-GPIb/IX single-positivity exhibited higher resistance to DXM-RTX than patients with anti-GPIIb/IIIa single-positivity at 4 weeks (OR: 37.5% vs. 78.3%; P < .05) and 6 months (OR: 29.2% vs. 78.3%; P < .05). Multivariable logistic regression analysis revealed that anti-GPIb/IX autoantibodies and megakaryocytes were associated with the OR rate of patients at both 4 weeks and 6 months, and anti-GPIb/IX autoantibodies at 4 weeks represented the only significant factor affecting OR rate with DXM-RTX (F = 9.128, P = .003). Therefore, platelet anti-GPIb/IX autoantibodies might predict poor response to DXM-RTX in ITP patients.


What is the context?The safety and efficacy of high-dose dexamethasone combined with rituximab (DXM-RTX) in the treatment of primary immune thrombocytopenia (ITP) are gradually recognized; however, there still needs to be an adequate clinical trial to predict its efficacy. Autoantibodies against platelet glycoproteins (GPs) are proven to be associated with a variety of therapeutic responses in ITP. Such as anti-GPIb/IX autoantibodies predict poor response to intravenous immunoglobulin G therapy and rhTPO therapy in ITP patients. Therefore, a retrospective study was needed to verify whether anti-GP autoantibodies can expect a response to DXM-RTX therapy in ITP patients.What is new?This study identified that anti-GPIb/IX autoantibodies were a predictive factor for poor response to DXM-RTX in ITP patients. It mainly manifested in the following aspects: (1) Overall response (OR) and complete response (CR) rates of patients without anti-GPIb/IX autoantibodies to DXM-RTX were significantly higher than those with anti-GPIb/IX autoantibodies at four weeks and six months. (2) Multivariable logistic regression analysis revealed that anti-GPIb/IX autoantibodies at both four weeks and six months were associated with the OR rate of patients.What is the impact?Our study suggests that ITP patients with anti-GPIb/IX positive autoantibodies respond poorly to DXM-RTX therapy. Platelet anti-GPIb/IX autoantibodies might predict poor response to DXM-RTX therapy in ITP patients.


Asunto(s)
Púrpura Trombocitopénica Idiopática , Humanos , Estudios Retrospectivos , Rituximab/farmacología , Rituximab/uso terapéutico , Púrpura Trombocitopénica Idiopática/tratamiento farmacológico , Autoanticuerpos , Complejo GPIIb-IIIa de Glicoproteína Plaquetaria , Dexametasona/farmacología , Dexametasona/uso terapéutico
17.
Clin Lab ; 69(8)2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37560872

RESUMEN

BACKGROUND: Macacine alphaherpesvirus 1 (BV) was first reported in the 1930s and only about 60 cases have been diagnosed since then. METHODS: A 53-year-old male who worked as a veterinary surgeon, developed a fever with nausea and vomiting in April 2021 in Beijing, China. Real-time polymerase chain reaction (PCR) and metagenomics Next Generation Sequencing (mNGS) were used for diagnosis. RESULTS: BV DNA was confirmed by mNGS and PCR. The case died 51 days after onset, due to the damage to the brain and spinal cord caused by a viral infection and hypoxic-ischemic encephalopathy. The typical BV inclusion bodies in the brain were found for the first time. CONCLUSIONS: Here we reported the first human infection case of BV in China. This fatal case highlights the potential threat of BV to occupational workers and the essential role of surveillance.


Asunto(s)
Herpesvirus Cercopitecino 1 , Masculino , Humanos , Persona de Mediana Edad , China/epidemiología , Reacción en Cadena en Tiempo Real de la Polimerasa , Beijing , Secuenciación de Nucleótidos de Alto Rendimiento
18.
BMJ Open Respir Res ; 10(1)2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37553185

RESUMEN

BACKGROUND: The pathophysiological characteristics of the respiratory system of obese patients differ from those of non-obese patients. Few studies have evaluated the effects of high-flow nasal cannula (HFNC) and non-invasive ventilation (NIV) on the prognosis of obese patients. We here compared the effects of these two techniques on the prevention of reintubation after extubation for obese patients. METHODS: Data were extracted from the Medical Information Mart for Intensive Care database. Patients who underwent HFNC or NIV treatment after extubation were assigned to the HFNC or NIV group, respectively. The reintubation risk within 96 hours postextubation was compared between the two groups using a doubly robust estimation method. Propensity score matching was performed for both groups. RESULTS: This study included 757 patients (HFNC group: n=282; NIV group: n=475). There was no significant difference in the risk of reintubation within 96 hours after extubation for the HFNC group compared with the NIV group (OR 1.50, p=0.127). Among patients with body mass index ≥40 kg/m2, the HFNC group had a significantly lower risk of reintubation within 96 hours after extubation (OR 0.06, p=0.016). No significant differences were found in reintubation rates within 48 hours (15.6% vs 11.0%, p=0.314) and 72 hours (16.9% vs 13.0%, p=0.424), as well as in hospital mortality (3.2% vs 5.2%, p=0.571) and intensive care unit (ICU) mortality (1.3% vs 5.2%, p=0.108) between the two groups. However, the HFNC group had significantly longer hospital stays (14 days vs 9 days, p=0.005) and ICU (7 days vs 5 days, p=0.001) stays. CONCLUSIONS: This study suggests that HFNC therapy is not inferior to NIV in preventing reintubation in obese patients and appears to be advantageous in severely obese patients. However, HFNC is associated with significantly longer hospital stays and ICU stays.


Asunto(s)
Ventilación no Invasiva , Insuficiencia Respiratoria , Humanos , Estudios Retrospectivos , Extubación Traqueal/efectos adversos , Cánula , Terapia por Inhalación de Oxígeno/métodos , Insuficiencia Respiratoria/terapia , Insuficiencia Respiratoria/prevención & control , Obesidad/complicaciones , Obesidad/terapia
19.
Biology (Basel) ; 12(7)2023 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-37508437

RESUMEN

Proline isomerization, the process of interconversion between the cis- and trans-forms of proline, is an important and unique post-translational modification that can affect protein folding and conformations, and ultimately regulate protein functions and biological pathways. Although impactful, the importance and prevalence of proline isomerization as a regulation mechanism in biological systems have not been fully understood or recognized. Aiming to fill gaps and bring new awareness, we attempt to provide a wholistic review on proline isomerization that firstly covers what proline isomerization is and the basic chemistry behind it. In this section, we vividly show that the cause of the unique ability of proline to adopt both cis- and trans-conformations in significant abundance is rooted from the steric hindrance of these two forms being similar, which is different from that in linear residues. We then discuss how proline isomerization was discovered historically followed by an introduction to all three types of proline isomerases and how proline isomerization plays a role in various cellular responses, such as cell cycle regulation, DNA damage repair, T-cell activation, and ion channel gating. We then explore various human diseases that have been linked to the dysregulation of proline isomerization. Finally, we wrap up with the current stage of various inhibitors developed to target proline isomerases as a strategy for therapeutic development.

20.
Neural Regen Res ; 18(11): 2526-2534, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37282486

RESUMEN

Ras homolog enriched in brain (Rheb) is a small GTPase that activates mammalian target of rapamycin complex 1 (mTORC1). Previous studies have shown that constitutively active Rheb can enhance the regeneration of sensory axons after spinal cord injury by activating downstream effectors of mTOR. S6K1 and 4E-BP1 are important downstream effectors of mTORC1. In this study, we investigated the role of Rheb/mTOR and its downstream effectors S6K1 and 4E-BP1 in the protection of retinal ganglion cells. We transfected an optic nerve crush mouse model with adeno-associated viral 2-mediated constitutively active Rheb and observed the effects on retinal ganglion cell survival and axon regeneration. We found that overexpression of constitutively active Rheb promoted survival of retinal ganglion cells in the acute (14 days) and chronic (21 and 42 days) stages of injury. We also found that either co-expression of the dominant-negative S6K1 mutant or the constitutively active 4E-BP1 mutant together with constitutively active Rheb markedly inhibited axon regeneration of retinal ganglion cells. This suggests that mTORC1-mediated S6K1 activation and 4E-BP1 inhibition were necessary components for constitutively active Rheb-induced axon regeneration. However, only S6K1 activation, but not 4E-BP1 knockdown, induced axon regeneration when applied alone. Furthermore, S6K1 activation promoted the survival of retinal ganglion cells at 14 days post-injury, whereas 4E-BP1 knockdown unexpectedly slightly decreased the survival of retinal ganglion cells at 14 days post-injury. Overexpression of constitutively active 4E-BP1 increased the survival of retinal ganglion cells at 14 days post-injury. Likewise, co-expressing constitutively active Rheb and constitutively active 4E-BP1 markedly increased the survival of retinal ganglion cells compared with overexpression of constitutively active Rheb alone at 14 days post-injury. These findings indicate that functional 4E-BP1 and S6K1 are neuroprotective and that 4E-BP1 may exert protective effects through a pathway at least partially independent of Rheb/mTOR. Together, our results show that constitutively active Rheb promotes the survival of retinal ganglion cells and axon regeneration through modulating S6K1 and 4E-BP1 activity. Phosphorylated S6K1 and 4E-BP1 promote axon regeneration but play an antagonistic role in the survival of retinal ganglion cells.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...