Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 475
Filtrar
1.
Sci Total Environ ; 948: 174389, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38960170

RESUMEN

Climate change leads to more frequent and intense heavy rainfall events, posing significant challenges for urban stormwater management, particularly in rapidly urbanizing cities of developing countries with constrained infrastructure. However, the quantitative assessment of urban stormwater, encompassing both its volume and quality, in these regions is impeded due to the scarcity of observational data and resulting limited understanding of drainage system dynamics. This study aims to elucidate the present and projected states of urban flooding, with a specific emphasis on fecal and organic contamination caused by combined sewer overflow (CSO). Leveraging a hydrological model incorporating physical and biochemical processes validated against invaluable observational data, we undertake simulations to estimate discharge, flood volume, and concentrations of suspended solids (SS), Escherichia coli (E. coli), and chemical oxygen demand (COD) within the drainage channel network of Phnom Penh City, Cambodia. Alterations in flood volumes, and pollutant concentrations and loads in overflow under two representative concentration pathways (RCPs 4.5 and 8.5) for extreme rainfall events are projected. Furthermore, we employ a multi-criteria decision analysis (MCDA) framework to evaluate flood risk, incorporating diverse indicators encompassing physical, social, and ecological dimensions. Our results demonstrate the exacerbating effects of climate change on flood volumes, expansion of flooded areas, prolonged durations of inundation, elevated vulnerability index, and heightened susceptibility to pollutant contamination under both scenarios, underscoring increased risks of flooding and fecal contamination. Spatial analysis identifies specific zones exhibiting heightened vulnerability to flooding and climate change, suggesting priority zones for investment in flood mitigation measures. These findings provide crucial insights for urban planning and stormwater management in regions with limited drainage infrastructure, offering essential guidance for decision-making in locales facing similar challenges.

2.
Front Plant Sci ; 15: 1430204, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38984161

RESUMEN

Volatile compounds are important determinants affecting fruit flavor. Previous study has identified a bud mutant of 'Ehime 38' (Citrus reticulata) with different volatile profile. However, the volatile changes between WT and MT during fruit development and underlying mechanism remain elusive. In this study, a total of 35 volatile compounds were identified in the pulps of WT and MT at five developmental stages. Both varieties accumulated similar and the highest levels of volatiles at stage S1, and showed a downward trend as the fruit develops. However, the total volatile contents in the pulps of MT were 1.4-2.5 folds higher than those in WT at stages S2-S5, which was mainly due to the increase in the content of d-limonene. Transcriptomic and RT-qPCR analysis revealed that most genes in MEP pathway were positively correlated with the volatile contents, of which DXS1 might mainly contribute to the elevated volatiles accumulation in MT by increasing the flux into the MEP pathway. Moreover, temporal expression analysis indicated that these MEP pathway genes functioned at different developmental stages. This study provided comprehensive volatile metabolomics and transcriptomics characterizations of a citrus mutant during fruit development, which is valuable for fruit flavor improvement in citrus.

3.
Polymers (Basel) ; 16(12)2024 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-38931982

RESUMEN

Recycling flexible polyurethane foam (F-PUF) scraps is difficult due to the material's high cross-linking structure. In this work, a wedge-block-reinforced extruder with a considerable enhanced shear extrusion and stretching area between the rotating screw and the stationary wedge blocks was utilized to recycle F-PUF scraps into powder containing surface-active hydroxyl groups. The powder was then utilized for the quantitative replacement of polyol in the foaming process. Characterizations showed that the continuous shear extrusion and stretching during the extrusion process reduced the volume mean diameter (VMD) of the F-PUF powder obtained by extruding it three times at room temperature to reach 54 µm. The -OH number (OHN) of the powder prepared by extruding it three times reached 19.51 mgKOH/g due to the mechanochemical effect of the powdering method. The F-PUF containing recycled powder used to quantitively replace 10 wt.% polyol was similar in microstructure and chemical structure to the original F-PUF, with a compression set of 2%, indentation load deflection of 21.3 lbf, resilience of 43.4%, air permeability of 815.7 L/m2·s, tensile strength of 73.0 Kpa, and tear strength of 2.3 N/cm, indicating that the recycling method has potential for industrial applications.

