RESUMEN
The human body possesses natural barriers, such as skin and mucosa, which limit the effective delivery of therapeutics and integration of medical devices to target tissues. Various strategies have been deployed to breach these barriers mechanically, chemically, or electronically. The development of various penetration enhancers (PEs) offers a promising solution due to their ability to increase tissue permeability using readily available reagents. However, existing PE-mediated delivery methods often rely on weak gel or liquid drug formulations, which are not ideal for sustained local delivery. Hydrogel adhesives that can seamlessly interface biological tissues with controlled drug delivery could potentially resolve these issues. Here, we demonstrate that tough adhesion between drug-laden hydrogels and biological tissue (e.g. skin and tumours) can lead to effective local delivery of drugs deep into targeted tissues by leveraging the enhanced tissue penetration mediated by PEs. The drug release profile of the hydrogel adhesives can be fine-tuned by further engineering the nanocomposite hydrogel matrix to elute chemotherapeutics from 2 weeks to 2 months. Using a 3D tumour spheroid model, we demonstrated that PEs increased the cancer-killing effectiveness of doxorubicin by facilitating its delivery into tumour microtissues. Therefore, the proposed tough bioadhesion and drug delivery strategy modulated by PEs holds promise as a platform technique to develop next-generation wearable and implantable devices for cancer management and regenerative medicine.
Asunto(s)
Doxorrubicina , Sistemas de Liberación de Medicamentos , Hidrogeles , Hidrogeles/química , Hidrogeles/administración & dosificación , Doxorrubicina/química , Doxorrubicina/administración & dosificación , Doxorrubicina/farmacología , Humanos , Animales , Liberación de Fármacos , Ratones , Adhesivos/química , Adhesivos/administración & dosificación , Adhesivos/farmacología , Línea Celular Tumoral , AdhesividadRESUMEN
This review thoroughly explores the multifaceted roles of sexual hormones, emphasizing their impact beyond reproductive functions and underscoring their significant influence on cardiometabolic regulation. It analyzes the broader physiological implications of estrogen, testosterone, and progesterone, highlighting their effects on metabolic syndrome, lipid metabolism, glucose homeostasis, and cardiovascular health. Drawing from diverse molecular, clinical, and therapeutic studies, the paper delves into the intricate interplay between these hormones and cardiometabolic processes. By presenting a comprehensive analysis that goes beyond traditional perspectives, and recognizing sexual hormones as more than reproductive agents, the review sheds light on their broader significance in health and disease management, advocating for holistic and personalized medical approaches.
RESUMEN
BACKGROUND: Encouraging antitumor activity of nab-paclitaxel plus S-1 (AS) has been shown in several small-scale studies. This study compared the efficacy and safety of AS versus standard-of-care nab-paclitaxel plus gemcitabine (AG) as a first-line treatment for advanced pancreatic cancer (PC). METHODS: In this multicenter, randomized, phase II trial, eligible patients with unresectable, locally advanced, or metastatic PC were recruited and randomly assigned (1:1) to receive AS (nab-paclitaxel 125 mg/m2 on days 1 and 8; S-1 twice daily on days 1 through 14) or AG (nab-paclitaxel 125 mg/m2 on days 1 and 8; gemcitabine 1000 mg/m2 on days 1 and 8) for 6 cycles. The primary endpoint was progression-free survival (PFS). RESULTS: Between July 16, 2019, and September 9, 2022, 62 patients (AS, nâ =â 32; AG, nâ =â 30) were treated and evaluated. With a median follow-up of 8.36 months at preplanned interim analysis (data cutoff, March 24, 2023), the median PFS (8.48 vs 4.47 months; hazard ratio [HR], 0.402; Pâ =â .002) and overall survival (OS; 13.73 vs 9.59 months; HR, 0.226; Pâ <â .001) in the AS group were significantly longer compared to the AG group. More patients had objective response in the AS group than AG group (37.50% vs 6.67%; Pâ =â .005). The most common grade 3-4 adverse events were neutropenia and leucopenia in both groups, and gamma glutamyl transferase increase was observed only in the AG group. CONCLUSION: The first-line AS regimen significantly extended both PFS and OS of Chinese patients with advanced PC when compared with the AG regimen, with a comparable safety profile. (ClinicalTrials.gov Identifier: NCT03636308).
