Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 178
Filtrar
1.
Exp Biol Med (Maywood) ; 249: 10104, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38708425

RESUMEN

Seawater-drowning-induced acute lung injury (SD-ALI) is a life-threatening disorder characterized by increased alveolar-capillary permeability, an excessive inflammatory response, and refractory hypoxemia. Perfluorocarbons (PFCs) are biocompatible compounds that are chemically and biologically inert and lack toxicity as oxygen carriers, which could reduce lung injury in vitro and in vivo. The aim of our study was to explore whether the vaporization of PFCs could reduce the severity of SD-ALI in canines and investigate the underlying mechanisms. Eighteen beagle dogs were randomly divided into three groups: the seawater drowning (SW), perfluorocarbon (PFC), and control groups. The dogs in the SW group were intratracheally administered seawater to establish the animal model. The dogs in the PFC group were treated with vaporized PFCs. Probe-based confocal laser endomicroscopy (pCLE) was performed at 3 h. The blood gas, volume air index (VAI), pathological changes, and wet-to-dry (W/D) lung tissue ratios were assessed. The expression of heme oxygenase-1 (HO-1), nuclear respiratory factor-1 (NRF1), and NOD-like receptor family pyrin domain containing-3 (NLRP3) inflammasomes was determined by means of quantitative real-time polymerase chain reaction (qRT-PCR) and immunological histological chemistry. The SW group showed higher lung injury scores and W/D ratios, and lower VAI compared to the control group, and treatment with PFCs could reverse the change of lung injury score, W/D ratio and VAI. PFCs deactivated NLRP3 inflammasomes and reduced the release of caspase-1, interleukin-1ß (IL-1ß), and interleukin-18 (IL-18) by enhancing the expression of HO-1 and NRF1. Our results suggest that the vaporization of PFCs could attenuate SD-ALI by deactivating NLRP3 inflammasomes via the HO-1/NRF1 pathway.


Asunto(s)
Lesión Pulmonar Aguda , Fluorocarburos , Inflamasomas , Proteína con Dominio Pirina 3 de la Familia NLR , Animales , Fluorocarburos/farmacología , Perros , Lesión Pulmonar Aguda/metabolismo , Lesión Pulmonar Aguda/tratamiento farmacológico , Lesión Pulmonar Aguda/patología , Inflamasomas/metabolismo , Inflamasomas/efectos de los fármacos , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Agua de Mar , Masculino , Ahogamiento/metabolismo , Modelos Animales de Enfermedad , Pulmón/patología , Pulmón/metabolismo , Pulmón/efectos de los fármacos
2.
Gut ; 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38621924

RESUMEN

OBJECTIVE: Targeting bacterial translocation in cirrhosis is limited to antibiotics with risk of antimicrobial resistance. This study explored the therapeutic potential of a non-absorbable, gut-restricted, engineered carbon bead adsorbent, Yaq-001 in models of cirrhosis and acute-on-chronic liver failure (ACLF) and, its safety and tolerability in a clinical trial in cirrhosis. DESIGN: Performance of Yaq-001 was evaluated in vitro. Two-rat models of cirrhosis and ACLF, (4 weeks, bile duct ligation with or without lipopolysaccharide), receiving Yaq-001 for 2 weeks; and two-mouse models of cirrhosis (6-week and 12-week carbon tetrachloride (CCl4)) receiving Yaq-001 for 6 weeks were studied. Organ and immune function, gut permeability, transcriptomics, microbiome composition and metabolomics were analysed. The effect of faecal water on gut permeability from animal models was evaluated on intestinal organoids. A multicentre, double-blind, randomised, placebo-controlled clinical trial in 28 patients with cirrhosis, administered 4 gr/day Yaq-001 for 3 months was performed. RESULTS: Yaq-001 exhibited rapid adsorption kinetics for endotoxin. In vivo, Yaq-001 reduced liver injury, progression of fibrosis, portal hypertension, renal dysfunction and mortality of ACLF animals significantly. Significant impact on severity of endotoxaemia, hyperammonaemia, liver cell death, systemic inflammation and organ transcriptomics with variable modulation of inflammation, cell death and senescence in the liver, kidneys, brain and colon was observed. Yaq-001 reduced gut permeability in the organoids and impacted positively on the microbiome composition and metabolism. Yaq-001 regulated as a device met its primary endpoint of safety and tolerability in the clinical trial. CONCLUSIONS: This study provides strong preclinical rationale and safety in patients with cirrhosis to allow clinical translation. TRIAL REGISTRATION NUMBER: NCT03202498.