4.
Biochem Pharmacol ; 226: 116389, 2024 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-38914318

RESUMEN

Intervertebral disc degeneration (IVDD) is a common degenerative disease which is closely related to low back pain (LBP) and brings huge economic and social burdens. In this study, we explored the therapeutic effects of Homoplantaginin (Hom) for IVDD due to its convincing anti-inflammatory and antioxidant functions. TNF-α was used to simulate the inflammatory environment for nucleus pulposus (NP) cells in vitro. We verified that Hom could alleviate the TNF-α-induced inflammation and disturbance of ECM homeostasis through blocking the NF-κB/MAPK signaling pathways. Subsequently, we screened the binding targets of Hom and confirmed that Hom could directly bind to TAK1 and inhibit its phosphorylation to down-regulate the inflammation-related pathways. The therapeutic effects of Hom on IVDD were further validated through a needle puncture rat model in vivo. Overall, Hom was a promising small molecule for IVDD early intervention, possessing huge clinical translational value.

5.
J Agric Food Chem ; 72(26): 14922-14940, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38885638

RESUMEN

As a key component of cell-cultured fish, fish skin gelatin (FSG)-based cell scaffold provides support structures for cell growth, proliferation, and differentiation. However, there are potential allergenicity risks contained in FSG-based scaffolds. In this study, 3D edible scaffolds were prepared by phase separation method and showed a contact angle of less than 90°, which indicated that the scaffolds were favorable for cell adhesion. Besides, the swelling ratio was greater than 200%, implying a great potential to support cell growth. The sequence homology analysis indicated that FSG was prone to cross-reaction with collagen analogues. Additionally, a food allergic model was constructed and represented that mice gavaged with cod FSG exhibited higher levels of specific antibodies, mast cell degranulation, vascular permeability, and intestinal barrier impairment than those gavaged with pangasius and tilapias FSG. Its higher allergenicity might be attributed to a higher number of digestion-resistant linear epitopes. Moreover, the higher hydrolysis degree linked to the exposure of linear epitopes to promote the combination with IgE, which was also responsible for maintaining the higher allergenicity of cod FSG. This study clarifies allergenic risks in cell-cultured fish and further study will focus on the allergenicity reduction of FSG-based cell scaffolds.


Asunto(s)
Alérgenos , Digestión , Epítopos , Proteínas de Peces , Hipersensibilidad a los Alimentos , Gelatina , Piel , Andamios del Tejido , Animales , Gelatina/química , Gelatina/inmunología , Epítopos/inmunología , Epítopos/química , Ratones , Hipersensibilidad a los Alimentos/inmunología , Alérgenos/inmunología , Alérgenos/química , Andamios del Tejido/química , Piel/inmunología , Proteínas de Peces/inmunología , Proteínas de Peces/química , Humanos , Inmunoglobulina E/inmunología , Peces/inmunología , Ratones Endogámicos BALB C , Mastocitos/inmunología , Carne/análisis , Gadiformes/inmunología , Carne in Vitro
6.
Sensors (Basel) ; 24(12)2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38931766

RESUMEN

Currently, complex scene classification strategies are limited to high-definition image scene sets, and low-quality scene sets are overlooked. Although a few studies have focused on artificially noisy images or specific image sets, none have involved actual low-resolution scene images. Therefore, designing classification models around practicality is of paramount importance. To solve the above problems, this paper proposes a two-stage classification optimization algorithm model based on MPSO, thus achieving high-precision classification of low-quality scene images. Firstly, to verify the rationality of the proposed model, three groups of internationally recognized scene datasets were used to conduct comparative experiments with the proposed model and 21 existing methods. It was found that the proposed model performs better, especially in the 15-scene dataset, with 1.54% higher accuracy than the best existing method ResNet-ELM. Secondly, to prove the necessity of the pre-reconstruction stage of the proposed model, the same classification architecture was used to conduct comparative experiments between the proposed reconstruction method and six existing preprocessing methods on the seven self-built low-quality news scene frames. The results show that the proposed model has a higher improvement rate for outdoor scenes. Finally, to test the application potential of the proposed model in outdoor environments, an adaptive test experiment was conducted on the two self-built scene sets affected by lighting and weather. The results indicate that the proposed model is suitable for weather-affected scene classification, with an average accuracy improvement of 1.42%.

