Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
1.
Forensic Toxicol ; 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39122972

RESUMEN

PURPOSE: The abusive consumption of illegal E-cigarettes containing etomidate (ET) can have a significant impact on public mental and physical well-being. The purpose of this study is to establish a rapid quantitative method using ultra-high-performance liquid chromatography/tandem mass spectrometry (UHPLC-MS/MS) for the targeted screening of etomidate (ET) and its metabolite etomidate acid (ETA) in hair samples. METHODS: A 1 mL methanol solution containing the internal standard ET-d5 at a concentration of 50 pg/mg was added to 20 mg of hair and milled below 4 °C. After centrifugation, 5 µL of the supernatant was injected into a UHPLC-MS/MS system. RESULTS: The limit of detection (LOD) and limit of quantification (LOQ) were determined to be 1 pg/mg and 10 pg/mg, respectively, for ET, and 10 pg/mg and 25 pg/mg, respectively, for ETA. Calibration curves for all analytes showed good linearity (r > 0.997), indicating a reliable method. Accuracies were between 92.12% and 110.72%. Intra-day and inter-day precision for all analytes at all concentration levels were below 10.13%. Analyte recoveries ranged from 86.90% to 101.43%, with a matrix effect ranging from -18.55% to -14.93%. CONCLUSIONS: The validated method was successfully used to analyze 105 hair samples from suspected ET users. Of these, 50 tested positive for ET and 43 tested positive for ETA above the LOQ. This demonstrates the effectiveness of the developed UHPLC-MS/MS method in detecting ET and ETA in hair samples, which could be instrumental in addressing the issue of illegal E-cigarette abuse and its impact on public health.

2.
Fa Yi Xue Za Zhi ; 40(3): 276-283, 2024 Jun 25.
Artículo en Inglés, Chino | MEDLINE | ID: mdl-39166309

RESUMEN

Piperazines are a class of new psychoactive substances with hallucinogenic effects that affect the central nervous system by affecting the level of monoamine neurotransmitters. Abuse of piperazines will produce stimulating and hallucinogenic effects, accompanied by headache, dizziness, anxiety, insomnia, vomiting, chest pain, tachycardia, hypertension and other adverse reactions, and may even cause cardiovascular diseases and multiple organ failure and lead to death, seriously affecting human physical and mental health and public safety. The abuse of new psychoactive substance piperazines has attracted extensive attention from the international community. The study of its pharmacological toxicology and analytical methods has become a research hotspot in the field of forensic medicine. This paper reviews the in vivo processes, sample treatment and analytical methods of existing piperazines, in order to provide reference for forensic identification.


Asunto(s)
Piperazinas , Psicotrópicos , Detección de Abuso de Sustancias , Humanos , Piperazinas/análisis , Psicotrópicos/análisis , Detección de Abuso de Sustancias/métodos , Medicina Legal/métodos , Toxicología Forense/métodos , Alucinógenos/análisis , Trastornos Relacionados con Sustancias/diagnóstico
3.
Environ Sci Technol ; 58(33): 14740-14752, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39103310

RESUMEN

Plastics are invading nearly all ecosystems on earth, acting as emerging repositories for toxic organic pollutants and thereby imposing substantial threats to ecological integrity. The colonization of plastics by microorganisms, forming the plastisphere, has garnered attention due to its potential influence on biogeochemical cycles. However, the capability of plastisphere microorganisms to attenuate organohalide pollutants remains to be evaluated. This study revealed that the plastisphere, collected from coastal ecosystems, harbors unique microbiomes, while the natural accumulation of organohalide pollutants on plastics may favor the proliferation of organohalide-respiring bacteria (OHRB). Laboratory tests further elucidated the high potential of plastisphere microbiota to reductively dehalogenate a variety of organohalide pollutants. Notably, over 70% tested plastisphere completely debrominated tetrabromobisphenol A (TBBPA) and polybrominated diphenyl ethers (PBDEs) to nonhalogenated products, whereas polychlorinated biphenyls (PCBs) were converted to lower congeners under anaerobic conditions. Dehalococcoides, Dehalogenimonas, and novel Dehalococcoidia populations might contribute to the observed dehalogenation based on their growth during incubation and positive correlations with the quantity of halogens removed. Intriguingly, large fractions of these OHRB populations were identified in a lack of the currently known TBBPA/PBDEs/PCBs reductive dehalogenase (RDase) genes, suggesting the presence of novel RDase genes. Microbial community analyses identified organohalides as a crucial factor in determining the composition, diversity, interaction, and assembly of microbes derived from the plastisphere. Collectively, this study underscores the overlooked roles of the plastisphere in the natural attenuation of persistent organohalide pollutants and sheds light on the unignorable impacts of organohalide compounds on the microbial ecology of the plastisphere.


