Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
ACS Cent Sci ; 9(5): 1059-1069, 2023 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-37252358

RESUMEN

Surgery is the preferred treatment option for most solid tumors. However, inaccurate detection of cancer borders leads to either incomplete removal of malignant cells or excess excision of healthy tissue. While fluorescent contrast agents and imaging systems improve tumor visualization, they can suffer from low signal-to-background and are prone to technical artifacts. Ratiometric imaging has the potential to eliminate many of these issues such as uneven probe distribution, tissue autofluorescence, and changes in positioning of the light source. Here, we describe a strategy to convert quenched fluorescent probes into ratiometric contrast agents. Conversion of the cathepsin-activated probe, 6QC-Cy5, into a two-fluorophore probe, 6QC-RATIO, significantly improved signal-to-background in vitro and in a mouse subcutaneous breast tumor model. Tumor detection sensitivity was further enhanced using a dual-substrate AND-gate ratiometric probe, Death-Cat-RATIO, that fluoresces only after orthogonal processing by multiple tumor-specific proteases. We also designed and built a modular camera system that was coupled to the FDA-approved da Vinci Xi robot, to enable real-time imaging of ratiometric signals at video frame rates compatible with surgical workflows. Our results demonstrate that ratiometric camera systems and imaging probes have the potential to be clinically implemented to improve surgical resection of many types of cancer.

2.
Cell ; 185(14): 2523-2541.e30, 2022 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-35738284

RESUMEN

Stem cell research endeavors to generate specific subtypes of classically defined "cell types." Here, we generate >90% pure human artery or vein endothelial cells from pluripotent stem cells within 3-4 days. We specified artery cells by inhibiting vein-specifying signals and vice versa. These cells modeled viral infection of human vasculature by Nipah and Hendra viruses, which are extraordinarily deadly (∼57%-59% fatality rate) and require biosafety-level-4 containment. Generating pure populations of artery and vein cells highlighted that Nipah and Hendra viruses preferentially infected arteries; arteries expressed higher levels of their viral-entry receptor. Virally infected artery cells fused into syncytia containing up to 23 nuclei, which rapidly died. Despite infecting arteries and occupying ∼6%-17% of their transcriptome, Nipah and Hendra largely eluded innate immune detection, minimally eliciting interferon signaling. We thus efficiently generate artery and vein cells, introduce stem-cell-based toolkits for biosafety-level-4 virology, and explore the arterial tropism and cellular effects of Nipah and Hendra viruses.


Asunto(s)
Virus Hendra , Virus Nipah , Células Madre Pluripotentes , Arterias , Células Endoteliales , Virus Hendra/genética , Humanos , Tropismo
3.
Bioinformatics ; 37(Suppl_1): i111-i119, 2021 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-34252944

RESUMEN

MOTIVATION: The standard bootstrap method is used throughout science and engineering to perform general-purpose non-parametric resampling and re-estimation. Among the most widely cited and widely used such applications is the phylogenetic bootstrap method, which Felsenstein proposed in 1985 as a means to place statistical confidence intervals on an estimated phylogeny (or estimate 'phylogenetic support'). A key simplifying assumption of the bootstrap method is that input data are independent and identically distributed (i.i.d.). However, the i.i.d. assumption is an over-simplification for biomolecular sequence analysis, as Felsenstein noted. RESULTS: In this study, we introduce a new sequence-aware non-parametric resampling technique, which we refer to as RAWR ('RAndom Walk Resampling'). RAWR consists of random walks that synthesize and extend the standard bootstrap method and the 'mirrored inputs' idea of Landan and Graur. We apply RAWR to the task of phylogenetic support estimation. RAWR's performance is compared to the state-of-the-art using synthetic and empirical data that span a range of dataset sizes and evolutionary divergence. We show that RAWR support estimates offer comparable or typically superior type I and type II error compared to phylogenetic bootstrap support. We also conduct a re-analysis of large-scale genomic sequence data from a recent study of Darwin's finches. Our findings clarify phylogenetic uncertainty in a charismatic clade that serves as an important model for complex adaptive evolution. AVAILABILITY AND IMPLEMENTATION: Data and software are publicly available under open-source software and open data licenses at: https://gitlab.msu.edu/liulab/RAWR-study-datasets-and-scripts.


Asunto(s)
Programas Informáticos , Filogenia , Análisis de Secuencia
4.
Cell Mol Gastroenterol Hepatol ; 11(1): 273-290, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-32992051

RESUMEN

Epithelial cells in the liver (known as hepatocytes) are high-performance engines of myriad metabolic functions and versatile responders to liver injury. As hepatocytes metabolize amino acids, alcohol, drugs, and other substrates, they produce and are exposed to a milieu of toxins and harmful byproducts that can damage themselves. In the healthy liver, hepatocytes generally divide slowly. However, after liver injury, hepatocytes can ramp up proliferation to regenerate the liver. Yet, on extensive injury, regeneration falters, and liver failure ensues. It is therefore critical to understand the mechanisms underlying liver regeneration and, in particular, which liver cells are mobilized during liver maintenance and repair. Controversies continue to surround the very existence of hepatic stem cells and, if they exist, their spatial location, multipotency, degree of contribution to regeneration, ploidy, and susceptibility to tumorigenesis. This review discusses these controversies. Finally, we highlight how insights into hepatocyte regeneration and biology in vivo can inform in vitro studies to propagate primary hepatocytes with liver regeneration-associated signals and to generate hepatocytes de novo from pluripotent stem cells.


Asunto(s)
Hepatocitos/fisiología , Células Madre Pluripotentes Inducidas/fisiología , Regeneración Hepática , Hígado/citología , Diferenciación Celular , Proliferación Celular , Células Cultivadas , Humanos , Hígado/fisiología
5.
IEEE Trans Nanobioscience ; 19(3): 506-517, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32396096

RESUMEN

Statistical resampling methods are widely used for confidence interval placement and as a data perturbation technique for statistical inference and learning. An important assumption of popular resampling methods such as the standard bootstrap is that input observations are identically and independently distributed (i.i.d.). However, within the area of computational biology and bioinformatics, many different factors can contribute to intra-sequence dependence, such as recombination and other evolutionary processes governing sequence evolution. The SEquential RESampling ("SERES") framework was previously proposed to relax the simplifying assumption of i.i.d. input observations. SERES resampling takes the form of random walks on an input of either aligned or unaligned biomolecular sequences. This study introduces the first application of SERES random walks on aligned sequence inputs and is also the first to demonstrate the utility of SERES as a data perturbation technique to yield improved statistical estimates. We focus on the classical problem of recombination-aware local genealogical inference. We show in a simulation study that coupling SERES resampling and re-estimation with recHMM, a hidden Markov model-based method, produces local genealogical inferences with consistent and often large improvements in terms of topological accuracy. We further evaluate method performance using empirical HIV genome sequence datasets.


Asunto(s)
Biología Computacional/métodos , Aprendizaje Automático , Cadenas de Markov , Filogenia , Alineación de Secuencia/métodos , Simulación por Computador
6.
Algorithms Mol Biol ; 15: 7, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32322294

RESUMEN

Non-parametric and semi-parametric resampling procedures are widely used to perform support estimation in computational biology and bioinformatics. Among the most widely used methods in this class is the standard bootstrap method, which consists of random sampling with replacement. While not requiring assumptions about any particular parametric model for resampling purposes, the bootstrap and related techniques assume that sites are independent and identically distributed (i.i.d.). The i.i.d. assumption can be an over-simplification for many problems in computational biology and bioinformatics. In particular, sequential dependence within biomolecular sequences is often an essential biological feature due to biochemical function, evolutionary processes such as recombination, and other factors. To relax the simplifying i.i.d. assumption, we propose a new non-parametric/semi-parametric sequential resampling technique that generalizes "Heads-or-Tails" mirrored inputs, a simple but clever technique due to Landan and Graur. The generalized procedure takes the form of random walks along either aligned or unaligned biomolecular sequences. We refer to our new method as the SERES (or "SEquential RESampling") method. To demonstrate the performance of the new technique, we apply SERES to estimate support for the multiple sequence alignment problem. Using simulated and empirical data, we show that SERES-based support estimation yields comparable or typically better performance compared to state-of-the-art methods.

7.
Cancer Discov ; 10(1): 86-103, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31601552

RESUMEN

Hematogenous metastasis is initiated by a subset of circulating tumor cells (CTC) shed from primary or metastatic tumors into the blood circulation. Thus, CTCs provide a unique patient biopsy resource to decipher the cellular subpopulations that initiate metastasis and their molecular properties. However, one crucial question is whether CTCs derived and expanded ex vivo from patients recapitulate human metastatic disease in an animal model. Here, we show that CTC lines established from patients with breast cancer are capable of generating metastases in mice with a pattern recapitulating most major organs from corresponding patients. Genome-wide sequencing analyses of metastatic variants identified semaphorin 4D as a regulator of tumor cell transmigration through the blood-brain barrier and MYC as a crucial regulator for the adaptation of disseminated tumor cells to the activated brain microenvironment. These data provide the direct experimental evidence of the promising role of CTCs as a prognostic factor for site-specific metastasis. SIGNIFICANCE: Interests abound in gaining new knowledge of the physiopathology of brain metastasis. In a direct metastatic tropism analysis, we demonstrated that ex vivo-cultured CTCs from 4 patients with breast cancer showed organotropism, revealing molecular features that allow a subset of CTCs to enter and grow in the brain.This article is highlighted in the In This Issue feature, p. 1.


Asunto(s)
Antígenos CD/metabolismo , Neoplasias Encefálicas/secundario , Neoplasias de la Mama/patología , Glutatión Peroxidasa/metabolismo , Células Neoplásicas Circulantes/patología , Proteínas Proto-Oncogénicas c-myc/metabolismo , Semaforinas/metabolismo , Microambiente Tumoral , Animales , Antígenos CD/genética , Apoptosis , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Barrera Hematoencefálica/metabolismo , Barrera Hematoencefálica/patología , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Proliferación Celular , Femenino , Regulación Neoplásica de la Expresión Génica , Glutatión Peroxidasa/genética , Humanos , Ratones , Ratones Endogámicos NOD , Ratones SCID , Células Neoplásicas Circulantes/metabolismo , Estrés Oxidativo , Proteínas Proto-Oncogénicas c-myc/genética , Semaforinas/genética , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto , Glutatión Peroxidasa GPX1
8.
BMC Bioinformatics ; 17(1): 422, 2016 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-27737628

RESUMEN

BACKGROUND: Branching events in phylogenetic trees reflect bifurcating and/or multifurcating speciation and splitting events. In the presence of gene flow, a phylogeny cannot be described by a tree but is instead a directed acyclic graph known as a phylogenetic network. Both phylogenetic trees and networks are typically reconstructed using computational analysis of multi-locus sequence data. The advent of high-throughput sequencing technologies has brought about two main scalability challenges: (1) dataset size in terms of the number of taxa and (2) the evolutionary divergence of the taxa in a study. The impact of both dimensions of scale on phylogenetic tree inference has been well characterized by recent studies; in contrast, the scalability limits of phylogenetic network inference methods are largely unknown. RESULTS: In this study, we quantify the performance of state-of-the-art phylogenetic network inference methods on large-scale datasets using empirical data sampled from natural mouse populations and a range of simulations using model phylogenies with a single reticulation. We find that, as in the case of phylogenetic tree inference, the performance of leading network inference methods is negatively impacted by both dimensions of dataset scale. In general, we found that topological accuracy degrades as the number of taxa increases; a similar effect was observed with increased sequence mutation rate. The most accurate methods were probabilistic inference methods which maximize either likelihood under coalescent-based models or pseudo-likelihood approximations to the model likelihood. The improved accuracy obtained with probabilistic inference methods comes at a computational cost in terms of runtime and main memory usage, which become prohibitive as dataset size grows past twenty-five taxa. None of the probabilistic methods completed analyses of datasets with 30 taxa or more after many weeks of CPU runtime. CONCLUSIONS: We conclude that the state of the art of phylogenetic network inference lags well behind the scope of current phylogenomic studies. New algorithmic development is critically needed to address this methodological gap.


Asunto(s)
Evolución Biológica , Biología Computacional/métodos , Especiación Genética , Modelos Genéticos , Filogenia , Animales , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Probabilidad
9.
World J Biol Chem ; 7(3): 223-30, 2016 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-27621770

RESUMEN

The three-dimensional (3D) organization of the eukaryotic genome is critical for its proper function. Evidence suggests that extensive chromatin loops form the building blocks of the genomic architecture, separating genes and gene clusters into distinct functional domains. These loops are anchored in part by a special type of DNA elements called chromatin boundary elements (CBEs). CBEs were originally found to insulate neighboring genes by blocking influences of transcriptional enhancers or the spread of silent chromatin. However, recent results show that chromatin loops can also play a positive role in gene regulation by looping out intervening DNA and "delivering" remote enhancers to gene promoters. In addition, studies from human and model organisms indicate that the configuration of chromatin loops, many of which are tethered by CBEs, is dynamically regulated during cell differentiation. In particular, a recent work by Li et al has shown that the SF1 boundary, located in the Drosophila Hox cluster, regulates local genes by tethering different subsets of chromatin loops: One subset enclose a neighboring gene ftz, limiting its access by the surrounding Scr enhancers and restrict the spread of repressive histones during early embryogenesis; and the other loops subdivide the Scr regulatory region into independent domains of enhancer accessibility. The enhancer-blocking activity of these CBE elements varies greatly in strength and tissue distribution. Further, tandem pairing of SF1 and SF2 facilitate the bypass of distal enhancers in transgenic flies, providing a mechanism for endogenous enhancers to circumvent genomic interruptions resulting from chromosomal rearrangement. This study demonstrates how a network of chromatin boundaries, centrally organized by SF1, can remodel the 3D genome to facilitate gene regulation during development.

11.
BMC Genomics ; 17 Suppl 1: 8, 2016 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-26819241

RESUMEN

Recent studies of eukaryotes including human and Neandertal, mice, and butterflies have highlighted the major role that interspecific introgression has played in adaptive trait evolution. A common question arises in each case: what is the genomic architecture of the introgressed traits? One common approach that can be used to address this question is association mapping, which looks for genotypic markers that have significant statistical association with a trait. It is well understood that sample relatedness can be a confounding factor in association mapping studies if not properly accounted for. Introgression and other evolutionary processes (e.g., incomplete lineage sorting) typically introduce variation among local genealogies, which can also differ from global sample structure measured across all genomic loci. In contrast, state-of-the-art association mapping methods assume fixed sample relatedness across the genome, which can lead to spurious inference. We therefore propose a new association mapping method called Coal-Map, which uses coalescent-based models to capture local genealogical variation alongside global sample structure. Using simulated and empirical data reflecting a range of evolutionary scenarios, we compare the performance of Coal-Map against EIGENSTRAT, a leading association mapping method in terms of its popularity, power, and type I error control. Our empirical data makes use of hundreds of mouse genomes for which adaptive interspecific introgression has recently been described. We found that Coal-Map's performance is comparable or better than EIGENSTRAT in terms of statistical power and false positive rate. Coal-Map's performance advantage was greatest on model conditions that most closely resembled empirically observed scenarios of adaptive introgression. These conditions had: (1) causal SNPs contained in one or a few introgressed genomic loci and (2) varying rates of gene flow - from high rates to very low rates where incomplete lineage sorting dominated as a primary cause of local genealogical variation.


Asunto(s)
Mapeo Cromosómico , Genoma , Algoritmos , Animales , Sitios Genéticos , Estudio de Asociación del Genoma Completo , Genotipo , Humanos , Ratones , Modelos Genéticos , Fenotipo , Polimorfismo de Nucleótido Simple
12.
BMC Genomics ; 17(Suppl 10): 785, 2016 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-28185556

RESUMEN

BACKGROUND: The most widely used state-of-the-art methods for reconstructing species phylogenies from genomic sequence data assume that sampled loci are identically and independently distributed. In principle, free recombination between loci and a lack of intra-locus recombination are necessary to satisfy this assumption. Few studies have quantified the practical impact of recombination on species tree inference methods, and even fewer have used genomic sequence data for this purpose. One prominent exception is the 2012 study of Lanier and Knowles. A main finding from the study was that species tree inference methods are relatively robust to intra-locus recombination, assuming free recombination between loci. The latter assumption means that the open question regarding the impact of recombination on species tree analysis is not fully resolved. RESULTS: The goal of this study is to further investigate this open question. Using simulations based upon the multi-species coalescent-with-recombination model as well as empirical datasets, we compared common pipeline-based techniques for inferring species phylogenies. The simulation conditions included a range of dataset sizes and several choices for recombination rate which was either uniform across loci or incorporated recombination hotspots. We found that pipelines which explicitly utilize inferred recombination breakpoints to delineate recombination-free intervals result in greater accuracy compared to widely used alternatives that preprocess sequences based upon linkage disequilibrium decay. Furthermore, the use of a relatively simple approach for recombination breakpoint inference does not degrade the accuracy of downstream species tree inference compared to more accurate alternatives. CONCLUSIONS: Our findings clarify the impact of recombination upon current phylogenomic pipelines for species tree inference. Pipeline-based approaches which utilize inferred recombination breakpoints to densely sample loci across genomic sequences can tolerate intra-locus recombination and violations of the assumption of free recombination between loci.


Asunto(s)
Clasificación/métodos , Genómica , Recombinación Genética , Simulación por Computador , Bases de Datos Genéticas , Sitios Genéticos , Desequilibrio de Ligamiento , Filogenia , Polimorfismo de Nucleótido Simple
13.
Proc Natl Acad Sci U S A ; 112(1): 196-201, 2015 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-25512534

RESUMEN

We report on a genome-wide scan for introgression between the house mouse (Mus musculus domesticus) and the Algerian mouse (Mus spretus), using samples from the ranges of sympatry and allopatry in Africa and Europe. Our analysis reveals wide variability in introgression signatures along the genomes, as well as across the samples. We find that fewer than half of the autosomes in each genome harbor all detectable introgression, whereas the X chromosome has none. Further, European mice carry more M. spretus alleles than the sympatric African ones. Using the length distribution and sharing patterns of introgressed genomic tracts across the samples, we infer, first, that at least three distinct hybridization events involving M. spretus have occurred, one of which is ancient, and the other two are recent (one presumably due to warfarin rodenticide selection). Second, several of the inferred introgressed tracts contain genes that are likely to confer adaptive advantage. Third, introgressed tracts might contain driver genes that determine the evolutionary fate of those tracts. Further, functional analysis revealed introgressed genes that are essential to fitness, including the Vkorc1 gene, which is implicated in rodenticide resistance, and olfactory receptor genes. Our findings highlight the extent and role of introgression in nature and call for careful analysis and interpretation of house mouse data in evolutionary and genetic studies.


Asunto(s)
Cruzamientos Genéticos , Variación Genética , Genoma/genética , Animales , Femenino , Geografía , Haploidia , Hibridación Genética , Masculino , Ratones , Especificidad de la Especie
14.
Proc Natl Acad Sci U S A ; 111(46): 16448-53, 2014 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-25368173

RESUMEN

Hybridization plays an important role in the evolution of certain groups of organisms, adaptation to their environments, and diversification of their genomes. The evolutionary histories of such groups are reticulate, and methods for reconstructing them are still in their infancy and have limited applicability. We present a maximum likelihood method for inferring reticulate evolutionary histories while accounting simultaneously for incomplete lineage sorting. Additionally, we propose methods for assessing confidence in the amount of reticulation and the topology of the inferred evolutionary history. Our method obtains accurate estimates of reticulate evolutionary histories on simulated datasets. Furthermore, our method provides support for a hypothesis of a reticulate evolutionary history inferred from a set of house mouse (Mus musculus) genomes. As evidence of hybridization in eukaryotic groups accumulates, it is essential to have methods that infer reticulate evolutionary histories. The work we present here allows for such inference and provides a significant step toward putting phylogenetic networks on par with phylogenetic trees as a model of capturing evolutionary relationships.


Asunto(s)
Simulación por Computador , Evolución Molecular , Funciones de Verosimilitud , Ratones/genética , Modelos Genéticos , Filogenia , Algoritmos , Animales , China , Eucariontes/clasificación , Eucariontes/genética , Europa (Continente) , Especiación Genética , Haplotipos/genética , Kazajstán , Ratones/clasificación , Tasa de Mutación , Alineación de Secuencia , Homología de Secuencia de Ácido Nucleico
15.
PLoS Comput Biol ; 10(6): e1003649, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24922281

RESUMEN

One outcome of interspecific hybridization and subsequent effects of evolutionary forces is introgression, which is the integration of genetic material from one species into the genome of an individual in another species. The evolution of several groups of eukaryotic species has involved hybridization, and cases of adaptation through introgression have been already established. In this work, we report on PhyloNet-HMM-a new comparative genomic framework for detecting introgression in genomes. PhyloNet-HMM combines phylogenetic networks with hidden Markov models (HMMs) to simultaneously capture the (potentially reticulate) evolutionary history of the genomes and dependencies within genomes. A novel aspect of our work is that it also accounts for incomplete lineage sorting and dependence across loci. Application of our model to variation data from chromosome 7 in the mouse (Mus musculus domesticus) genome detected a recently reported adaptive introgression event involving the rodent poison resistance gene Vkorc1, in addition to other newly detected introgressed genomic regions. Based on our analysis, it is estimated that about 9% of all sites within chromosome 7 are of introgressive origin (these cover about 13 Mbp of chromosome 7, and over 300 genes). Further, our model detected no introgression in a negative control data set. We also found that our model accurately detected introgression and other evolutionary processes from synthetic data sets simulated under the coalescent model with recombination, isolation, and migration. Our work provides a powerful framework for systematic analysis of introgression while simultaneously accounting for dependence across sites, point mutations, recombination, and ancestral polymorphism.


Asunto(s)
Hibridación Genómica Comparativa , Evolución Molecular , Modelos Genéticos , Algoritmos , Animales , Mapeo Cromosómico , Biología Computacional , Simulación por Computador , Bases de Datos Genéticas , Genética de Población , Genómica , Cadenas de Markov , Ratones , Filogenia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...