4.
Sci Total Environ ; 924: 171292, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38432371

RESUMEN

Per- and polyfluoroalkyl substances (PFAS) are a large chemical family, and numerous chemical species can co-exist in environmental samples, especially those impacted by aqueous film-forming foams (AFFFs). Given the limited availability of chemical standards, capturing the total amount of PFAS is challenging. Thus, the total oxidizable precursor (TOP) assay has been developed to estimate the total amount of PFAS via the oxidative conversion of precursors into perfluorocarboxylic acids (PFCAs). This study aims to enhance the robustness of the TOP assay by replacing heat activation with UV activation. We evaluated the molar yields of known precursors in water in the presence of varying levels of Suwannee River natural organic matter (SRNOM) and in two soils. The impact of UV activation was also evaluated in two soils spiked with three well-characterized AFFFs, six AFFF-impacted field soils, and nine rinse samples of AFFF-impacted stainless-steel pipe. In the presence of 100 mg/L SNROM, 6:2 fluorotelomer sulfonate (FTS), 8:2 FTS, and N-ethyl perfluorooctane sulfonamidoacetic acid (N-EtFOSAA) in deionized water had good molar recovery as PFCAs (average of 102 ± 9.8 %); at 500 mg/L SNROM, the recovery significantly dropped to an average of 51 ± 19 %. In two soils (with 4 % and 8.8 % organic matter) with individual precursor spikes, the average molar recovery was 101 ± 9.4 %, except N-EtFOSAA, which had a reduced recovery in the soil with 8.8 % organic matter (OM). UV-activated assays outperformed heat-activated ones, especially in AFFF-impacted soils and pipe extract samples, with an average of 1.4-1.5× higher PFCA recovery. In almost all test samples, UV activation resulted in a notable shift towards longer PFCA chain lengths, particularly for samples with high OM content. The study confirmed the advantages of UV activation, including a significantly shortened exposure time (1 h vs. 6 h) and reduced matrix effects from OM due to the dual functions of UV in activating persulfate and photodegrading OM.

5.
Infect Drug Resist ; 17: 779-790, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38444771

RESUMEN

Objective: Bloodstream infection (BSI) is characterized by high mortality, especially among these increasing super-elderly patients (≥85 years), and this study was conducted to understand the species distribution, typical clinical features and risk factors for poor prognosis of super-elderly patients with BSI. Methods: Based on previous work, this retrospective study was performed by reviewing an ongoing prospective medical database in a comprehensive tertiary center in China, and all super-elderly patients with BSI in the past 6 years were enrolled in this study. Results: Out of 5944 adult-patients with BSI, there were totally 431 super-elderly patients (≥85 years old) enrolled in this study and age ≥90 years accounted for 31.1% (134/431). Among these 431 super-elderly patients with BSI, 40 patients (9.3%) were diagnosed with BSI and the remained 401 super-elderly patients (90.7%) were defined as hospital-acquired BSI. The typical feature of these super-elderly patients with BSI was the high proportion of patients with various comorbidities, such as cardiovascular disease (83.8%), ischemic cerebrovascular disease (63.3%) and pulmonary infection (61.0%). The other typical feature was that most (60.1%) of these patients had been hospitalized for long time (≥28 days) prior to the onset of BSI, and most patients had received various invasive treatments, such as indwelling central venous catheter (53.1%) and indwelling urinary catheter (47.1%). Unfortunately, due to these adverse features above, both the 7-day short-term mortality (13.2%, 57/431) and the 30-day long-term mortality (24.8%, 107/431) were high. The multivariate analysis showed that both chronic liver failure (OR 7.9, 95% CI 2.3-27.8, P=0.001) and indwelling urinary catheter (OR 2.3, 95% CI 1.1-4.7, P=0.023) were independent risk factors for 7-day short-term mortality, but not for 30-day long-term mortality. In addition, the microbiology results showed that the most common species were associated with nosocomial infection or self-opportunistic infection, such as Staphylococcus hominis (18.3%), Staphylococcus epidermidis (11.8%), Escherichia coli (9.7%), Klebsiella pneumoniae (9.3%) and Candida albicans (8.6%, fungi). Conclusion: Super-elderly patients with BSI had typical features, regardless of the pathogenic species distribution and their drug resistance, or clinical features and their risk factors for poor prognosis. These typical features deserved attention and could be used for the prevention and treatment of BSI among super-elderly patients.