Asunto(s)
Albúminas , Protocolos de Quimioterapia Combinada Antineoplásica , Desoxicitidina , Combinación de Medicamentos , Gemcitabina , Ácido Oxónico , Paclitaxel , Neoplasias Pancreáticas , Tegafur , Humanos , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/patología , Neoplasias Pancreáticas/mortalidad , Masculino , Desoxicitidina/análogos & derivados , Desoxicitidina/administración & dosificación , Desoxicitidina/uso terapéutico , Desoxicitidina/efectos adversos , Paclitaxel/administración & dosificación , Paclitaxel/uso terapéutico , Paclitaxel/efectos adversos , Paclitaxel/farmacología , Femenino , Tegafur/administración & dosificación , Tegafur/uso terapéutico , Tegafur/efectos adversos , Ácido Oxónico/administración & dosificación , Ácido Oxónico/uso terapéutico , Ácido Oxónico/efectos adversos , Persona de Mediana Edad , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Albúminas/administración & dosificación , Albúminas/efectos adversos , Albúminas/uso terapéutico , Anciano , AdultoRESUMEN
The rice stem borer (RSB), Chilo suppressalis, a notorious rice pest in China, has evolved a high resistance level to commonly used insecticides. Tetraniliprole, a new anthranilic diamide insecticide, effectively controls multiple pests, including RSB. However, the potential resistance risk of RSB to tetraniliprole is still unknown. In this study, the tetraniliprole-selection (Tet-R) strain was obtained through 10 continuous generations of selection with tetraniliprole 30% lethal concentration (LC30 ). The realized heritability (h2 ) of the Tet-R strain was 0.387, indicating that resistance of RSB to tetraniliprole developed rapidly under the continuous selection of tetraniliprole. The Tet-R strain had a high fitness cost (relative fitness = 0.53). We established the susceptibility baseline of RSB to tetraniliprole (lethal concentration at LC50 = 0.727 mg/L) and investigated the resistance level of 6 field populations to tetraniliprole. All tested strains that had resistance to chlorantraniliprole exhibited moderate- to high-level resistance to tetraniliprole (resistance ratio = 27.7-806.8). Detection of ryanodine receptor (RyR) mutations showed that the Y4667C, Y4667D, I4758M, and Y4891F mutations were present in tested RSB field populations. RyR mutations were responsible for the cross-resistance between tetraniliprole and chlorantraniliprole. Further, the clustered regularly interspaced palindromic repeats (CRISPR) / CRISPR-associated protein 9-mediated genome-modified flies were used to study the contribution of RyR mutations to tetraniliprole resistance. The order of contribution of a single RyR mutation to tetraniliprole resistance was Y4667D > G4915E > Y4667C ≈ I4758M > Y4891F. In addition, the I4758M and Y4667C double mutations conferred higher tetraniliprole resistance than single Y4667C mutations. These results can guide resistance management practices for diamides in RSB and other arthropods.
RESUMEN
CCN/WISP (cellular communication network factors, or Wnt-inducted secreted proteins) family of proteins consists of six extracellular matrix (ECM)-associated proteins that regulate development, cell adhesion and proliferation, ECM remodeling, inflammation, and tumorigenesis. In the last two decades, metabolic regulation by these matricellular proteins has been studied extensively, several excellent reviews have covered the roles of CCN1, -2 and - 5. In this brief review, we will focus on those lesser-known members and more recent discoveries, together with other recent articles presenting a more complete picture of the current state of knowledge. We have found that CCN2, -4, and - 5 promote pancreatic islet function, while CCN3 plays a unique and negative role. CCN3 and - 4 are pro-adiposity leading to insulin resistance, but CCN5 and - 6 are anti-adiposity. While CCN2 and - 4 promote tissue fibrosis and inflammation, all other four members are clearly anti-fibrotic. As for cellular signaling, they are known to interact with integrins, other cell membrane proteins and ECM thereby regulate Akt/protein kinase B, myocardin-related transcription factor (MRTF), and focal adhesion kinase. Yet, a cohesive mechanism of action to comprehensively explain those major functions is still lacking.