Asunto(s)
Microbiota , Plásticos , Contaminantes Orgánicos Persistentes/metabolismo , Bacterias/metabolismo , Éteres Difenilos Halogenados/metabolismo , Biodegradación Ambiental
4.
J Youth Adolesc ; 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39014157

RESUMEN

Attachment in emerging adults is closely intertwined with emotion regulation, stress coping, and social bonding during the transition from childhood to early adulthood. Due to the critical roles of serotonin in these mental functions, this research explored whether the cumulative genetic effects of serotonergic polymorphisms are associated with individual differences and contextual variations in attachment dimensions over time in emerging adults. Study 1 utilized a cross-sectional design in college students (N = 1088, mean age = 22.71 ± 2.86 years). The results showed significant correlations between a higher cumulative genetic score and elevated levels of attachment anxiety and avoidance. Study 2 employed a three-wave longitudinal design in a cohort of freshmen (N = 523, mean age = 19.54 ± 1.86 years at wave 1). The results demonstrated that a higher genetic score was associated with both higher levels and greater variability in attachment dimensions compared to a lower genetic score. These findings suggest that the cumulative genetic effects of serotonergic polymorphisms contribute to individual differences and dynamic processes in attachment dimensions in emerging adults.

5.
Circ Res ; 135(5): 596-613, 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39056179

RESUMEN

BACKGROUND: Macrophages are key players in obesity-associated cardiovascular diseases, which are marked by inflammatory and immune alterations. However, the pathophysiological mechanisms underlying macrophage's role in obesity-induced cardiac inflammation are incompletely understood. Our study aimed to identify the key macrophage population involved in obesity-induced cardiac dysfunction and investigate the molecular mechanism that contributes to the inflammatory response. METHODS: In this study, we used single-cell RNA-sequencing analysis of Cd45+CD11b+F4/80+ cardiac macrophages to explore the heterogeneity of cardiac macrophages. The CCR2+ (C-C chemokine receptor 2) macrophages were specifically removed by a dual recombinase approach, and the macrophage CCR2 was deleted to investigate their functions. We also performed cleavage under target and tagmentation analysis, chromatin immunoprecipitation-polymerase chain reaction, luciferase assay, and macrophage-specific lentivirus transfection to define the impact of lysozyme C in macrophages on obesity-induced inflammation. RESULTS: We find that the Ccr2 cluster undergoes a functional transition from homeostatic maintenance to proinflammation. Our data highlight specific changes in macrophage behavior during cardiac dysfunction under metabolic challenge. Consistently, inducible ablation of CCR2+CX3CR1+ macrophages or selective deletion of macrophage CCR2 prevents obesity-induced cardiac dysfunction. At the mechanistic level, we demonstrate that the obesity-induced functional shift of CCR2-expressing macrophages is mediated by the CCR2/activating transcription factor 3/lysozyme 1/NF-κB (nuclear factor kappa B) signaling. Finally, we uncover a noncanonical role for lysozyme 1 as a transcription activator, binding to the RelA promoter, driving NF-κB signaling, and strongly promoting inflammation and cardiac dysfunction in obesity. CONCLUSIONS: Our findings suggest that lysozyme 1 may represent a potential target for the diagnosis of obesity-induced inflammation and the treatment of obesity-induced heart disease.


Asunto(s)
Macrófagos , Muramidasa , Obesidad , Receptores CCR2 , Animales , Obesidad/complicaciones , Obesidad/metabolismo , Macrófagos/metabolismo , Receptores CCR2/metabolismo , Receptores CCR2/genética , Ratones , Muramidasa/metabolismo , Muramidasa/genética , Ratones Endogámicos C57BL , Masculino , Ratones Noqueados , Transducción de Señal , Inflamación/metabolismo , Inflamación/genética , Cardiopatías/etiología , Cardiopatías/metabolismo , Cardiopatías/genética
6.
Toxicon ; 247: 107839, 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-38971475