6.
Biosens Bioelectron ; 251: 116103, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38382269

RESUMEN

The near-infrared electrochemiluminescence technique (NIR ECL) has gained significant attention as a powerful analytical tool in biomedicine and clinical diagnosis due to its inherent advantages. In this work, we successfully synthesized a novel NIR ECL emitter of TPA-DCPP nanoparticles (NPs) with a D-π-A-π-D configuration. By utilizing the thermally activated delayed fluorescence (TADF) property, we achieved enhanced electrochemiluminescence (ECL) emission through complete exciton harvesting for radiative decay. Specifically, when BDEA was used as a co-reactant, the TPA-DCPP NPs exhibited strong bandgap ECL emission. Additionally, they demonstrated an exceptionally higher ECL efficiency compared to conventional near-infrared fluorescence organic nanomaterials (BSeT-BT NPs). By integrating the efficient anodic ECL performance of TPA-DCPP NPs with Exo III-assisted polymerase enzyme reaction cascade amplification, a highly efficient ECL resonance energy transfer (ECL-RET) platform was developed for ultrasensitive detection of circulating tumor DNA (ctDNA). The established biosensor demonstrated an exceptional linear dynamic range and achieved attomolar-level detection limit. This study highlights the immense potential of TADF emitters in enhancing ECL efficiency and extends the emission wavelength of organic nanomaterials to the NIR region, thereby expanding their applications in biological analysis.


Asunto(s)
Técnicas Biosensibles , Nanopartículas , Nanoestructuras , Mediciones Luminiscentes/métodos , Técnicas Biosensibles/métodos , Técnicas Electroquímicas/métodos
7.
MedComm (2020) ; 5(2): e476, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38405060

RESUMEN

Cholesterol homeostasis is crucial for cellular and systemic function. The disorder of cholesterol metabolism not only accelerates the onset of cardiovascular disease (CVD) but is also the fundamental cause of other ailments. The regulation of cholesterol metabolism in the human is an extremely complex process. Due to the dynamic balance between cholesterol synthesis, intake, efflux and storage, cholesterol metabolism generally remains secure. Disruption of any of these links is likely to have adverse effects on the body. At present, increasing evidence suggests that abnormal cholesterol metabolism is closely related to various systemic diseases. However, the exact mechanism by which cholesterol metabolism contributes to disease pathogenesis remains unclear, and there are still unknown factors. In this review, we outline the metabolic process of cholesterol in the human body, especially reverse cholesterol transport (RCT). Then, we discuss separately the impact of abnormal cholesterol metabolism on common diseases and potential therapeutic targets for each disease, including CVD, tumors, neurological diseases, and immune system diseases. At the end of this review, we focus on the effect of cholesterol metabolism on eye diseases. In short, we hope to provide more new ideas for the pathogenesis and treatment of diseases from the perspective of cholesterol.

8.
Talanta ; 271: 125678, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38277968

RESUMEN

The detection of foodborne pathogens is crucial for ensuring the maintenance of food safety. In the present study, a portable CRISPR-Cas12a triggered photothermal biosensor integrating branch hybrid chain reaction (bHCR) and DNA metallization strategy for sensitive and visual detection of foodborne pathogens was proposed. The sheared probes were utilized to block the locker probes, which enabled preventing the assembly of bHCR in the absence of target bacteria, while target bacteria can activate the cleavage of sheared probes through CRISPR-Cas12a. Therefore, the locker probes functioned as initiating chains, triggering the formation of the branching double-stranded DNA consisting of H1, H2, and H3. The silver particles, which were in situ deposited on the DNA structure, functioned as a signal factor for conducting photothermal detection. Staphylococcus aureus and Listeria monocytogenes were selected as the foodborne pathogens to verify the analytical performance of this CRISPR-Cas12a triggered photothermal sensor platform. The sensor exhibited a sensitive detection with a low detection limit of 1 CFU/mL, while the concentration ranged from 100 to 108 CFU/mL. Furthermore, this method could efficiently detect target bacteria in multiple food samples. The findings demonstrate that this strategy can serve as a valuable reference for the development of a portable platform enabling quantitative analysis, visualization, and highly sensitive detection of foodborne bacteria.