7.
J Orthop Translat ; 46: 116-128, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38867741

RESUMEN

Objectives: SPARCL1 is a matricellular protein that mediates the cell-matrix interactions and participates in physiological processes such as cell adhesion, differentiation and proliferation. However, its role in chondrocyte and osteoarthritis (OA) progression has not been fully characterized. We aimed to evaluate the effects of SPARCL1 on OA through in vitro and in vivo experiments. Methods: Expression of SPARCL1 was examined in 55 paired human OA samples. Effects of Sparcl1 on chondrocytes were identified in vitro. Intra-articular injection was performed in an anterior cruciate ligament transection (ACLT) mouse model. Alterations of SPARCL1-mediated signaling pathway were identified by RNA-seq analysis. qPCR and western-blot were used to demonstrate the potential signaling pathway. Results: SPARCL1 expression in the OA cartilage was increased compared with undamaged cartilage. Recombinant Sparcl1 protein induced extracellular matrix degradation in chondrocytes. Furthermore, intra-articular injection of recombinant Sparcl1 protein in ACLT mice could promote OA pathogenesis. Mechanistically, Sparcl1 activated TNF/NF-κB pathway and consequently led to increased transcription of inflammatory factors and catabolism genes of cartilage, which could be reversed by NF-κB inhibitor BAY 11-7082. Conclusion: SPARCL1 could promote extracellular matrix degradation and inflammatory response to accelerate OA progression via TNF/NF-κB pathway. The translational potential of this article: The current research could help to gain further insights into the underlying molecular mechanism in OA development, and provides a biological rationale for the use of SPARCL1 as a potential therapeutic target of OA.

8.
Biomed Mater ; 19(4)2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38772387

RESUMEN

Single-cell analysis is an effective method for conducting comprehensive heterogeneity studies ranging from cell phenotype to gene expression. The ability to arrange different cells in a predetermined pattern at single-cell resolution has a wide range of applications in cell-based analysis and plays an important role in facilitating interdisciplinary research by researchers in various fields. Most existing microfluidic microwell chips is a simple and straightforward method, which typically use small-sized microwells to accommodate single cells. However, this method imposes certain limitations on cells of various sizes, and the single-cell capture efficiency is relatively low without the assistance of external forces. Moreover, the microwells limit the spatiotemporal resolution of reagent replacement, as well as cell-to-cell communication. In this study, we propose a new strategy to prepare a single-cell array on a planar microchannel based on microfluidic flip microwells chip platform with large apertures (50 µm), shallow channels (50 µm), and deep microwells (50 µm). The combination of three configuration characteristics contributes to multi-cell trapping and a single-cell array within microwells, while the subsequent chip flipping accomplishes the transfer of the single-cell array to the opposite planar microchannel for cells adherence and growth. Further assisted by protein coating of bovine serum albumin and fibronectin on different layers, the single-cell capture efficiency in microwells is achieved at 92.1% ± 1%, while ultimately 85% ± 3.4% on planar microchannel. To verify the microfluidic flip microwells chip platform, the real-time and heterogeneous study of calcium release and apoptosis behaviours of single cells is carried out. To our knowledge, this is the first time that high-efficiency single-cell acquisition has been accomplished using a circular-well chip design that combines shallow channel, large aperture and deep microwell together. The chip is effective in avoiding the shearing force of high flow rates on cells, and the large apertures better allows cells to sedimentation. Therefore, this strategy owns the advantages of easy preparation and user-friendliness, which is especially valuable for researchers from different fields.


Asunto(s)
Microfluídica , Análisis de la Célula Individual , Análisis de la Célula Individual/métodos , Humanos , Microfluídica/métodos , Adhesión Celular , Animales , Diseño de Equipo , Técnicas Analíticas Microfluídicas/instrumentación , Dispositivos Laboratorio en un Chip , Fibronectinas/química , Fibronectinas/metabolismo , Calcio/metabolismo , Calcio/química , Albúmina Sérica Bovina/química , Comunicación Celular
9.
J Hazard Mater ; 472: 134556, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38735187

RESUMEN

BACKGROUND: Although evidence on the association between per- and polyfluoroalkyl substances (PFASs) and human health outcomes has grown exponentially, specific health outcomes and their potential associations with PFASs have not been conclusively evaluated. METHODS: We conducted a comprehensive search through the databases of PubMed, Embase, and Web of Science from inception to February 29, 2024, to identify systematic reviews with meta-analyses of observational studies examining the associations between the PFASs and multiple health outcomes. The quality of included studies was evaluated using the A Measurement Tool to Assess Systematic Reviews (AMSTAR) tool, and credibility of evidence was assessed using the Grading of Recommendations, Assessment, Development, and Evaluations (GRADE) criteria. The protocol of this umbrella review (UR) had been registered in PROSPERO (CRD 42023480817). RESULTS: The UR identified 157 meta-analyses from 29 articles. Using the AMSTAR measurement tool, all articles were categorized as of moderate-to-high quality. Based on the GRADE assessment, significant associations between specific types of PFASs and low birth weight, tetanus vaccine response, and triglyceride levels showed high certainty of evidence. Moreover, moderate certainty of evidence with statistical significance was observed between PFASs and health outcomes including lower BMI z-score in infancy, poor sperm progressive motility, and decreased risk of preterm birth as well as preeclampsia. Fifty-two (33%) associations (e.g., PFASs and gestational hypertension, cardiovascular disease, etc) presented low certainty evidence. Additionally, eighty-five (55%) associations (e.g., PFASs with infertility, lipid metabolism, etc) presented very low certainty evidence. CONCLUSION: High certainty of evidence supported that certain PFASs were associated with the incidence of low birth weight, low efficiency of the tetanus vaccine, and low triglyceride levels.