RESUMEN

α-Amanitin and ß-amanitin, two of the most toxic amatoxin compounds, typically coexist in the majority of Amanita mushrooms. The aim of this study was to use a newly developed ultra-performance liquid chromatography-mass spectrometry (UPLC-MS/MS) method to determine the toxicokinetics and tissue distribution of α- and ß-amanitin following single or combined oral (po) administration in mice. α-Amanitin and ß-amanitin administered at 2 or 10 mg/kg doses showed similar toxicokinetic profiles, except for peak concentration (Cmax). The elimination half-life (t1/2) values of α-amanitin and ß-amanitin in mice were 2.4-2.8 h and 2.5-2.7 h, respectively. Both α- and ß-amanitin were rapidly absorbed into the body, with times to reach peak concentration (Tmax) between 1.0 and 1.5 h. Following single oral administration at 10 mg/kg, the Cmax was significantly lower for α-amanitin (91.1 µg/L) than for ß-amanitin (143.1 µg/L) (p < 0.05). The toxicokinetic parameters of α-amanitin, such as t1/2, mean residence time (MRT), and volume of distribution (Vz/F) and of ß-amanitin, such as Vz/F, were significantly different (p < 0.05) when combined administration was compared to single administration. Tissues collected at 24 h after po administration revealed decreasing tissue distributions for α- and ß-amanitin of intestine > stomach > kidney > lung > spleen > liver > heart. The substantial distribution of toxins in the kidney corresponds to the known target organs of amatoxin poisoning. The content in the stomach, liver, and kidney was significantly higher for of ß-amanitin than for α-amanitin at 24 h following oral administration of a 10 mg/kg dose. No significant difference was detected in the tissue distribution of either amatoxin following single or combined administration. After po administration, both amatoxins were primarily excreted through the feces. Our data suggest the possibility of differences in the toxicokinetics in patients poisoned by mushrooms containing both α- and ß-amanitin than containing a single amatoxin. Continuous monitoring of toxin concentrations in patients' blood and urine samples is necessary in clinical practice.


Asunto(s)
Alfa-Amanitina , Amanitinas , Toxicocinética , Animales , Alfa-Amanitina/farmacocinética , Alfa-Amanitina/toxicidad , Amanitinas/farmacocinética , Amanitinas/toxicidad , Ratones , Distribución Tisular , Administración Oral , Espectrometría de Masas en Tándem , Masculino , Semivida , Cromatografía Líquida de Alta Presión
7.
Open Med (Wars) ; 19(1): 20240951, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38623457

RESUMEN

Objective: In the present study, we investigated the impact of left atrial appendage closure (LAAC) following catheter ablation (CA) on the left atrial structure and functioning of patients with paroxysmal atrial fibrillation (AF). Methods: Patients with paroxysmal AF were enrolled in this single-center prospective cohort study between April 2015 and July 2021; 353 patients received CA alone, while 93 patients received CA in combination with Watchman LAAC. We used age, gender, CHA2DS2-VASc, and HAS-BLED scores as well as other demographic variables to perform propensity score matching. Patients with paroxysmal AF were randomly assigned to the CA combined with Watchman LAAC group (combined treatment group) and the simple CA group, with 89 patients in each group. The left atrial structure, reserve, ventricular diastole, and pump functions and their changes in patients were assessed using routine Doppler echocardiography and 2D speckle tracking echocardiography over the course of a 1-year follow-up. Results: At 1-week follow-up, the reserve, ventricular diastole, and pump functions of the left atrium (LA) increased in both groups; these functions were gradually restored at the 1- to 3-month follow-up; they were close to or returned to their pre-operative levels at the 3-month follow-up; and no significant differences were found compared with the pre-operative levels at the 12-month follow-up. In the first 3 months, the reserve (Ƹ, SRs) and pump functions (SRa) in the combined treatment group decreased significantly when compared with the simple CA group, and the differences were statistically significant. Conclusion: Patients with paroxysmal AF may experience a short term, partial effect of LAAC on LA reserve and pump functions, which are gradually restored and the effect disappears by 12 months.