Asunto(s)
Técnicas Biosensibles , Listeria monocytogenes , Infecciones Estafilocócicas , Humanos , Listeria monocytogenes/genética , Staphylococcus aureus/genética , Sistemas CRISPR-Cas , ADN
9.
Hepatol Int ; 2024 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-38184503

RESUMEN

BACKGROUND AND AIMS: Non-alcoholic fatty liver disease (NAFLD) is the most common cause of chronic liver disease worldwide. In this study, we aimed to investigate the role and regulatory mechanism of Annexin A2 (ANXA2) in the pathogenesis of NAFLD. METHODS: Histological analyses and ELISA were used to illuminate the expression of ANXA2 in NAFLD and healthy subjects. The role of ANXA2 was evaluated using high-fat diet (HFD)-fed mice via vein injection of adeno-associated viruses (AAV) knocking down ANXA2 or non-targeting control (NC) shRNAs. Moreover, HepG2 and LO2 cells were employed as in vitro hepatocyte models to investigate the expression and function of ANXA2. RESULTS: ANXA2 was confirmed to be one of three hub genes in liver injury, and its expression was positively correlated with NAFLD activity score (NAS) and macrophage infiltration in NAFLD. Moreover, ANXA2 was significantly upregulated in NAFLD patients and HFD-fed mice. LPS/TLR4 pathway strongly upregulated ANXA2 expression, which is mediated by direct ANXA2 promoter binding by TLR4 downstream NF-κB p65 and c-Jun transcription factors. Increased ANXA2 expression was correlated with decreased autophagy flux and autophagy was activated by the depletion of ANXA2 in the models of NAFLD. Furthermore, ANXA2 interference led to the activation of AMPK/mTOR signaling axis, which may play a causal role in autophagy flux and the amelioration of steatosis. CONCLUSIONS: ANXA2 is a pathological predictor and promising therapeutic target for NAFLD. ANXA2 plays a crucial role in linking inflammation to hepatic metabolic disorder and injury, mainly through the blockage of AMPK/mTOR-mediated lipophagy.

10.
Chin J Traumatol ; 27(1): 1-10, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38065706

RESUMEN

Programmed cell death 1 ligand 1 (PD-L1) is an important immunosuppressive molecule, which inhibits the function of T cells and other immune cells by binding to the receptor programmed cell death-1. The PD-L1 expression disorder plays an important role in the occurrence, development, and treatment of sepsis or other inflammatory diseases, and has become an important target for the treatment of these diseases. Mesenchymal stem cells (MSCs) are a kind of pluripotent stem cells with multiple differentiation potential. In recent years, MSCs have been found to have a strong immunosuppressive ability and are used to treat various inflammatory insults caused by hyperimmune diseases. Moreover, PD-L1 is deeply involved in the immunosuppressive events of MSCs and plays an important role in the treatment of various diseases. In this review, we will summarize the main regulatory mechanism of PD-L1 expression, and discuss various biological functions of PD-L1 in the immune regulation of MSCs.


Asunto(s)
Antígeno B7-H1 , Inmunomodulación , Células Madre Mesenquimatosas , Humanos , Antígeno B7-H1/metabolismo , Células Madre Mesenquimatosas/inmunología , Linfocitos T/metabolismo
11.
Int J Biol Macromol ; 254(Pt 3): 128102, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37972842

RESUMEN

In recent years, the safety of public health has attracted more and more attention. In order to avoid the spread of bacteria and reduce the diseases caused by their invasion of the human body, novel filtration and antibacterial materials have attracted more and more attention. In this work, the antibacterial agents silver nanoparticles (AgNPs) and cetylpyridine bromide (CPB) were introduced into a cellulose acetate (CA) nanofiber film by electrospinning technology to prepare CA-based composite films with good antibacterial and filtration properties. The results of the antibacterial test of the composite nanofiber films showed that AgNPs and CPB had synergistic antibacterial effects and exhibited good antibacterial properties against a variety of bacteria. In addition, in vitro cytotoxicity, skin irritation and skin sensitization experiments proved that the CA/AgNPs, CA/CPB and CA/CPB/AgNPs films produced no skin irritation or sensitization in the short term. These are expected to become potential materials for the preparation of new antibacterial masks. This work provides a new idea for developing materials with good antibacterial properties for enhancing protection via filtration masks.