RESUMEN
A growing number of neuroimaging studies have revealed abnormal brain structural and functional alterations in subjects with internet addiction (IA), however, with conflicting conclusions. We plan to conduct a systematic review and meta-analysis on the studies of voxelbased morphometry (VBM) and resting-state functional connectivity (rsFC), to reach a consolidated conclusion and point out the future direction in this field. A comprehensive search of rsFC and VBM studies of IA will be conducted in the PubMed, Cochrane Library, and Web of Science databases to retrieve studies published from the inception dates to August 2021. If the extracted data are feasible, activation likelihood estimation and seed-based d mapping methods will be used to meta-analyze the brain structural and functional changes in IA patients. This study will hopefully reach a consolidated conclusion on the impact of IA on human brain or point out the future direction in this field.
RESUMEN
Acinar-to-ductal metaplasia (ADM) is a recently recognized, yet less well-studied, precursor lesion of pancreatic ductal adenocarcinoma (PDAC) developed in the setting of chronic pancreatitis. Through digital spatial mRNA profiling, we compared ADM and adjacent PDAC tissues from patient samples to unveil the bridging genes during the malignant transformation of pancreatitis. By comparing the bridging genes with the 7-methylguanosine (m7G)-seq dataset, we screened 19 m7G methylation genes for a subsequent large sample analysis. We constructed the "m7G score" model based on the RNA-seq data for pancreatic cancer in The Cancer Genome Atlas (TCGA) database and The Gene Expression Omnibus (GEO) database. Tumors with a high m7G score were characterized by increased immune cell infiltration, increased genomic instability, higher response rate to combined immune checkpoint inhibitors (ICIs), and overall poor survival. These findings indicate that the m7G score is associated with tumor invasiveness, immune cell infiltration, ICI treatment response, and overall patients' survival. We also identified FN1 and ITGB1 as core genes in the m7Gscore model, which affect immune cell infiltration and genomic instability not only in pancreatic cancer but also in pan-cancer. FN1 and ITGB1 can inhibit immune T cell activition by upregulation of macrophages and neutrophils, thereby leading to immune escape of pancreatic cancer cells and reducing the response rate of ICI treatment.
Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/terapia , Inestabilidad Genómica , Humanos , Inmunoterapia , Metaplasia , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/terapia , Pronóstico , Neoplasias PancreáticasRESUMEN
Crotonaldehyde (CRA)-one of the major environmental pollutants from tobacco smoke and industrial pollution-is associated with vascular injury (VI). We used proteomics to systematically characterize the presently unclear molecular mechanism of VI and to identify new related targets or signaling pathways after exposure to CRA. Cell survival assays were used to assess DNA damage, whereas oxidative stress was determined using colorimetric assays and by quantitative fluorescence study; additionally, cyclooxygenase-2, mitogen-activated protein kinase pathways, Wnt3a, ß-catenin, phospho-ErbB2, and phospho-ErbB4 were assessed using ELISA. Proteins were quantitated via tandem mass tag-based liquid chromatography-mass spectrometry and bioinformatics analyses, and 34 differentially expressed proteins were confirmed using parallel reaction monitoring, which were defined as new indicators related to the mechanism underlying DNA damage; glutathione perturbation; mitogen-activated protein kinase; and the Wnt and ErbB signaling pathways in VI based on Gene Ontology, Kyoto Encyclopedia of Genes and Genomes, and protein-protein interaction network analyses. Parallel reaction monitoring confirmed significant (p < 0.05) upregulation (> 1.5-fold change) of 23 proteins and downregulation (< 0.667-fold change) of 11. The mechanisms of DNA interstrand crosslinks; glutathione perturbation; mitogen-activated protein kinase; cyclooxygenase-2; and the Wnt and ErbB signaling pathways may contribute to VI through their roles in DNA damage, oxidative stress, inflammation, vascular dysfunction, endothelial dysfunction, vascular remodeling, coagulation cascade, and the newly determined signaling pathways. Moreover, the Wnt and ErbB signaling pathways were identified as new disease pathways involved in VI. Taken together, the elucidated underlying mechanisms may help broaden existing understanding of the molecular mechanisms of VI induced by CRA.