Asunto(s)
Fluorocarburos , Revisiones Sistemáticas como Asunto , Humanos , Embarazo , Estudios Observacionales como Asunto , Metaanálisis como Asunto , Recién Nacido de Bajo Peso , Femenino , Contaminantes Ambientales , Toxoide Tetánico , Triglicéridos/sangre
10.
Bioorg Chem ; 148: 107482, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38795582

RESUMEN

Toad venom, a traditional Chinese medicine, exhibits remarkable medicinal properties of significant therapeutic value. The peptides present within toad venom possess a wide range of biological functions, yet the neuropeptide B (NPB) and it modification requires further exploration to comprehensively understand its mechanisms of action and potential applications. In this study, a fusion peptide, ANTP-BgNPB, was designed to possess better analgesic properties through the transdermal modification of BgNPB. After optimizing the conditions, the expression of ANTP-BgNPB was successfully induced. The molecular dynamics simulations suggested that the modified protein exhibited improved stability and receptor binding affinity compared to its unmodified form. The analysis of the active site of ANTP-BgNPB and the verification of mutants revealed that GLN3, SER38, and ARG42 were crucial for the protein's recognition and binding with G protein-coupled receptor 7 (GPR7). Moreover, experiments conducted on mice using the hot plate and acetic acid twist body models demonstrated that ANTP-BgNPB was effective in transdermal analgesia. These findings represent significant progress in the development of transdermal delivery medications and could have a significant impact on pain management.


Asunto(s)
Analgésicos , Diseño de Fármacos , Animales , Analgésicos/química , Analgésicos/farmacología , Ratones , Péptidos/química , Péptidos/farmacología , Administración Cutánea , Masculino , Relación Estructura-Actividad , Simulación de Dinámica Molecular , Estructura Molecular , Relación Dosis-Respuesta a Droga , Dolor/tratamiento farmacológico , Humanos
11.
Phytomedicine ; 129: 155703, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38723527

RESUMEN

BACKGROUND: Non-alcoholic steatohepatitis (NASH), the inflammatory subtype in the progression of non-alcoholic fatty liver disease, is becoming a serious burden threatening human health, but no approved medication is available to date. Mononoside is a natural active substance derived from Cornus officinalis and has been confirmed to have great potential in regulating lipid metabolism in our previous studies. However, its effect and mechanism to inhibit the progression of NASH remains unclear. PURPOSE: Our work aimed to explore the action of mononoside in delaying the progression of NASH and its regulatory mechanisms from the perspective of regulating lipophagy. METHODS AND RESULTS: Male C57BL/6 mice were fed with a high-fat and high-fructose diet for 16 weeks to establish a NASH mouse model. After 8 weeks of high-fat and high-fructose feeding, these mice were administrated with different doses of morroniside. H&E staining, ORO staining, Masson staining, RNA-seq, immunoblotting, and immunofluorescence were performed to determine the effects and molecular mechanisms of morroniside in delaying the progression of NASH. In this study, we found that morroniside is effective in attenuating hepatic lipid metabolism disorders and inflammatory response activation, thereby limiting the progression from simple fatty liver to NASH in high-fat and high-fructose diet-fed mice. Mechanistically, we identified AMPK signaling as the key molecular pathway for the positive efficacy of morroniside by transcriptome sequencing. Our results revealed that morroniside maintained hepatic lipid metabolism homeostasis and inhibited NLRP3 inflammasome activation by promoting AMPKα phosphorylation-mediated lipophagy and fatty acid oxidation. Consistent results were observed in palmitic acid-treated cell models. Of particular note, silencing AMPKα both in vivo and in vitro reversed morroniside-induced lipophagy flux enhancement and NLRP3 inflammasome inhibition, emphasizing the critical role of AMPKα activation in the effect of morroniside in inhibiting NASH progression. CONCLUSION: In summary, the present study provides strong evidence for the first time that morroniside inhibits NASH progression by promoting AMPK-dependent lipophagy and inhibiting NLRP3 inflammasome activation, suggesting that morroniside is expected to be a potential molecular entity for the development of therapeutic drugs for NASH.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Dieta Alta en Grasa , Metabolismo de los Lípidos , Enfermedad del Hígado Graso no Alcohólico , Animales , Humanos , Masculino , Ratones , Proteínas Quinasas Activadas por AMP/metabolismo , Cornus/química , Dieta Alta en Grasa/efectos adversos , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Fructosa , Glicósidos/farmacología , Inflamasomas/metabolismo , Inflamasomas/efectos de los fármacos , Metabolismo de los Lípidos/efectos de los fármacos , Hígado/efectos de los fármacos , Ratones Endogámicos C57BL , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico
12.
J Agric Food Chem ; 72(22): 12775-12787, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38776285

RESUMEN

Excessive intake of fat and fructose in Western diets has been confirmed to induce renal lipotoxicity, thereby driving the progression of chronic kidney disease (CKD). This study was conducted to evaluate the efficacy of magnoflorine in a CKD mouse model subjected to high-fat and high-fructose diets. Our results demonstrated that magnoflorine treatment ameliorated abnormal renal function indices (serum creatinine, urea nitrogen, uric acid, and urine protein) in high-fat- and high-fructose-fed mice. Histologically, renal tubular cell steatosis, lipid deposition, tubular dilatation, and glomerular fibrosis were significantly reduced by the magnoflorine treatment in these mice. Mechanistically, magnoflorine promotes Parkin/PINK1-mediated mitophagy, thereby inhibiting NLRP3/Caspase-1-mediated pyroptosis. Consistent findings were observed in the palmitic acid-incubated HK-2 cell model. Notably, both silencing of Parkin and the use of a mitophagy inhibitor reversed the inhibitory effect of magnoflorine on NLRP3 inflammasome activation in vitro. Therefore, the present study provides compelling evidence that magnoflorine improves renal injury in high-fat- and high-fructose-fed mice by promoting Parkin/PINK1-dependent mitophagy to inhibit NLRP3 inflammasome activation and pyroptosis. Our findings suggest that dietary supplementation with magnoflorine and magnoflorine-rich foods (such as magnolia) might be an effective strategy for the prevention of CKD.


Asunto(s)
Dieta Alta en Grasa , Fructosa , Mitofagia , Piroptosis , Insuficiencia Renal Crónica , Animales , Humanos , Masculino , Ratones , Aporfinas/farmacología , Caspasa 1/metabolismo , Caspasa 1/genética , Dieta Alta en Grasa/efectos adversos , Fructosa/efectos adversos , Inflamasomas/metabolismo , Ratones Endogámicos C57BL , Mitofagia/efectos de los fármacos , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Proteínas Quinasas/metabolismo , Proteínas Quinasas/genética , Piroptosis/efectos de los fármacos , Insuficiencia Renal Crónica/metabolismo , Insuficiencia Renal Crónica/tratamiento farmacológico , Insuficiencia Renal Crónica/prevención & control , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/genética
13.
Curr Drug Metab ; 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38797896

RESUMEN

BACKGROUND: Cytochrome P450 (CYP) 46A1, also known as cholesterol 24S-hydroxylase, is essential for maintaining the homeostasis of cholesterol in the brain and serves as a therapeutic target of neurodegenerative disorders and excitatory neurotoxicity. N-methyl-d-aspartate receptor (NMDAR) is a prototypical receptor for the excitatory neurotransmitter glutamate and can be specifically regulated by 24S-hydroxycholesterol (24S-HC). Glycyrrhiza is one of the most widely used herbs with broad clinical applications. It has several pharmacological activities, such as clearing heat and detoxifying, moistening the lung and relieving cough, analgesic, neuroprotective outcomes, and regulating a variety of drug activities. Glycyrrhiza is a commonly used herb for the treatment of epileptic encephalopathy. However, whether glycyrrhiza can interfere with the activity of CYP46A1 remains unknown. OBJECTIVE: This study aimed to investigate the regulating effects of glycyrrhiza polysaccharides (GP) on CYP46A1-mediated cholesterol conversion, as well as in the modulation of related proteins. MATERIALS AND METHODS: The effects of glycyrrhiza polysaccharide (GP) on the activity of CYP46A1 were investigated in vivo and in vitro. Moreover, the potential regulatory effects of GP on the expressions of CYP46A1, HMG-CoA reductase (HMGCR), and NMDAR were also detected. RESULTS: The in vitro results demonstrated that glycyrrhiza polysaccharide (GP), as the main water-soluble active component of glycyrrhiza, remarkably inhibited the activity of CYP46A1 in a non-competitive mode with a Ki value of 0.7003 mg/ml. Furthermore, the in vivo experiments verified that GP markedly decreased the contents of 24S-HC in rat plasma and brain tissues as compared to the control. More importantly, the protein expressions of CYP46A1, GluN2A, GluN2B, and HMG-CoA reductase (HMGCR) in rat brains were all downregulated, whereas the mRNA expressions of CYP46A1 and HMGCR were not significantly changed after treatment with GP. CONCLUSION: GP exhibits a significant inhibitory effect on CYP46A1 activity in vitro and in vivo, and the protein expressions of CYP46A1, HMGCR, and NMDAR are also inhibited by GP, which are of considerable clinical significance for GP's potential therapeutic role in treating neurological diseases.

14.
ACS Nano ; 18(22): 14207-14217, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38767706

RESUMEN

Abnormal secretion and dysrhythmias of cortisol (CORT) are associated with various diseases such as sleep disorders, depression, and chronic fatigue. Wearable devices are a cutting-edge technology for point-of-care detection and dynamic monitoring of CORT with inspiring convenience. Herein, we developed a minimally invasive skin-worn device with the advanced integration of both interstitial fluid (ISF) sampling and target molecule sensing for simultaneous detection of CORT via a microneedle-based sensor with high sensitivity, excellent efficiency, and outstanding reproducibility. In the microneedle patch, swellable hydrogel was employed as the adsorption matrix for ISF extraction. Meanwhile, europium metal-organic frameworks (Eu-MOF) wrapped in the matrix played a vital role in CORT recognition and quantitative analysis. The wearable and label-free Eu-MOF-loaded microneedle patch exhibited high sensitivity in CORT detection with the detection limit reaching 10-9 M and excellent selectivity. Molecular dynamics simulation-driven mechanism exploration revealed that the strong interface interaction promoted fluorescence quenching of Eu-MOF. Moreover, in vitro and in vivo investigation confirmed the feasibility and reliability of the sensing method, and excellent biocompatibility was validated. Overall, a sensitive approach based on the wearable Eu-MOF microneedle (MN) patch was established for the simultaneous detection of CORT via visible fluorescence quenching with exciting clinical-translational ability.


Asunto(s)
Hidrocortisona , Estructuras Metalorgánicas , Agujas , Dispositivos Electrónicos Vestibles , Estructuras Metalorgánicas/química , Humanos , Hidrocortisona/análisis , Animales , Europio/química , Técnicas Biosensibles/instrumentación , Ratones
15.
World J Gastrointest Oncol ; 16(3): 1046-1058, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38577462

RESUMEN

BACKGROUND: Gastric cancer (GC) is the fifth most commonly diagnosed malignancy worldwide, with over 1 million new cases per year, and the third leading cause of cancer-related death. AIM: To determine the optimal perioperative treatment regimen for patients with locally resectable GC. METHODS: A comprehensive literature search was conducted, focusing on phase II/III randomized controlled trials (RCTs) assessing perioperative chemotherapy and chemoradiotherapy in treating locally resectable GC. The R0 resection rate, overall survival (OS), disease-free survival (DFS), and incidence of grade 3 or higher nonsurgical severe adverse events (SAEs) associated with various perioperative regimens were analyzed. A Bayesian network meta-analysis was performed to compare treatment regimens and rank their efficacy. RESULTS: Thirty RCTs involving 8346 patients were included in this study. Neoadjuvant XELOX plus neoadjuvant radiotherapy and neoadjuvant CF were found to significantly improve the R0 resection rate compared with surgery alone, and the former had the highest probability of being the most effective option in this context. Neoadjuvant plus adjuvant FLOT was associated with the highest probability of being the best regimen for improving OS. Owing to limited data, no definitive ranking could be determined for DFS. Considering nonsurgical SAEs, FLO has emerged as the safest treatment regimen. CONCLUSION: This study provides valuable insights for clinicians when selecting perioperative treatment regimens for patients with locally resectable GC. Further studies are required to validate these findings.

16.
Opt Express ; 32(6): 9699-9709, 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38571198

RESUMEN

In order to enhance the performance of a continuous-wave photocathode electron gun at Peking University, and to achieve electron beams with higher current and brightness, a multifunctional drive laser system named PULSE (Peking University drive Laser System for high-brightness Electron source) has been developed. This innovative system is capable of delivering an average output power of 120 W infrared laser pulse at 81.25 MHz, as well as approximately 13.8 W of green power with reliable stability. The utilization of two stages of photonic crystal fibers plays a crucial role in achieving this output. Additionally, the incorporation of two acousto-optic modulators enables the selection of macro-pulses with varying repetition frequencies and duty cycles, which is essential for effective electron beam diagnosis. Furthermore, the system employs a series of birefringent crystals for temporal pulse shaping, allowing for stacking Gaussian pulses into multiple types of distribution. Overall, the optical schematic and operating performance of PULSE are detailed in this paper.

17.
Front Plant Sci ; 15: 1372809, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38606072

RESUMEN

Sugar is a primary determinant of citrus fruit flavour, but undergoes varied accumulation processes across different citrus varieties owing to high genetic variability. Sucrose phosphate synthase (SPS), a key enzyme in glucose metabolism, plays a crucial role in this context. Despite its significance, there is limited research on sugar component quality and the expression and regulatory prediction of SPS genes during citrus fruit development. Therefore, we analysed the sugar quality formation process in 'Kiyomi' and 'Succosa', two citrus varieties, and performed a comprehensive genome-wide analysis of citrus CsSPSs. We observed that the accumulation of sugar components significantly differs between the two varieties, with the identification of four CsSPSs in citrus. CsSPS sequences were highly conserved, featuring typical SPS protein domains. Expression analysis revealed a positive correlation between CsSPS expression and sugar accumulation in citrus fruits. However, CsSPS expression displays specificity to different citrus tissues and varieties. Transcriptome co-expression network analysis suggests the involvement of multiple transcription factors in shaping citrus fruit sugar quality through the regulation of CsSPSs. Notably, the expression levels of four CsWRKYs (CsWRKY2, CsWRKY20, CsWRKY28, CsWRKY32), were significantly positively correlated with CsSPSs and CsWRKY20 might can activate sugar accumulation in citrus fruit through CsSPS2. Collectively, we further emphasize the potential importance of CsWRKYs in citrus sugar metabolism, our findings serve as a reference for understanding sugar component formation and predicting CsSPS expression and regulation during citrus fruit development.

18.
Mikrochim Acta ; 191(5): 267, 2024 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-38627300

RESUMEN

A ternary hierarchical hybrid Ni@CoxSy/poly(3,4-ethylenedioxythiophene)-reduced graphene oxide (Ni@CoxSy/PEDOT-rGO) is rationally designed and in situ facilely synthesized as electrocatalyst to construct a binder-free sensing platform for non-enzymatic glucose monitoring through traditional electrodeposition procedure. The as-prepared Ni@CoxSy/PEDOT-rGO presents unique hierarchical structure and multiple valence states as well as strong and robust adhesion between Ni@CoxSy/PEDOT-rGO and GCE. Profiting from the aforementioned merits, the sensing platform constructed under optimal conditions achieved a wide detection range (0.2 µM ~ 2.0 mM) with high sensitivity (1546.32 µA cm-2 mM-1), a rapid response time (5 s), an ultralow detection limit (0.094 µM), superior anti-interference performance, excellent reproducibility and considerable stability. Furthermore, the sensor demonstrates an acceptable accuracy and appreciable recoveries ranging from 90.0 to 102.0% with less than 3.98% RSD in human blood serum samples, indicating the prospect of the sensor for the real samples analysis. It will provide a strategy to rationally design and fabricate ternary hierarchical hybrid as nanozyme for glucose assay.


Asunto(s)
Glucemia , Compuestos Bicíclicos Heterocíclicos con Puentes , Cobalto , Grafito , Níquel , Polímeros , Humanos , Níquel/química , Glucemia/análisis , Reproducibilidad de los Resultados , Automonitorización de la Glucosa Sanguínea , Glucosa/análisis
19.
Huan Jing Ke Xue ; 45(5): 2581-2595, 2024 May 08.
Artículo en Chino | MEDLINE | ID: mdl-38629523

RESUMEN

Inorganic aerosol is the main component of haze days in winter over Tianjin. In this study, two typical high concentrations of secondary inorganic aerosol (SIA) processes, defined as CASE1 and CASE2, were selected during polluted days in January 2020 over Tianjin, and the effects of meteorological factors, regional transport, and chemical processes were comprehensively investigated combined with observations and numerical models (WRF-NAQPMS). The average SIA concentrations in CASE1 and CASE2 were 76.8 µg·m-3 and 66.0 µg·m-3, respectively, and the nitrate concentration was higher than that of sulfate and ammonium, which were typical nitrate-dominated pollution processes. Meteorological conditions played a role in inorganic aerosol formation. The temperature of approximately -6-0℃ and 2-4℃ and the relative humidity of 50%-60% and 80%-100% would be suitable conditions for the high SIA concentration (>80 µg·m-3) in CASE1, whereas the temperature of approximately 2-4℃ and the relative humidity of 60%-70% would be suitable in CASE2. The average contribution rates of external sources to SIA in the CASE1 and CASE2 processes were 62.3% and 22.1%, which were regional transport-dominant processes and local emission-dominant processes, respectively. The contribution of the local emission of CASE1 to nitrate and sulfate was 16.2 µg·m-3 and 8.2 µg·m-3, respectively, higher than that of external sources (31.7 µg·m-3 and 8.8 µg·m-3). the local contribution of CASE2 to nitrate and sulfate was 29.3 µg·m-3 and 25.1 µg·m-3, respectively, whereas the contribution from external sources was 8.1 µg·m-3 and 9.4 µg·m-3, respectively. The quantitative result indicated that local formation and regional transport resulted in higher nitrate concentration than sulfate in CASE1, in contrast to only local sources in CASE2. The gas phase reaction was the main source of inorganic aerosol formation, contributing 48.9% and 57.8% in CASE1 and CASE2, respectively, whereas the heterogeneous reactions were also important processes, with contribution rates of 48.1% and 42.2% to SIA. The effect of aqueous phase reaction was negligible.

20.
JMIR Serious Games ; 12: e46789, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38596827

RESUMEN

Background: Removable partial denture (RPD) design is crucial to long-term success in dental treatment, but shortcomings in RPD design training and competency acquisition among dental students have persisted for decades. Digital production is increasing in prevalence in stomatology, and a digital RPD (D-RPD) module, under the framework of the certified Objective Manipulative Skill Examination of Dental Technicians (OMEDT) system reported in our previous work, may improve on existing RPD training models for students. Objective: We aimed to determine the efficacy of a virtual 3D simulation-based progressive digital training module for RPD design compared to traditional training. Methods: We developed a prospective cohort study including dental technology students at the Stomatology College of Chongqing Medical University. Cohort 1 received traditional RPD design training (7 wk). Cohort 2 received D-RPD module training based on text and 2D sketches (7 wk). Cohort 3 received D-RPD module pilot training based on text and 2D sketches (4 wk) and continued to receive training based on 3D virtual casts of real patients (3 wk). RPD design tests based on virtual casts were conducted at 1 month and 1 year after training. We collected RPD design scores and the time spent to perform each assessment. Results: We collected the RPD design scores and the time spent to perform each assessment at 1 month and 1 year after training. The study recruited 109 students, including 58 (53.2%) female and 51 male (56.8%) students. Cohort 1 scored the lowest and cohort 3 scored the highest in both tests (cohorts 1-3 at 1 mo: mean score 65.8, SD 21.5; mean score 81.9, SD 6.88; and mean score 85.3, SD 8.55, respectively; P<.001; cohorts 1-3 at 1 y: mean score 60.3, SD 16.7; mean score 75.5, SD 3.90; and mean score 90.9, SD 4.3, respectively; P<.001). The difference between cohorts in the time spent was not statistically significant at 1 month (cohorts 1-3: mean 2407.8, SD 1370.3 s; mean 1835.0, SD 1329.2 s; and mean 1790.3, SD 1195.5 s, respectively; P=.06) but was statistically significant at 1 year (cohorts 1-3: mean 2049.16, SD 1099.0 s; mean 1857.33, SD 587.39 s; and mean 2524.3, SD 566.37 s, respectively; P<.001). Intracohort comparisons indicated that the differences in scores at 1 month and 1 year were not statistically significant for cohort 1 (95% CI -2.1 to 13.0; P=.16), while cohort 3 obtained significantly higher scores 1 year later (95% CI 2.5-8.7; P=.001), and cohort 2 obtained significantly lower scores 1 year later (95% CI -8.8 to -3.9; P<.001). Conclusions: Cohort 3 obtained the highest score at both time points with retention of competency at 1 year, indicating that progressive D-RPD training including virtual 3D simulation facilitated improved competency in RPD design. The adoption of D-RPD training may benefit learning outcomes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...