Asunto(s)
Nanopartículas del Metal , Nanofibras , Humanos , Plata/farmacología , Antibacterianos/farmacología , Bacterias
12.
Free Radic Biol Med ; 210: 258-270, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38042221

RESUMEN

One of the major pathological processes in cataracts has been identified as ferroptosis. However, studies on the iron metabolism mechanism in lens epithelial cells (LECs) and the methods of effectively alleviating ferroptosis in LECs are scarce. Along these lines, we found that in the ultraviolet radiation b (UVB) induced cataract model in vitro and in vivo, the ferritin of LECs is over-degraded by lysosomes, resulting in the occurrence of iron homeostasis disorder. Glycine can affect the ferritin degradation through the proton-coupled amino acid transporter (PAT1) on the lysosome membrane, further upregulating the content of nuclear factor erythrocyte 2 related factor 2 (Nrf2) to reduce the damage of LECs from two aspects of regulating iron homeostasis and alleviating oxidative stress. By co-staining, we further demonstrate that there is a more sensitive poly-(rC)-binding protein 2 (PCBP2) transportation of iron ions in LECs after UVB irradiation. Additionally, this study illustrated the increased expression of nuclear receptor coactivator 4 (NCOA4) in NRF2-KO mice, indicating that Nrf2 may affect ferritin degradation by decreasing the expression of NCOA4. Collectively, glycine can effectively regulate cellular iron homeostasis by synergistically affecting the lysosome-dependent ferritin degradation and PCBP2-mediated ferrous ion transportation, ultimately delaying the development of cataracts.


Asunto(s)
Catarata , Ferritinas , Ratones , Animales , Ferritinas/metabolismo , Glicina/metabolismo , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Rayos Ultravioleta , Hierro/metabolismo , Células Epiteliales/metabolismo , Catarata/metabolismo , Homeostasis/fisiología , Lisosomas/metabolismo
13.
Biochim Biophys Acta Mol Basis Dis ; 1870(2): 166969, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38008231

RESUMEN

BACKGROUND: Ferroptosis is a type of non-apoptotic cell death that relies on iron ions and reactive oxygen species to induce lipid peroxidation. This study aimed to determine whether ferroptosis exists in the pathogenesis of dry age-related macular degeneration (AMD) and to confirm that melatonin (MLT) suppresses the photoreceptor cell ferroptosis signaling pathway. METHODS: We exposed 661W cells to sodium iodate (NaIO3) in vitro and treated them with different concentrations of MLT. In vivo, C57BL/6 mice were given a single caudal vein injection of NaIO3, followed by an intraperitoneal injection of MLT, and eyeballs were taken for subsequent trials. RESULTS: We found that NaIO3 could induce photoreceptor cell death and lipid peroxide accumulation, and result in changes in the expression of ferroptosis-related factors and iron maintenance proteins, which were treated by MLT. We further demonstrated that MLT can block Fyn-dependent Nrf2 nuclear translocation by suppressing the GSK-3ß signaling pathway. In addition, the therapeutic effect of MLT was significantly inhibited when Nrf2 was silenced. CONCLUSIONS: Our findings provide a novel insight that NaIO3 induces photoreceptor cell ferroptosis in dry AMD and suggest that MLT has therapeutic effects by suppressing GSK-3ß/Fyn-dependent Nrf2 nuclear translocation.