RESUMEN
BACKGROUND: Previous studies have suggested that a low albumin-to-alkaline phosphatase ratio (AAPR) is associated with a lower survival rate in patients with various malignancies. However, the relationship between pretreatment AAPR and the prognosis of patients with gastric cancer (GC) remains unclear. AIM: To investigate the prognostic value of AAPR in distant metastatic GC. METHODS: A total of 191 patients with distant metastatic cancer from a single institute were enrolled in this study. Pretreatment clinical data, including serum albumin and alkaline phosphatase levels, were collected. A chi-square test or Fisher's exact test was applied to evaluate the correlations between AAPR and various clinical parameters in GC patients. The Kaplan-Meier method and Cox proportional hazards regression model were used to evaluate the prognostic efficacy of AAPR in metastatic GC patients. A two-sided P value lower than 0.05 was considered statistically significant. RESULTS: A receiver operating characteristic curve indicated that 0.48 was the optimal threshold value for AAPR. AAPR ≤ 0.48 was significantly associated with bone (P < 0.05) and liver metastasis (P < 0.05). Patients with high levels of AAPR had better survival in terms of overall survival (OS) and progression-free survival (PFS), regardless of the presence of liver/bone metastasis. Pretreatment AAPR was found to be a favorable predictor of OS and PFS based on a multivariate cox regression model. AAPR-M system, constructed based on AAPR and number of metastatic sites, showed superior predictive ability relative to the number of metastatic sites for predicting survival. CONCLUSION: Pretreatment AAPR may serve as an independent prognostic factor for predicting PFS and OS in patients with metastatic GC. Furthermore, AAPR may assist clinicians with individualizing treatment.
RESUMEN
BACKGROUND: Anti-N-methyl-D-aspartate receptor (NMDAR) encephalitis is the most frequent autoimmune paraneoplastic encephalitis, and is primarily associated with ovarian teratomas. Here, we report the first case of a patient diagnosed with chronic myelogenous leukemia (CML) during the recovery phase of anti-NMDAR encephalitis. CASE PRESENTATION: The patient was admitted with fever, headache, and seizures. Brain MRI revealed a cerebrospinal fluid (CSF)-containing arachnoid cyst in the left temporal lobe with no other abnormal signals. EEG showed diffuse background slowing in the delta-theta range. The patient tested positive for anti-NMDAR antibodies in both the serum and CSF. One year after the onset of encephalitis, the patient was referred to the Department of Hematology for extreme leukocytosis. Karyotype analysis showed the presence of Philadelphia chromosome t(9;22)(q34;q11). Quantitative reverse transcriptase PCR analysis further identified BCR/ABL1 fusion transcripts; thus, CML was diagnosed. CONCLUSIONS: To the best of our knowledge, this is the first case of anti-NMDAR encephalitis associated with CML. This report should alert clinicians to consider CML as a malignancy that is possibly associated with limbic encephalitis.
Asunto(s)
Encefalitis Antirreceptor N-Metil-D-Aspartato , Leucemia Mielógena Crónica BCR-ABL Positiva , Encefalitis Límbica , Encefalitis Antirreceptor N-Metil-D-Aspartato/complicaciones , Encefalitis Antirreceptor N-Metil-D-Aspartato/diagnóstico , Encefalitis , Enfermedad de Hashimoto , Humanos , Leucemia Mielógena Crónica BCR-ABL Positiva/complicaciones , Receptores de N-Metil-D-AspartatoRESUMEN
CCN5/WISP2 is a matricellular protein, the expression of which is under the regulation of Wnt signaling and IGF-1. Our initial characterization supports the notion that CCN5 might promote the proliferation and survival of pancreatic ß-cells and thus improve the metabolic profile of the animals. More recently, the roles of endogenous expression of CCN5 and its ectopic, transgenic overexpression on metabolic regulation have been revealed through two reports. Here, we attempt to compare the experimental findings from those studies, side-by-side, in order to further establish its roles in metabolic regulation. Prominent among the discoveries was that a systemic deficiency of CCN5 gene expression caused adipocyte hypertrophy, increased adipogenesis, and lipid accumulation, resulting in insulin resistance and glucose intolerance, which were further exacerbated upon high-fat diet feeding. On the other hand, the adipocyte-specific and systemic overexpression of CCN5 caused an increase in lean body mass, improved insulin sensitivity, hyperplasia of cardiomyocytes, and increased heart mass, but decreased fasting glucose levels. CCN5 is clearly a regulator of adipocyte proliferation and maturation, affecting lean/fat mass ratio and insulin sensitivity. Not all results from these models are consistent; moreover, several important aspects of CCN5 physiology are yet to be explored.