8.
Leukemia ; 38(5): 1057-1071, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38424136

RESUMEN

Most forms of chemotherapy for acute myeloid leukemia (AML) are often ineffective in eliminating leukemic stem cells (LSCs), as their underlying mechanisms remain unclear. Here, we have identified circFAM193B, which regulates the redox biology of LSCs and is associated with unfavorable outcomes in AML patients. In vitro and in vivo assays suggested that circFAM193B significantly inhibits LSCs chemotherapy resistance and AML progression. Knockdown circFAM193B enhances mitochondrial OXPHOS function and inhibits the accumulation of reactive oxygen species and lipid peroxidation mediated by chemotherapy, which protects AML cells from oxidative stress-induced cell death. Mechanistically, circFAM193B physically interacts with arginine methyltransferase PRMT6 catalytic domain and enhances the transcription efficiency of key lipid peroxidation factor ALOX15 by decreasing H3R2me2a modification. In summary, we have identified circFAM193B was downregulated in LSCs to promote the survival of LSC by modulating energy metabolism and the redox balance in the postchemotherapy persistence of LSC. Our studies provide a conceptual advance and biological insights regarding the drug resistance of LSCs via circRNA mediated PRMT6-deposited methylarginine signaling.


Asunto(s)
Resistencia a Antineoplásicos , Leucemia Mieloide Aguda , Peroxidación de Lípido , Células Madre Neoplásicas , Proteínas Nucleares , Proteína-Arginina N-Metiltransferasas , Humanos , Proteína-Arginina N-Metiltransferasas/metabolismo , Proteína-Arginina N-Metiltransferasas/genética , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patología , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/genética , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , Ratones , Animales , Estrés Oxidativo , Línea Celular Tumoral , Especies Reactivas de Oxígeno/metabolismo
9.
Free Radic Biol Med ; 213: 36-51, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38215892

RESUMEN

Short-chain fatty acids (SCFAs), particularly propionate and butyrate, have been reported in many cancers. However, the relationship between propionate and acute myeloid leukemia (AML) remains unclear. Additionally, Acyl-CoA synthetase long chain family member 4 (ACSL4) has been reported to regulate immunity in solid tumors, but there are still many gaps to be filled in AML. Here, we discovered the underlying mechanism of propionate and ACSL4-mediated ferroptosis for immunotherapy. Our results showed that the level of propionate in the AML patients' feces was decreased, which was correlated to gut microbiota dysbiosis. Moreover, we demonstrated that propionate suppressed AML progression both in vivo and in vitro. In mechanism, propionate induced AML cells apoptosis and ferroptosis. The imbalance of reactive oxygen species (ROS) and redox homeostasis induced by propionate caused mitochondrial fission and mitophagy, which enhanced ferroptosis and apoptosis. Furthermore, ACSL4-mediated ferroptosis caused by propionate increased the immunogenicity of AML cells, induced the release of damage-associated molecular patterns (DAMPs), and promoted the maturation of dendritic cells (DCs). The increased level of immunogenicity due to ferroptosis enable propionate-based whole-cell vaccines to activate immunity, thus further facilitating effective killing of AML cells. Collectively, our study uncovers a crucial role for propionate suppresses AML progression by inducing ferroptosis and the potential mechanisms of ACSL4-mediated ferroptosis in the regulation of AML immunity.


Asunto(s)
Ferroptosis , Leucemia Mieloide Aguda , Humanos , Propionatos/farmacología , Mitofagia , Apoptosis , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patología
10.
J Cancer Res Clin Oncol ; 149(19): 17307-17318, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37819582

RESUMEN

PURPOSE: Stem cells are known to play an important role in tumor treatment and many of them have shown tumor-suppressing ability in different cancers; however, whether hematopoietic stem cells (HSCs) have growth-inhibiting effects on leukemia cells has not been fully evaluated. Herein, we aimed to demonstrate the growth-restraining function of HSCs in acute leukemia treatment. METHODS: Cell fusion experiment was conducted by PEG-1500. The viability, proliferation, apoptosis and differentiation of leukemia cells were evaluated by cell counting, CCK-8 and flow cytometry analysis. The morphological changes were imaged using a fluorescence microscope. The expression of genes was detected by quantitative reverse transcription PCR (qRT-PCR). RESULTS: We observed that HSCs and their lytic extracts had the capability to suppress leukemia cells proliferation, promote apoptosis and especially induce acute myelogenous leukemia (AML) cells differentiation, which might have an effect on differentiation therapy to leukemia especially AML treatment. The expression levels of Bcl-2, Survivin decreased and Bax increased following HSCs extracts treatment. Furthermore, the expression of inflammatory cytokines also changed in AML cells which might have to do with the mechanism of HSCs/extracts suppressing effect. CONCLUSION: HSCs and their extracts can suppress the proliferation of leukemia cells and enhance the differentiation of AML cells and using the extracts of HSCs might be a probable therapeutic option for acute leukemia.


Asunto(s)
Células Madre Hematopoyéticas , Leucemia Mieloide Aguda , Humanos , Leucemia Mieloide Aguda/patología , Diferenciación Celular , Proliferación Celular , Apoptosis/genética
11.
Biomark Res ; 11(1): 89, 2023 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-37798791

RESUMEN

Mitochondria are energy-generated organelles and take an important part in biological metabolism. Mitochondria could be transferred between cells, which serves as a new intercellular communication. Mitochondrial transfer improves mitochondrial defects, restores the biological functions of recipient cells, and maintains the high metabolic requirements of tumor cells as well as drug resistance. In recent years, it has been reported mitochondrial transfer between cells of bone marrow microenvironment and hematological malignant cells play a critical role in the disease progression and resistance during chemotherapy. In this review, we discuss the patterns and mechanisms on mitochondrial transfer and their engagement in different pathophysiological contexts and outline the latest knowledge on intercellular transport of mitochondria in hematological malignancies. Besides, we briefly outline the drug resistance mechanisms caused by mitochondrial transfer in cells during chemotherapy. Our review demonstrates a theoretical basis for mitochondrial transfer as a prospective therapeutic target to increase the treatment efficiency in hematological malignancies and improve the prognosis of patients.

13.
J Pharm Biomed Anal ; 234: 115577, 2023 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-37480824

RESUMEN

Phencyclidine (PCP) is a frequently abused dissociative agent. It causes confusion, increased tendencies toward violence, and concentration-dependent cytotoxicity after entry into the body. The parent nucleus of phencyclidine-type substances is arylcyclohexylamine, which is easy to modify; therefore, abusers and dealers can readily synthesize substitutes beyond the drug control catalog. An urgent need exists to establish screening methods for phencyclidine-type substances to provide technical support for abuse monitoring. In this study, 20 mg of hair was pulverized in 500 mL of methanol containing 0.5 ng/mL PCP-d5. After ultrasonication, centrifugation, and filtration, the supernatant was analyzed by ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) operating in the multiple reaction monitoring mode. Phencyclidine-type substances were separated in 13 min on a biphenyl column using a mobile phase gradient composed of A (water, formic acid 0.1%, acetonitrile 5%, 20 mmol/L ammonium acetate) and B (acetonitrile). The developed and validated method showed good selectivity, sensitivity (limit of detection: 0.25-2 pg/mg and lower limit of quantitation: 0.5-4 pg/mg), linearity (R2 > 0.994), accuracy, and precision (< 20%), and a dilution effect. The method also showed good recovery and acceptable matrix effects for most of the targeted compounds. This analytical approach was successfully applied for the identification and quantification of phencyclidine-type substances in hair from 87 authentic forensic cases. Nine analytes were detected: ketamine (10.3-26211.3 pg/mg), 2-F-2-oxo-PCE (11.5-4034.9 pg/mg), 2-FDCK (14.0-43290.2 pg/mg), 2-BrDCK (10.6-21170.0 pg/mg), nor2-FDCK (10.1-16767.4 pg/mg), tiletamine (10.1-3250.8 pg/mg), O-PCE (43.3-166.1 pg/mg), DCK (10.2-90.4 pg/mg), and norDCK (24.9-103.0 pg/mg).


Asunto(s)
Fenciclidina , Espectrometría de Masas en Tándem , Cromatografía Líquida de Alta Presión , Cromatografía Liquida , Cabello , Acetonitrilos
14.
Biomark Res ; 11(1): 59, 2023 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-37280654

RESUMEN

Aberrant expression of circRNAs has been proven to play a crucial role in the progression of acute myeloid leukemia (AML); however, its regulatory mechanism remains unclear. Herein, we identified a novel circRNA, Circ_0001187, which is downregulated in AML patients, and its low level contributes to a poor prognosis. We further validated their expression in large-scale samples and found that only the expression of Circ_0001187 was significantly decreased in newly diagnosed (ND) AML patients and increased in patients with hematological complete remission (HCR) compared with controls. Knockdown of Circ_0001187 significantly promoted proliferation and inhibited apoptosis of AML cells in vitro and in vivo, whereas overexpression of Circ _0001187 exerted the opposite effects. Interestingly, we found that Circ_0001187 decreases mRNA m6A modification in AML cells by enhancing METTL3 protein degradation. Mechanistically, Circ_0001187 sponges miR-499a-5p to enhance the expression of E3 ubiquitin ligase RNF113A, which mediates METTL3 ubiquitin/proteasome-dependent degradation via K48-linked polyubiquitin chains. Moreover, we found that the low expression of Circ _0001187 is regulated by promoter DNA methylation and histone acetylation. Collectively, our findings highlight the potential clinical implications of Circ _0001187 as a key tumor suppressor in AML via the miR-499a-5p/RNF113A/METTL3 pathway.

15.
Cancer Med ; 12(14): 14960-14978, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37329186

RESUMEN

BACKGROUND: Though immunological abnormalities have been proven involved in the pathogenesis of lymphoma, the underlying mechanism remains unclear. METHODS: We investigated 25 single nucleotide polymorphisms (SNPs) of 21 immune-related genes and explored their roles in lymphoma. The genotyping assay of the selected SNPs was used by the Massarray platform. Logistic regression and Cox proportional hazards models were used to analyze the associations of SNPs and the susceptibility of lymphoma or clinical characteristics of lymphoma patients. In addition, Least Absolute Shrinkage and Selection Operator regression was used to further analyze the relationships with the survival of lymphoma patients and candidate SNPs, and the significant difference between genotypes was verified by the expression of RNA. RESULTS: By comparing 245 lymphoma patients with 213 healthy controls, we found eight important SNPs related to the susceptibility of lymphoma, which were involved in JAK-STAT, NF-κB and other functional pathways. We further analyzed the relationships between SNPs and clinical characteristics. Our results showed that both IL6R (rs2228145) and STAT5B (rs6503691) significantly contributed to the Ann Arbor stages of lymphoma. And the STAT3 (rs744166), IL2 (rs2069762), IL10 (rs1800871), and PARP1 (rs907187) manifested a significant relationship with the peripheral blood counts in lymphoma patients. More importantly, the IFNG (rs2069718) and IL12A (rs6887695) were associated with the overall survival (OS) of lymphoma patients remarkably, and the adverse effects of GC genotypes could not be offset by Bonferroni correction for multiple comparison in rs6887695 especially. Moreover, we determined that the mRNA expression levels of IFNG and IL12A were significantly decreased in patients with shorter-OS genotypes. CONCLUSIONS: We used multiple methods of analysis to predict the correlations between lymphoma susceptibility, clinical characteristics or OS with SNPs. Our findings reveal that immune-related genetic polymorphisms contribute to the prognosis and treatment of lymphoma, which may serve as promising predictive targets.


Asunto(s)
Linfoma , Humanos , Genotipo , Linfoma/genética , Polimorfismo de Nucleótido Simple , Pronóstico , Modelos de Riesgos Proporcionales , Predisposición Genética a la Enfermedad , Estudios de Casos y Controles
16.
Mol Biol Rep ; 50(8): 6601-6610, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37344641

RESUMEN

BACKGROUND: Mutations in splicing factor (SF) genes are frequently detected in myelodysplastic syndrome, but their clinical and prognostic relevance in acute myeloid leukemia (AML) have rarely been reported. METHODS: A total of 368 newly diagnosed non-M3 AML patients were included in this study. Next generation sequencing including four SF genes was performed on the genomicDNA. The clinical features and survival were analyzed using statistical analysis. RESULTS: We found that 64 of 368 patients harbored SF mutations. The SF mutations were much more frequently found in older or male patients. SRSF2 mutations were shown obviously co-existed with IDH2 mutation. The level of measurable residual disease after first chemotherapy was higher in SF-mutated patients compared to that in SF-wild patients, while the complete remission rate was significantly decreased. And the overall survival of SF-mutated patients was shorter than that of SF-wild patients. Moreover, our multivariable analysis suggests that the index of male, Kit mutation or ZRSR2 mutation was the independent risk factor for overall survival. SRSF2mut was associated with older age, higher proportion of peripheral blasts or abnormal cell proportion by flow cytometry. CONCLUSION: SF mutation is a distinct subgroup of AML frequently associated with clinic-biological features and poor outcome. SRSF2mut could be potential targets for novel treatment in AML.


Asunto(s)
Leucemia Mieloide Aguda , Empalmosomas , Humanos , Masculino , Anciano , Empalmosomas/genética , Pronóstico , Factores de Empalme Serina-Arginina/genética , Factores de Empalme de ARN/genética , Leucemia Mieloide Aguda/genética , Mutación/genética
17.
ACS Appl Mater Interfaces ; 15(23): 27624-27637, 2023 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-37249260

RESUMEN

Acute myeloid leukemia (AML) is rapidly progressed hematologic malignancy with relapsed and refractory characteristics. Cytarabine combined with the BCL2 inhibitor venetoclax showed impressive response rates in the treatment of relapsed/refractory acute myeloid leukemia (R/R AML), while it requires complicated administration regimens and brings added toxicity. In this work, we synthesized a mercaptopropionic acid-substituted derivative of Ara-C (Ara-SH) and used it as the trigger to fabricate a smart cytarabine and venetoclax-coloaded nanoparticle (AV-NP) through self-assembly. The AV-NP characterized with redox-responsive drug release, rapid uptake by leukemia cells, and long retention in circulation had the potential to accumulate in leukemia-enriched sites. It generated a remarkable synergistic effect with higher antileukemia activity in vitro and better safety in the hematologic system compared with free drugs and significantly improved the therapeutic effect on orthotopic AML mice in vivo. These similar results were also confirmed in primary cells from R/R-AML patients. Besides, the AV-NP has the superiority of facile fabrication and generalizability, rendering it easy for clinical translation.


Asunto(s)
Citarabina , Leucemia Mieloide Aguda , Animales , Ratones , Citarabina/farmacología , Citarabina/uso terapéutico , Leucemia Mieloide Aguda/tratamiento farmacológico , Compuestos Bicíclicos Heterocíclicos con Puentes/farmacología , Compuestos Bicíclicos Heterocíclicos con Puentes/uso terapéutico , Sulfonamidas/uso terapéutico , Protocolos de Quimioterapia Combinada Antineoplásica
18.
J Hazard Mater ; 448: 130895, 2023 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-36758435

RESUMEN

Micro- and nano-plastics are prevalent in diverse ecosystems, but their impacts on biotransformation of organohalide pollutants and underpinning microbial communities remain poorly understood. Here we investigated the influence of micro- and nano-plastics on microbial reductive dehalogenation at strain and community levels. Generally, microplastics including polyethylene (PE), polystyrene (PS), polylactic acid (PLA), and a weathered microplastic mixture increased dehalogenation rate by 10 - 217% in both the Dehalococcoides isolate and enrichment culture, whereas the effects of polyvinyl chloride (PVC) and a defined microplastic mixture depended on their concentrations and cultures. Contrarily, nano-PS (80 nm) consistently inhibited dehalogenation due to increased production of reactive oxygen species. Nevertheless, the enrichment culture showed higher tolerance to nano-PS inhibition, implying crucial roles of non-dehalogenating populations in ameliorating nanoplastic inhibition. The variation in dehalogenation activity was linked to altered organohalide-respiring bacteria (OHRB) growth and reductive dehalogenase (RDase) gene transcription. Moreover, microplastics changed the community structure and benefited the enrichment of OHRB, favoring the proliferation of Dehalogenimonas. More broadly, the assembly of microbial communities on plastic biofilms was more deterministic than that in the planktonic cells, with more complex co-occurrence networks in the former. Collectively, these findings contribute to better understanding the fate of organohalides in changing environments with increasing plastic pollution.


Asunto(s)
Contaminantes Ambientales , Microplásticos/toxicidad , Plásticos , Ecosistema , Biodegradación Ambiental
19.
Psychoneuroendocrinology ; 151: 106057, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36801655

RESUMEN

The stress-and-coping theory of forgiveness posits that forgiveness and aggression are alternative ways of coping with stress of interpersonal offences. Inspired by the link between aggression and MAOA-uVNTR (a genetic variant involving in catabolism of monoamines), we investigated the relationship between this variant and forgiveness with two studies. Study 1 examined the relationship between the MAOA-uVNTR and trait forgiveness in students, and study 2 examined the effect of this variant on third-party forgiveness in response to situational offences in male inmates. The results showed that the MAOA-H (a high activity allele) was associated with higher trait forgiveness in male students and greater third-party forgiveness to accidentally committed harm and attempted but failed harm in male inmates than the MAOA-L. These findings highlight the bright side of MAOA-uVNTR on trait and situational forgiveness.


Asunto(s)
Perdón , Humanos , Masculino , Genotipo , Agresión , Fenotipo , Adaptación Psicológica , Monoaminooxidasa/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...