Asunto(s)
Ferroptosis , Melatonina , Ratones , Animales , Melatonina/farmacología , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Glucógeno Sintasa Quinasa 3 beta/genética , Ratones Endogámicos C57BL , Células Fotorreceptoras/metabolismo , Hierro/farmacología
15.
ACS Omega ; 8(42): 39437-39446, 2023 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-37901528

RESUMEN

Perfluoroalkyl and polyfluoroalkyl substances (PFAS) make up a group of anthropogenic chemicals with a myriad of applications. However, some PFAS have been shown to negatively impact human health and the environment, leading to increased regulation, with some countries making efforts to phase out their use. PFAS fate in the environment is driven by physical, chemical, and biological processes, with microbial communities in matrices such as soil and sewage sludge being known to generate a range of low-molecular-weight PFAS metabolites. Proposed metabolic intermediates for both mixed and pure microbial cultures include fluorinated carboxylates that may be activated by CoA prior to ß-oxidation and defluorination, although thus far, no PFAS-CoA adducts have been reported. Herein, we expressed and purified acyl-CoA synthetase (ACS) from the soil bacterium Gordonia sp. strain NB4-1Y and performed an analysis of substrate scope and enzyme kinetics using fluorinated and nonfluorinated carboxylates. We determined that ACS was able to catalyze the formation of CoA adducts of 3,3,3-trifluoropropionic acid, 5,5,5-trifluoropentanoic acid, 4,5,5-trifluoropent-4-enoic acid, and 4,4,5,5,5-pentafluoropentanoic acid. Kinetic analysis revealed a 90-98% decrease in kcat between nonfluorinated carboxylates and their fluorinated analogues. This provides evidence to validate proposed enzymatic pathways for microbial PFAS metabolism that proceed via an activation step involving the formation of CoA adducts.

16.
J Mater Chem B ; 11(47): 11217-11221, 2023 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-37843833

RESUMEN

A polymeric engineering design principle is proposed for the construction of small-sized (∼20 nm) NIR-II AIEgen-doped nanodots (AIEdots) with high brightness and prolonged circulation time in blood vessels. With the utilization of the as-designed NIR-II AIEdots, the successful achievement of high-resolution NIR-II fluorescence imaging of tumor vessels and precise detection of abdominal metastases of ovarian cancer has been attained.


Asunto(s)
Colorantes Fluorescentes , Neoplasias Ováricas , Humanos , Femenino , Neoplasias Ováricas/diagnóstico por imagen , Neoplasias Ováricas/patología , Imagen Óptica , Polímeros
17.
Adv Mater ; 35(44): e2305472, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37437082

RESUMEN

Thermochromic fluorescent materials (TFMs) exhibit great potential in information encryption applications but are limited by low thermosensitivity, poor color tunability, and a wide temperature-responsive range. Herein, a novel strategy for constructing highly sensitive TFMs with tunable emission (450-650 nm) toward multilevel information encryption is proposed, which employs polarity-sensitive fluorophores with donor-acceptor-donor (D-A-D) type structures as emitters and long-chain alkanes as thermosensitive loading matrixes. The structure-function relationships between the performance of TFMs and the structures of both fluorescent emitters and phase-change molecules are systematically studied. Benefiting from the above design, the obtained TFMs exhibit over 9500-fold fluorescence enhancement toward the temperature change, as well as ultrahigh relative temperature sensitivity up to 80% K-1 , which are first confirmed. Thanks to the superior transducing performance, the above-prepared TFMs can be further developed as information-storage platforms within a relatively narrow interval of temperature variation, including temperature-dominated multicolored information display and multilevel information encryption. This work will not only provide a novel perspective for designing superior TFMs for information encryption but also bring inspiration to the design and preparation of other response-switching-type fluorescent probes with ultrahigh conversion efficiency.