Asunto(s)
Proteínas CCN de Señalización Intercelular/genética , Proteínas CCN de Señalización Intercelular/metabolismo , Ratones Transgénicos/genética , Ratones Transgénicos/metabolismo , Animales , Expresión Génica/genética , Intolerancia a la Glucosa/genética , Intolerancia a la Glucosa/metabolismo , Humanos , Factor I del Crecimiento Similar a la Insulina/genética , Factor I del Crecimiento Similar a la Insulina/metabolismo , Miocitos Cardíacos/metabolismoRESUMEN
BACKGROUND: In this study, we investigated the in vitro and in vivo chondrogenic capacity of kartogenin (KGN)-enhanced bone marrow-derived mesenchymal stem cells (BMSCs) for cartilage regeneration. PURPOSE: To determine (1) whether functionalized nanographene oxide (NGO) can effectively deliver KGN into BMSCs and (2) whether KGN would enhance BMSCs during chondrogenesis in vitro and in vivo in an animal model. STUDY DESIGN: Controlled laboratory study. METHODS: Functionalized NGO with line chain amine-terminated polyethylene glycol (PEG) and branched polyethylenimine (BPEI) were used to synthesize biocompatible NGO-PEG-BPEI (PPG) and for loading hydrophobic KGN molecules noncovalently via π-π stacking and hydrophobic interactions (PPG-KGN). Then, PPG-KGN was used for the intracellular delivery of hydrophobic KGN by simple mixing and co-incubation with BMSCs to acquire KGN-enhanced BMSCs. The chondrogenic efficacy of KGN-enhanced BMSCs was evaluated in vitro. In vivo, osteoarthritis (OA) was induced by anterior cruciate ligament transection in rats. A total of 5 groups were established: normal (OA treated with nothing), phosphate-buffered saline (PBS; intra-articular injection of PBS), PPG-KGN (intra-articular injection of PPG-KGN), BMSCs (intra-articular injection of BMSCs), and BMSCs + PPG-KGN (intra-articular injection of PPG-KGN-preconditioned BMSCs). At 6 and 9 weeks after the surgical induction of OA, the rats received intra-articular injections of PPG-KGN, BMSCs, or KGN-enhanced BMSCs. At 14 weeks after the surgical induction of OA, radiographic and behavioral evaluations as well as histological analysis of the knee joints were performed. RESULTS: The in vitro study showed that PPG could be rapidly uptaken in the first 4 hours after incubation, reaching saturation at 12 hours and accumulating in the lysosome and cytoplasm of BMSCs. Thus, PPG-KGN could enhance the efficiency of the intracellular delivery of KGN, which showed a remarkably high chondrogenic differentiation capacity of BMSCs. When applied to an OA model of cartilage injuries in rats, PPG-KGN-preconditioned BMSCs contributed to protection from joint space narrowing, pathological mineralization, OA development, and OA-induced pain, as well as improved tissue regeneration, as evidenced by radiographic, weightbearing, and histological findings. CONCLUSION: Our results demonstrate that KGN-enhanced BMSCs showed markedly improved capacities for chondrogenesis and articular cartilage repair. We believe that this work demonstrates that a multifunctional nanoparticle-based drug delivery system could be beneficial for stem cell therapy. Our results present an opportunity to reverse the symptoms and pathophysiology of OA. CLINICAL RELEVANCE: The intracellular delivery of KGN to produce BMSCs with enhanced chondrogenic potential may offer a new approach for the treatment of OA.
Asunto(s)
Cartílago Articular , Células Madre Mesenquimatosas , Osteoartritis de la Rodilla , Anilidas , Animales , Médula Ósea , Condrogénesis , Inyecciones Intraarticulares , Osteoartritis de la Rodilla/tratamiento farmacológico , Ácidos Ftálicos , RatasRESUMEN
Persistent acinar to ductal metaplasia (ADM) is a recently recognized precursor of pancreatic ductal adenocarcinoma (PDAC). Here we show that the ADM area of human pancreas tissue adjacent to PDAC expresses significantly higher levels of regenerating protein 3A (REG3A). Exogenous REG3A and its mouse homolog REG3B induce ADM in the 3D culture of primary human and murine acinar cells, respectively. Both Reg3b transgenic mice and REG3B-treated mice with caerulein-induced pancreatitis develop and sustain ADM. Two out of five Reg3b transgenic mice with caerulein-induced pancreatitis show progression from ADM to pancreatic intraepithelial neoplasia (PanIN). Both in vitro and in vivo ADM models demonstrate activation of the RAS-RAF-MEK-ERK signaling pathway. Exostosin-like glycosyltransferase 3 (EXTL3) functions as the receptor for REG3B and mediates the activation of downstream signaling proteins. Our data indicates that REG3A/REG3B promotes persistent ADM through binding to EXTL3 and activating the RAS-RAF-MEK-ERK signaling pathway. Targeting REG3A/REG3B, its receptor EXTL3, or other downstream molecules could interrupt the ADM process and prevent early PDAC carcinogenesis.
Asunto(s)
Carcinoma Ductal Pancreático/metabolismo , N-Acetilglucosaminiltransferasas/metabolismo , Neoplasias Pancreáticas/metabolismo , Proteínas Asociadas a Pancreatitis/metabolismo , Animales , Carcinoma Ductal Pancreático/patología , Línea Celular Tumoral , Humanos , Sistema de Señalización de MAP Quinasas , Masculino , Metaplasia/metabolismo , Metaplasia/patología , Ratones Endogámicos C57BL , N-Acetilglucosaminiltransferasas/análisis , Conductos Pancreáticos/metabolismo , Conductos Pancreáticos/patología , Neoplasias Pancreáticas/patología , Proteínas Asociadas a Pancreatitis/análisis , Transducción de Señal , Células Tumorales Cultivadas , Quinasas raf/metabolismo , Proteínas ras/metabolismo , Neoplasias PancreáticasRESUMEN
BACKGROUND: Osteosarcoma (OS) is the most common primary malignant bone tumor occurring in children and young adults. Drug-resistant osteosarcoma often results in chemotherapy failure. Therefore, new treatments aimed at novel therapeutic targets are urgently needed for the treatment of drug-resistant osteosarcoma. Mitochondria-targeted phototherapy, i.e., synergistic photodynamic/photothermal therapy, has emerged as a highly promising strategy for treating drug-resistant tumors. This study proposed a new nano-drug delivery system based on near-infrared imaging and multifunctional graphene, which can target mitochondria and show synergistic phototherapy, with preferential accumulation in tumors. METHODS AND RESULTS: Based on our previous study, (4-carboxybutyl) triphenyl phosphonium bromide (TPP), a mitochondria-targeting ligand, was conjugated to indocyanine green (ICG)-loaded, polyethylenimine-modified PEGylated nanographene oxide sheets (TPP-PPG@ICG) to promote mitochondrial accumulation after cellular internalization. Thereafter, exposure to a single dose of near-infrared irradiation enabled synergistic photodynamic and photothermal therapy, which simultaneously inhibited adenosine triphosphate synthesis and mitochondrial function. Induction of intrinsic apoptosis assisted in surmounting drug resistance and caused tumor cell death. After fluorescence imaging-guided synergistic phototherapy, the mitochondria-targeting, multifunctional graphene-based, drug-delivery system showed highly selective anticancer efficiency in vitro and in vivo, resulting in marked inhibition of tumor progression without noticeable toxicity in mice bearing doxorubicin-resistant MG63 tumor cells. CONCLUSION: The mitochondria-targeting TPP-PPG@ICG nanocomposite constitutes a new class of nanomedicine for fluorescence imaging-guided synergistic phototherapy and shows promise for treating drug-resistant osteosarcoma.
Asunto(s)
Neoplasias Óseas/tratamiento farmacológico , Grafito/farmacología , Mitocondrias/efectos de los fármacos , Nanocompuestos/química , Imagen Óptica/métodos , Osteosarcoma/tratamiento farmacológico , Fototerapia/métodos , Animales , Apoptosis/efectos de los fármacos , Apoptosis/efectos de la radiación , Neoplasias Óseas/diagnóstico por imagen , Neoplasias Óseas/radioterapia , Línea Celular Tumoral , Doxorrubicina , Sistemas de Liberación de Medicamentos , Resistencia a Antineoplásicos , Fluorescencia , Humanos , Hipertermia Inducida , Verde de Indocianina , Terapia por Láser , Masculino , Ratones , Ratones Desnudos , Nanopartículas/uso terapéutico , Osteosarcoma/diagnóstico por imagen , Osteosarcoma/radioterapia , Óxidos , Oxígeno , Fotoquimioterapia/métodos , Polietileneimina , Ensayos Antitumor por Modelo de XenoinjertoRESUMEN
PURPOSE/AIM: Lymphomatosis cerebri (LC) and cauda equina lymphoma are both rare forms of primary central nervous system lymphoma (PCNSL). LC is characterized by diffuse bilateral non-enhancing (or partially enhancing) inltrative lesions without mass effect, which can be easily confused with other forms of leukoencephalopathy and, thus, lead to delays in diagnosis. CASE REPORT: For the first time, a case of LC concomitant with cauda equina involvement confirmed by brain stereotactic biopsy is presented. CONCLUSIONS: This case highlights the necessity of using a multimodal strategy in diagnosing PCNSL, including multimodal magnetic resonance, cerebral spinal fluid cytology, flow cytometry and fluorodeoxyglucose positron emission tomography/computed tomography.
Asunto(s)
Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/patología , Linfoma/diagnóstico , Linfoma/patología , Neoplasias del Sistema Nervioso Periférico/diagnóstico , Neoplasias del Sistema Nervioso Periférico/patología , Biopsia , Neoplasias Encefálicas/complicaciones , Femenino , Humanos , Linfoma/complicaciones , Persona de Mediana Edad , Neoplasias del Sistema Nervioso Periférico/complicacionesRESUMEN
BACKGROUND: Obesity occurs when the body's energy intake is constantly greater than its energy consumption and the pharmacological enhancing the activity of brown adipose tissue (BAT) and (or) browning of white adipose tissue (WAT) has been considered promising strategies to treat obesity. METHODS: In this study, we took a multi-pronged approach to screen UCP1 activators, including in silico predictions, in vitro assays, as well as in vivo experiments. RESULTS: Base on Connectivity MAP (CMAP) screening, we obtained multiple drugs that possess a remarkably correlating gene expression pattern to that of enhancing activity in BAT and (or) sWAT signature. Particularly, we focused on a previously unreported drug-indirubin, a compound obtained from the Indigo plant, which is now mainly used for the treatment of chronic myelogenous leukemia (CML). In the current study, our results shown that indirubin could enhance the BAT activity, as evidenced by up-regulated Ucp1 expression and enhanced mitochondrial respiratory function in vitro cellular model. Furthermore, indirubin treatment restrained high-fat diet (HFD)-induced body weight gain, improved glucose homeostasis and ameliorated hepatic steatosis which were associated with the increase of energy expenditure in the mice model. Moreover, we revealed that indirubin treatment increased BAT activity by promoting thermogenesis and mitochondrial biogenesis in BAT and induced browning of subcutaneous inguinal white adipose tissue (sWAT) of mice under HFD. Besides, our results indicated that indirubin induced UCP1 expression in brown adipocytes, at least in part, via activation of PKA and p38MAPK signaling pathways. CONCLUSIONS: Our results clearly show that as an effective BAT (as well as beige cells) activator, indirubin may have a protective effect on the prevention and treatment of obesity and its complications.
RESUMEN
In the past 15 years, gut microbiota emerged as a crucial player in health and disease. Enormous progress was made in the analysis of its composition, even in the discovery of novel species. It is time to go beyond mere microbiota-disease associations and, instead, provide more causal analyses. A key mechanism of metabolic regulation by the gut microbiota is through the production of short-chain fatty acids (SCFAs). Acting as supplemental nutrients and specific ligands of two G-protein-coupled receptors (GPCRs), they target the intestines, brain, liver, and adipose tissue, and they regulate appetite, energy expenditure, adiposity, and glucose production. With accumulating but sometimes conflicting research results, key questions emerged. Do SCFAs regulate pancreatic islets directly? What is the effect of ß-cell-specific receptor deletions? What are the mechanisms used by SCFAs to regulate ß-cell proliferation, survival, and secretion? The receptors FFA2/3 are normally expressed on pancreatic ß-cells. Deficiency in FFA2 may have caused glucose intolerance and ß-cell deficiency in mice. However, this was contrasted by a double-receptor knockout. Even more controversial are the effects of SCFAs on insulin secretion; there might be no direct effect at all. Unable to draw clear conclusions, this review reveals some of the recent controversies.
Asunto(s)
Ácidos Grasos Volátiles/farmacología , Microbioma Gastrointestinal , Secreción de Insulina/efectos de los fármacos , Células Secretoras de Insulina/efectos de los fármacos , Animales , HumanosRESUMEN
Betatrophin [also known as lipasin, angiopoietinlike 8 (ANGPTL8), refeeding induced in fat and liver (RIFL), or hepatocellular carcinomaassociated gene TD26], a 22kDa protein in the angiopoietinlike family, is a liverderived hormone that promotes pancreatic ßcell proliferation and lipid metabolism. The aim of the present study was to investigate the effect of recombinant betatrophin on ßcell regeneration in a neonatal streptozotocin (STZ)induced diabetic rat model. Onedayold Wistar rats were injected with STZ (100 mg/kg), followed by intraperitoneal administration of betatrophin to the STZinjected rats for 6 days. Plasma glucose and body weight were monitored. On days 4 and 7, expression levels of pancreatic duodenal homeobox gene1 (PDX1), the Bax/Bcell lymphoma2 (Bcl2) ratio and plasma insulin were assessed, and the ßcell proliferation rate was determined. Pancreatic islet area and number were determined at 10 weeks. It was found that betatrophin treatment alleviated STZinduced hyperglycemia, elevated pancreatic expression levels of Bcl2, PDX1, plasma insulin levels and the ßcell proliferation rate on days 4 and 7. Longterm betatrophin treatment improved glucose tolerance, associated with improved plasma insulin levels and ßcell mass. These results suggest that early administration of betatrophin promotes ßcell proliferation in STZinduced diabetic neonates and prevents the development of diabetes in adults.
Asunto(s)
Proteínas Similares a la Angiopoyetina/farmacología , Diabetes Mellitus Experimental , Hiperglucemia , Células Secretoras de Insulina , Proteína 8 Similar a la Angiopoyetina , Animales , Animales Recién Nacidos , Proliferación Celular/efectos de los fármacos , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patología , Diabetes Mellitus Experimental/prevención & control , Proteínas de Homeodominio/biosíntesis , Hiperglucemia/inducido químicamente , Hiperglucemia/tratamiento farmacológico , Hiperglucemia/metabolismo , Hiperglucemia/patología , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/patología , Proteínas Proto-Oncogénicas c-bcl-2/biosíntesis , Ratas , Ratas Wistar , Proteínas Recombinantes/farmacología , Transactivadores/biosíntesisRESUMEN
The type III secretion system (T3SS) in many Gram-negative bacterial pathogens is regarded as the most critical virulence determinant and an attractive target for novel anti-virulence drugs. In this study, we constructed a T3SS secretion reporter containing the ß-lactamase gene fused with a signal peptide sequence of the T3SS effector gene, and established a high-throughput screening system for T3SS inhibitors in the plant pathogenic bacterium Acidovorax citrulli. From a library of 12,000 chemical compounds, we identified a series of benzyloxy carbonimidoyl dicyanide (BCD) derivatives that effectively blocked T3SS-dependent ß-lactamase secretion. Substitution of halogens or nitro groups at the para-position on the benzene ring contributed to an increased inhibitory activity. One representative compound, BCD03 (3,4-dichloro-benzyloxy carbonimidoyl dicyanide), dramatically reduced pathogenicity of A. citrulli on melon seedlings, and attenuated hypersensitive responses in the non-host Nicotiana tabacum caused by pathogenic bacteria A. citrulli, Xanthomonas oryzae pv. oryzae and Pseudomonas syringae pv. tomato at sub-MIC concentrations. Western blotting assay further confirmed that BCD03 inhibited effector secretion from the above bacteria via T3SS in the liquid medium. Taken together, our data suggest that BCD derivatives act as novel inhibitors of T3SS in multiple plant bacterial pathogens.
RESUMEN
We formulate and study a mathematical model for the propagation of hantavirus infection in the mouse population. This model includes seasonality, incubation period, direct transmission (con-tacts between individuals) and indirect transmission (through the environment). For the time-periodic model, the basic reproduction number R0 is defined as the spectral radius of the next generation oper-ator. Then, we show the virus is uniformly persistent when R0 > 1 while tends to die out if R0 < 1. When there is no seasonality, that is, all coefficients are constants, we obtain the explicit expression for the basic reproduction number R0, such that if R0 < 1, then the virus-free equilibrium is glob-ally asymptotically stable, but if R0 > 1, the endemic equilibrium is globally attractive. Numerical simulations indicate that prolonging the incubation period may be helpful in the virus control. Some sensitivity analysis of R0 is performed.