18.
Free Radic Biol Med ; 204: 161-176, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37156294

RESUMEN

Oxidative stress-induced lens epithelial cells (LECs) death plays a pivotal role in age-related cataract (ARC) with severe visual impairment, in which ferroptosis is gradually receiving numerous attention resulting from lipid peroxide accumulation and reactive oxygen species (ROS) overproduction. However, the essential pathogenic factors and the targeted medical strategies still remain skeptical and indistinct. In this work, by transmission electron microscopy (TEM) analysis, the major pathological courses in the LECs of ARC patients have been identified as ferroptosis, which was manifested with remarkable mitochondrial alterations, and similar results were found in aged mice (24-month-old). Furthermore, the primary pathological processes in the NaIO3-induced mice and HLE-B3 cell model have also been verified to be ferroptosis with an irreplaceable function of Nrf2, proved by the increased sensitivity to ferroptosis when Nrf2 was blocked in Nrf2-KO mice and si-Nrf2-treated HLE-B3 cells. Importantly, it has been found that an increased expression of GSK-3ß was indicated in low-Nrf2-expressed tissues and cells. Subsequently, the contributions of abnormal GSK-3ß expression to NaIO3-induced mice and HLE-B3 cell model were further evaluated, inhibition of GSK-3ß utilizing SB216763 significantly alleviated LECs ferroptosis with less iron accumulation and ROS generation, as well as reversed expression alterations of ferroptosis markers, including GPX4, SLC7A11, SLC40A1, FTH1 and TfR1, in vitro and in vivo. Collectively, our findings conclude that targeting GSK-3ß/Nrf2 balance might be a promising therapeutic strategy to mitigate LECs ferroptosis and thus probably delay the pathogenesis and development of ARC.


Asunto(s)
Catarata , Ferroptosis , Animales , Ratones , Antioxidantes/farmacología , Antioxidantes/metabolismo , Catarata/genética , Catarata/metabolismo , Células Epiteliales/metabolismo , Ferroptosis/genética , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Especies Reactivas de Oxígeno/metabolismo
19.
Environ Sci Technol ; 57(19): 7442-7453, 2023 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-37144860

RESUMEN

Some contemporary aqueous film-forming foams (AFFFs) contain n:3 and n:1:2 fluorotelomer betaines (FTBs), which are often detected at sites impacted by AFFFs. As new chemical replacements, little is known about their environmental fate. For the first time, we investigated the biotransformation potential of 5:3 and 5:1:2 FTBs and a commercial AFFF that mainly contains n:3 and n:1:2 FTBs (n = 5, 7, 9, 11, and 13). Although some polyfluoroalkyl compounds are precursors to perfluoroalkyl acids, 5:3 and 5:1:2 FTBs exhibited high persistence, with no significant changes even after 120 days of incubation. While the degradation of 5:3 FTB into suspected products such as fluorotelomer acids or perfluoroalkyl carboxylic acids (PFCAs) could not be conclusively confirmed, we did identify a potential biotransformation product, 5:3 fluorotelomer methylamine. Similarly, 5:1:2 FTB did not break down or produce short-chain hydrogen-substituted polyfluoroalkyl acids (n:2 H-FTCA), hydrogen-substituted PFCA (2H-PFCA), or any other products. Incubating the AFFF in four soils with differing properties and microbial communities resulted in 0.023-0.25 mol % PFCAs by day 120. Most of the products are believed to be derived from n:2 fluorotelomers, minor components of the AFFF. Therefore, the findings of the study cannot be fully explained by the current understanding of structure-biodegradability relationships.


Asunto(s)
Fluorocarburos , Contaminantes Químicos del Agua , Betaína , Suelo , Contaminantes Químicos del Agua/análisis , Fluorocarburos/análisis , Agua , Ácidos Carboxílicos/metabolismo
20.
Foods ; 12(8)2023 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-37107472

RESUMEN

The aim of this study was to investigate the influence of bovine serum albumin (BSA) on the Lactobacillus-strain-mediated removal of benzo[a]pyrene (BaP). A combination of 0.5 mg/mL of BSA with 1.0 × 1010 CFU/mL bacterial cells had a removal of 49.61% BaP for strain 121, while a combination of 0.4 mg/mL of BSA with 1.0 × 1010 CFU/mL bacterial cells had a removal of 66.09% BaP for strain ML32. The results indicated that the binding of BaP to Lactobacillus-BSA was stable. BSA maintains Lactobacillus activity and BaP removal in the gastrointestinal environment. Heat and ultrasonic treatment of BSA reduced the BaP-binding ability of Lactobacillus-BSA. With the addition of BSA, the surface properties of the two strains affected BaP binding. The Fourier-transform infrared (FTIR) data demonstrated that O-H, N-H, C=O, and P=O groups were involved in the binding of BaP to Lactobacillus-BSA. Scanning electron microscopy (SEM) results revealed that the morphology of Lactobacillus-BSA bound to BaP was maintained. The adsorption of BaP by Lactobacillus-BSA was appropriately described by the pseudo-second-order kinetic model and Freundlich isotherm model. BSA enhances the affinity between the bacterial cells and BaP.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA