Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Clin Epigenetics ; 16(1): 103, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39103963

RESUMEN

BACKGROUND: Childhood maltreatment (CM) is linked to long-term adverse health outcomes, including accelerated biological aging and cognitive decline. This study investigates the relationship between CM and various aging biomarkers: telomere length, facial aging, intrinsic epigenetic age acceleration (IEAA), GrimAge, HannumAge, PhenoAge, frailty index, and cognitive performance. METHODS: We conducted a Mendelian randomization (MR) study using published GWAS summary statistics. Aging biomarkers included telomere length (qPCR), facial aging (subjective evaluation), and epigenetic age markers (HannumAge, IEAA, GrimAge, PhenoAge). The frailty index was calculated from clinical assessments, and cognitive performance was evaluated with standardized tests. Analyses included Inverse-Variance Weighted (IVW), MR Egger, and Weighted Median (WM) methods, adjusted for multiple comparisons. RESULTS: CM was significantly associated with shorter telomere length (IVW: ß = - 0.1, 95% CI - 0.18 to - 0.02, pFDR = 0.032) and increased HannumAge (IVW: ß = 1.33, 95% CI 0.36 to 2.3, pFDR = 0.028), GrimAge (IVW: ß = 1.19, 95% CI 0.19 to 2.2, pFDR = 0.040), and PhenoAge (IVW: ß = 1.4, 95% CI 0.12 to 2.68, pFDR = 0.053). A significant association was also found with the frailty index (IVW: ß = 0.31, 95% CI 0.13 to 0.49, pFDR = 0.006). No significant associations were found with facial aging, IEAA, or cognitive performance. CONCLUSIONS: CM is linked to accelerated biological aging, shown by shorter telomere length and increased epigenetic aging markers. CM was also associated with increased frailty, highlighting the need for early interventions to mitigate long-term effects. Further research should explore mechanisms and prevention strategies.


Asunto(s)
Envejecimiento , Biomarcadores , Análisis de la Aleatorización Mendeliana , Humanos , Análisis de la Aleatorización Mendeliana/métodos , Biomarcadores/sangre , Envejecimiento/genética , Epigénesis Genética/genética , Masculino , Femenino , Fragilidad/genética , Niño , Estudio de Asociación del Genoma Completo/métodos , Maltrato a los Niños/psicología , Maltrato a los Niños/estadística & datos numéricos , Telómero/genética , Adulto , Anciano , Persona de Mediana Edad
2.
J Agric Food Chem ; 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38848450

RESUMEN

Albino germplasms are prized tea plant mutants with yellow/white leaves. However, understanding of the albino mechanisms in non-Camellia sinensis tea species remains limited. This study elucidated the albino trait formation in Nanchuan Dachashu (C. nanchuanica), an arbor-type tea species, and its association with tea quality. The yellow-leaved albino individual NH1 exhibited abnormal chloroplast ultrastructure and reduced chlorophyll/carotenoid levels compared to green-leaved NL1. Integrating transcriptomics, metabolomics, yeast one-hybrid, and transgenic approaches identified the chlorophyll b reductase gene CsNYC1a as a key regulator, which was significantly up-regulated in NH1, and its overexpression in Arabidopsis recapitulated the albino phenotype. In yeast, histone CsH1.2 binds to the CsNYC1a promoter. These findings suggest that CsH1.2-CsNYC1a-mediated chlorophyll degradation may be a key mechanism underlying albino formation in Nanchuan Dachashu. In addition, as a germplasm with higher polyphenol-to-amino acid ratio than NL1, NH1 offers more possibilities for breeding and application.

3.
J Ayurveda Integr Med ; 15(3): 100911, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38876946

RESUMEN

Natural bioactives possess a wide range of chemical structures that can exert a plethora of pharmacological and toxicological actions, resulting in neuroprotection or neurotoxicity. These pharmacodynamic properties can positively or negatively impact human and animal global healthcare. Remarkably, Ayurvedic botanical Cannabis has been used worldwide by different ethnicities and religions for spiritual, commercial, recreational, nutraceutical, cosmeceutical, and medicinal purposes for centuries. Cannabis-based congeners have been approved by the United States of America's (USA) Food & Drug Administration (FDA) and other global law agencies for various therapeutic purposes. Surprisingly, the strict laws associated with possessing cannabis products have been mitigated in multiple states in the USA and across the globe for recreational use. This has consequently led to a radical escalation of exposure to cannabis-related substances of abuse. However, there is a lacuna in the literature on the acute and chronic effects of Cannabis and its congeners on various neuropathologies. Moreover, in the post-COVID era, there has been a drastic increase in the incidence and prevalence of numerous neuropathologies, leading to increased morbidity and mortality. There is an impending necessity for a safe, economically viable, multipotent, natural bioactive to prevent and treat various neuropathologies. The ayurvedic herb, Cannabis is one of the oldest botanicals known to humans and has been widely used. However, the comprehensive effect of Cannabis on various neuropathologies is not well established. Hence, this review presents effects of Cannabis on various neuropathologies.

4.
Acta Pharmacol Sin ; 45(10): 2045-2060, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38862816

RESUMEN

Kv1.3 belongs to the voltage-gated potassium (Kv) channel family, which is widely expressed in the central nervous system and associated with a variety of neuropsychiatric disorders. Kv1.3 is highly expressed in the olfactory bulb and piriform cortex and involved in the process of odor perception and nutrient metabolism in animals. Previous studies have explored the function of Kv1.3 in olfactory bulb, while the role of Kv1.3 in piriform cortex was less known. In this study, we investigated the neuronal changes of piriform cortex and feeding behavior after smell stimulation, thus revealing a link between the olfactory sensation and body weight in Kv1.3 KO mice. Coronal slices including the anterior piriform cortex were prepared, whole-cell recording and Ca2+ imaging of pyramidal neurons were conducted. We showed that the firing frequency evoked by depolarization pulses and Ca2+ influx evoked by high K+ solution were significantly increased in pyramidal neurons of Kv1.3 knockout (KO) mice compared to WT mice. Western blotting and immunofluorescence analyses revealed that the downstream signaling molecules CaMKII and PKCα were activated in piriform cortex of Kv1.3 KO mice. Pyramidal neurons in Kv1.3 KO mice exhibited significantly reduced paired-pulse ratio and increased presynaptic Cav2.1 expression, proving that the presynaptic vesicle release might be elevated by Ca2+ influx. Using Golgi staining, we found significantly increased dendritic spine density of pyramidal neurons in Kv1.3 KO mice, supporting the stronger postsynaptic responses in these neurons. In olfactory recognition and feeding behavior tests, we showed that Kv1.3 conditional knockout or cannula injection of 5-(4-phenoxybutoxy) psoralen, a Kv1.3 channel blocker, in piriform cortex both elevated the olfactory recognition index and altered the feeding behavior in mice. In summary, Kv1.3 is a key molecule in regulating neuronal activity of the piriform cortex, which may lay a foundation for the treatment of diseases related to piriform cortex and olfactory detection.


Asunto(s)
Canal de Potasio Kv1.3 , Ratones Noqueados , Plasticidad Neuronal , Corteza Piriforme , Células Piramidales , Animales , Canal de Potasio Kv1.3/metabolismo , Canal de Potasio Kv1.3/genética , Corteza Piriforme/metabolismo , Corteza Piriforme/fisiología , Células Piramidales/metabolismo , Células Piramidales/fisiología , Plasticidad Neuronal/fisiología , Ratones , Masculino , Ratones Endogámicos C57BL , Conducta Alimentaria/fisiología , Calcio/metabolismo , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo
5.
Biosci Biotechnol Biochem ; 88(8): 923-931, 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-38734890

RESUMEN

Pullulan can not only provide a source of organic carbon but also has excellent properties. However, current research is mostly limited to the physical properties of the high-molecular-weight components of pullulan, and little is known about the application of its low-molecular-weight components. This study was designed to explore the impact of presoaking of radish seeds in a pullulan solution on seed germination and subsequent seedling growth under salt stress conditions. Pullulan soaking was found to enhance the germination rates of radish seeds subjected to salt stress, while also enhancing the aboveground growth of radish seedlings. Pullulan soaking resulted in increases in chlorophyll, soluble protein, and soluble sugar concentrations in the leaves of these seedlings, together with greater peroxidase activity and root activity as well as decreases in Na+ and malondialdehyde concentrations. This provides an important reference for the application of pullulan in plant protection.


Asunto(s)
Germinación , Glucanos , Raphanus , Estrés Salino , Plantones , Semillas , Glucanos/metabolismo , Germinación/efectos de los fármacos , Raphanus/crecimiento & desarrollo , Raphanus/efectos de los fármacos , Plantones/crecimiento & desarrollo , Plantones/efectos de los fármacos , Plantones/metabolismo , Semillas/crecimiento & desarrollo , Semillas/efectos de los fármacos , Clorofila/metabolismo , Malondialdehído/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/metabolismo , Sodio/metabolismo , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/metabolismo
6.
Cardiol J ; 31(4): 538-545, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38742666

RESUMEN

BACKGROUND: The growth of mitral leaflets (MLs) adaptive to left ventricluar (LV) remodeling has been observed. However, the elasticity of MLs upon mechanical stimuli would be supposed if it shrinks with LV reverse remodeling (LVRR). MATERIAL AND METHODS: Patients with idiopathic recent-onset dilated cardiomyopathy (RODCM) (n = 82) and 50 matched normal controls (NC) were prospectively enrolled. Echocardiography was performed at baseline and 6 months of follow-up for the anterior and posterior mitral leaflet (AML and PML) length, mitral annular dimension (MAD), and tenting height (TH). LVRR was measured as a ≥ 15% reduction in LV end-diastolic volume (LVEDV). RESULTS: After 6 months, LVRR was achieved in 69.5% of patients. The AML (28 ± 3 vs. 26 ± 3 mm, p = 0.004) and PML (19 ± 4 vs. 17 ± 3 mm, p < 0.001) decreased in length, as well as the MAD (31 ± 5 vs. 28 ± 5 mm, p = 0.001) and TH (10 ± 3 vs. 8 ± 2 mm, p < 0.001). Compared with the NC group, the AML and PML of the RODCM group were 16.7% and 35.7% longer at baseline and remained 8.3% and 21.2% longer at follow-up, respectively. The change in AML or PML correlated moderately with that in LVEDV (r = 0.487, p < 0.001; r = 0.516, p < 0.001, respectively). The AML and PML length decreased in the LVRR (+) subgroup (AML, 28 ± 3 vs. 26 ± 3 mm, p = 0.001; PML, 20 ± 4 vs. 16 ± 3 mm, p < 0.001), but remained the same in the LVRR (-) subgroup (27 ± 4 vs. 28 ± 4 mm, p = 0.318; 17 ± 3 vs. 17 ± 3 mm, p = 0.790). CONCLUSIONS: Enlarged MLs could reverse accompanied by LV reverse remodeling. This study provided the other facet of ML plasticity adaptive to mechanical stretching.


Asunto(s)
Cardiomiopatía Dilatada , Válvula Mitral , Función Ventricular Izquierda , Remodelación Ventricular , Humanos , Femenino , Masculino , Cardiomiopatía Dilatada/fisiopatología , Cardiomiopatía Dilatada/tratamiento farmacológico , Cardiomiopatía Dilatada/diagnóstico por imagen , Estudios Prospectivos , Válvula Mitral/diagnóstico por imagen , Válvula Mitral/fisiopatología , Persona de Mediana Edad , Función Ventricular Izquierda/fisiología , Adulto , Factores de Tiempo , Resultado del Tratamiento , Estudios de Seguimiento , Volumen Sistólico/fisiología , Ecocardiografía
7.
Cancer Rep (Hoboken) ; 7(4): e2074, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38627904

RESUMEN

BACKGROUND: Iatrogenesis is an inevitable global threat to healthcare that drastically increases morbidity and mortality. Cancer is a fatal pathological condition that affects people of different ages, sexes, and races around the world. In addition to the detrimental cancer pathology, one of the most common contraindications and challenges observed in cancer patients is severe adverse drug effects and hypersensitivity reactions induced by chemotherapy. Chemotherapy-induced cognitive neurotoxicity is clinically referred to as Chemotherapy-induced cognitive impairment (CICI), chemobrain, or chemofog. In addition to CICI, chemotherapy also causes neuropsychiatric issues, mental disorders, hyperarousal states, and movement disorders. A synergistic chemotherapy regimen of Doxorubicin (Anthracycline-DOX) and Cyclophosphamide (Alkylating Cytophosphane-CPS) is indicated for the management of various cancers (breast cancer, lymphoma, and leukemia). Nevertheless, there are limited research studies on Doxorubicin and Cyclophosphamide's pharmacodynamic and toxicological effects on dopaminergic neuronal function. AIM: This study evaluated the dopaminergic neurotoxic effects of Doxorubicin and Cyclophosphamide. METHODS AND RESULTS: Doxorubicin and Cyclophosphamide were incubated with dopaminergic (N27) neurons. Neuronal viability was assessed using an MTT assay. The effect of Doxorubicin and Cyclophosphamide on various prooxidants, antioxidants, mitochondrial Complex-I & IV activities, and BAX expression were evaluated by Spectroscopic, Fluorometric, and RT-PCR methods, respectively. Prism-V software (La Jolla, CA, USA) was used for statistical analysis. Chemotherapeutics dose-dependently inhibited the proliferation of the dopaminergic neurons. The dopaminergic neurotoxic mechanism of Doxorubicin and Cyclophosphamide was attributed to a significant increase in prooxidants, a decrease in antioxidants, and augmented apoptosis without affecting mitochondrial function. CONCLUSION: This is one of the first reports that reveal Doxorubicin and Cyclophosphamide induce significant dopaminergic neurotoxicity. Thus, Chemotherapy-induced adverse drug reaction issues substantially persist during and after treatment and sometimes never be completely resolved clinically. Consequently, failure to adopt adequate patient care measures for cancer patients treated with certain chemotherapeutics might substantially raise the incidence of numerous movement disorders.


Asunto(s)
Neoplasias de la Mama , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Trastornos del Movimiento , Humanos , Femenino , Ciclofosfamida/efectos adversos , Antraciclinas/uso terapéutico , Neuronas Dopaminérgicas/metabolismo , Neuronas Dopaminérgicas/patología , Antibióticos Antineoplásicos , Doxorrubicina/farmacología , Neoplasias de la Mama/patología , Trastornos del Movimiento/tratamiento farmacológico
8.
Heliyon ; 10(5): e26936, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38468920

RESUMEN

Due to its advantages of having a high power-to-weight ratio and being energy-efficient, the electro-hydraulic servo pump control system (abbreviated as EHSPCS) is frequently employed in the industrial field, such as the electro-hydraulic servo pump control (EHSPC) servomotor for steam turbine valve regulation control. However, the EHSPCS has strong nonlinearity and time-varying features, and the factors that cause system performance degradation are complex. Once a system failure occurs, it may lead to serious accidents, causing serious casualties and economic losses. To address the above issues, a system health assessment method based on LSTM-GRNN-ANN (LGA) deep neural network is proposed in this paper. Firstly, with oil volume gas content, servo motor air-gap flux density, and system leakage coefficient as the health assessment performance indicators, a health assessment performance index system for the EHSPCS is built, Furthermore, the system performance index threshold is set. Secondly, an LGA deep neural network is constructed by combining LSTM, GRNN and ANN, and a deep neural network based on the LGA is used to create an EHSPCS health assessment model. Subsequently, system feature parameter extraction, algorithm design, and parameter debugging are carried out. Finally, an EHSPCS experimental platform is established, typical system failure simulation experiments are designed, and comparative experimental analysis is conducted. The experimental findings demonstrate that the average accuracy of the system health assessment model based on the LGA deep neural network suggested in this paper is 96.37%, compared to 89.84%, 87.99% for LSTM and GRNN, which validates the accuracy of the system health assessment model based on the LGA deep neural network.

9.
Int J Mol Sci ; 25(2)2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38255925

RESUMEN

As the kynurenine pathway's links to inflammation, the immune system, and neurological disorders became more apparent, it attracted more and more attention. It is the main pathway through which the liver breaks down Tryptophan and the initial step in the creation of nicotinamide adenine dinucleotide (NAD+) in mammals. Immune system activation and the buildup of potentially neurotoxic substances can result from the dysregulation or overactivation of this pathway. Therefore, it is not shocking that kynurenines have been linked to neurological conditions (Depression, Parkinson's, Alzheimer's, Huntington's Disease, Schizophrenia, and cognitive deficits) in relation to inflammation. Nevertheless, preclinical research has demonstrated that kynurenines are essential components of the behavioral analogs of depression and schizophrenia-like cognitive deficits in addition to mediators associated with neurological pathologies due to their neuromodulatory qualities. Neurodegenerative diseases have been extensively associated with neuroactive metabolites of the kynurenine pathway (KP) of tryptophan breakdown. In addition to being a necessary amino acid for protein synthesis, Tryptophan is also transformed into the important neurotransmitters tryptamine and serotonin in higher eukaryotes. In this article, a summary of the KP, its function in neurodegeneration, and the approaches being used currently to target the route therapeutically are discussed.


Asunto(s)
Trastornos del Conocimiento , Quinurenina , Animales , Triptófano , Aminoácidos , Inflamación , Mamíferos
10.
Genomics ; 116(2): 110803, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38290592

RESUMEN

N6-methyladenosine (m6A) methylation is the most prevalent internal epigenetic posttranscriptional mechanism for regulating mammalian RNA. Despite recent advances in determining the biological functions of m6A methylation, its association with the pathology of ovarian endometriosis remains uncertain. Herein, we performed m6A transcriptome-wide profiling to identify key lncRNAs with m6A modification involved in ovarian endometriosis development by bioinformatics analysis. We found the total m6A level was lower in ovarian endometriosis than in normal endometrium samples, with 9663 m6A peaks associated with 8989 lncRNAs detected in ovarian endometriosis and 9902 m6A peaks associated with 9210 lncRNAs detected in normal endometrium samples. These m6A peaks were primarily enriched within AAACU motifs. Functional enrichment analysis indicated that pathways involving the regulation of adhesion and development were significantly enriched in these differentially methylated lncRNAs. The regulatory relationships among lncRNAs, microRNAs (miRNAs), and mRNAs were identified by competing endogenous RNA (ceRNA) analysis and determination of the network regulating lncRNA-mRNA expression. Several specific lncRNA, including LINC00665, LINC00937, FZD10-AS1, DIO3OS and GATA2-AS1 which were differently expressed and modified by m6A, were validated using qRT-PCR and its interaction with infiltrating immune cells was explored. Furthermore, we found LncRNA DIO3OS promotes the invasion and migration of Human endometrial stromal cells (THESCs) and ALKBH5 regulates the expression of the lncRNA DIO3OS through m6A modification in vitro. Our study firstly revealed the transcriptome-wide map of m6A modification in lncRNAs of ovarian endometriosis. These findings may enable the determination of the underlying mechanism governing the pathogenesis of ovarian endometriosis and provide theoretical basis for further deeper research on the role of m6A in the development of ovarian endometriosis.


Asunto(s)
Endometriosis , ARN Largo no Codificante , Femenino , Humanos , Animales , ARN Largo no Codificante/genética , Transcriptoma , Endometriosis/genética , Adenosina , Metilación , Mamíferos
11.
Int J Mol Sci ; 24(12)2023 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-37373002

RESUMEN

Low-temperature stress limits global tea planting areas and production efficiency. Light is another essential ecological factor that acts in conjunction with temperature in the plant life cycle. However, it is unclear whether the differential light environment affects the low temperature adaptability of tea plant (Camellia sect. Thea). In this study, tea plant materials in three groups of light intensity treatments showed differentiated characteristics for low-temperature adaptability. Strong light (ST, 240 µmol·m-2·s-1) caused the degradation of chlorophyll and a decrease in peroxidase (POD), superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), and polyphenol oxidase (PPO) activities, as well as an increase in soluble sugar, soluble protein, malondialdehyde (MDA), and relative conductivity in tea leaves. In contrast, antioxidant enzyme activities, chlorophyll content, and relative conductivity were highest in weak light (WT, 15 µmol·m-2·s-1). Damage was observed in both ST and WT materials relative to moderate light intensity (MT, 160 µmol·m-2·s-1) in a frost resistance test. Chlorophyll degradation in strong light was a behavior that prevented photodamage, and the maximum photosynthetic quantum yield of PS II (Fv/Fm) decreased with increasing light intensity. This suggests that the browning that occurs on the leaf surface of ST materials through frost may have been stressed by the previous increase in reactive oxygen species (ROS). Frost intolerance of WT materials is mainly related to delayed tissue development and tenderness holding. Interestingly, transcriptome sequencing revealed that stronger light favors starch biosynthesis, while cellulose biosynthesis is enhanced in weaker light. It showed that light intensity mediated the form of carbon fixation in tea plant, and this was associated with low-temperature adaptability.


Asunto(s)
Antioxidantes , Camellia sinensis , Especies Reactivas de Oxígeno/metabolismo , Temperatura , Antioxidantes/metabolismo , Fotosíntesis , Camellia sinensis/metabolismo , Clorofila/metabolismo , Té/metabolismo , Hojas de la Planta/metabolismo
12.
Biomed Pharmacother ; 164: 114998, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37301137

RESUMEN

Prolonged exposure to UV light can lead to photo-ageing of the skin. Therefore, the development and application of anti-photoaging drugs is urgent. In this study, we co-loaded apigenin (Apn) and doxycycline (Doc), a broad-spectrum inhibitor of matrix metalloproteinases (MMPs), into flexible liposomes to exert anti-photoaging effects by combating oxidative stress, anti-inflammation, reducing the activation of MMPs and preventing collagen loss. The results showed that we prepared a flexible liposome (A/D-FLip) containing Apn and Doc. Its appearance, particle size and Zeta potential were normal and it had good encapsulation efficiency, drug loading, in vitro release and transdermal efficiency. In cellular experiments, A/D-FLip could inhibit oxidative stress damage, reduce inflammatory factors and decrease the activation of MMPs in Human immortalized keratinocytes (HaCaT) cells; in animal experiments, A/D-FLip could inhibit skin damage and reduce skin collagen loss by decreasing the activation of MMPs, thus inhibiting skin photoaging in mice. In conclusion, A/D-FLip has good anti-photoaging effects and it has the potential to become an effective skin care product or drug against UV damage and skin photoaging in the future.


Asunto(s)
Liposomas , Envejecimiento de la Piel , Animales , Ratones , Humanos , Liposomas/farmacología , Apigenina/farmacología , Doxiciclina/farmacología , Piel , Colágeno/farmacología , Metaloproteinasas de la Matriz , Rayos Ultravioleta/efectos adversos
13.
Hortic Res ; 10(6): uhad090, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37342541

RESUMEN

Tea plant (Camellia sinensis) is an important cash crop with extensive adaptability in the world. However, complex environmental factors force a large variation of tea quality-related components. Caffeine is essential for the formation of bitter and fresh flavors in tea, and is the main compound of tea that improves human alertness. Continuous strong light stimulation was observed to cause caffeine reduction in tea leaves, but the mechanism is not clear. In this study, the response of tea plant to light intensity was analysed mainly by multi-omics association, antisense oligodeoxynucleotide (asODN) silencing technique, and in vitro enzyme activity assay. The results revealed multiple strategies for light intensity adaptation in tea plant, among which the regulation of chloroplasts, photosynthesis, porphyrin metabolism, and resistance to oxidative stress were prominent. Caffeine catabolism was enhanced in continuous strong light, which may be a light-adapted strategy due to strict regulation by xanthine dehydrogenase (XDH). asODN silencing and enzymatic activity assays confirmed that CsXDH1 is a protein induced by light intensity to catalyze the substrate xanthine. CsXDH1 asODN silencing resulted in significant up-regulation of both caffeine and theobromine in in vitro enzyme activity assay, but not in vivo. CsXDH1 may act as a coordinator in light intensity adaptation, thus disrupting this balance of caffeine catabolism.

14.
Life Sci ; 326: 121752, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37172818

RESUMEN

Bisphenol-S (BPS) is a current substitute for Bisphenol-A (BPA) in various commercial products (paper, plastics, protective can-coatings, etc.) used by all age groups globally. The current literature indicates that a drastic surge in pro-oxidants, pro-apoptotic, and pro-inflammatory biomarkers in combination with diminished mitochondrial activity can potentially decrease hepatic function leading to morbidity and mortality. Consequently, there are increasing public health concerns that substantial Bisphenol-mediated effects may impact hepatocellular functions, particularly in newborns exposed to BPA and BPS postnatally. However, the acute postnatal impact of BPA and BPS and the molecular mechanisms affecting hepatocellular functions are unknown. Therefore, the current study investigated the acute postnatal effect of BPA and BPS on the biomarkers of hepatocellular functions, including oxidative stress, inflammation, apoptosis, and mitochondrial activity in male Long-Evans rats. BPA and BPS (5 and 20 microgram/Liter (µg/L) of drinking water) were administered to 21-day-old male rats for 14 days. BPS had no significant effect on apoptosis, inflammation, and mitochondrial function but significantly reduced the reactive oxygen species (51-60 %, **p < 0.01) and nitrite content (36 %, *p < 0.05), exhibiting hepatoprotective effects. As expected, based on the current scientific literature, BPA induced significant hepatoxicity, as seen by significant glutathione depletion (50 %, *p < 0.05). The in-silico analysis indicated that BPS is effectively absorbed in the gastrointestinal tract without crossing the blood-brain barrier (whereas BPA crosses the blood-brain barrier) and is not a substrate of p-Glycoprotein and Cytochrome P450 enzymes. Thus, the current in-silico and in vivo findings revealed that acute postnatal exposure to BPS had no significant hepatotoxicity.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Ratas , Masculino , Animales , Ratas Long-Evans , Especies Reactivas de Oxígeno , Compuestos de Bencidrilo/toxicidad , Inflamación
15.
J Zhejiang Univ Sci B ; 24(1): 64-77, 2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36632751

RESUMEN

Endoplasmic reticulum (ER) stress, as an emerging hallmark feature of cancer, has a considerable impact on cell proliferation, metastasis, invasion, and chemotherapy resistance. Ovarian cancer (OvCa) is one of the leading causes of cancer-related mortality across the world due to the late stage of disease at diagnosis. Studies have explored the influence of ER stress on OvCa in recent years, while the predictive role of ER stress-related genes in OvCa prognosis remains unexplored. Here, we enrolled 552 cases of ER stress-related genes involved in OvCa from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) cohorts for the screening of prognosis-related genes. The least absolute shrinkage and selection operator (LASSO) regression was applied to establish an ER stress-related risk signature based on the TCGA cohort. A seven-gene signature revealed a favorable predictive efficacy for the TCGA, International Cancer Genome Consortium (ICGC), and another GEO cohort (P<0.001, P<0.001, and P=0.04, respectively). Moreover, functional annotation indicated that this signature was enriched in cellular response and senescence, cytokines interaction, as well as multiple immune-associated terms. The immune infiltration profiles further delineated an immunologic unresponsive status in the high-risk group. In conclusion, ER stress-related genes are vital factors predicting the prognosis of OvCa, and possess great application potential in the clinic.


Asunto(s)
Neoplasias Ováricas , Humanos , Femenino , Neoplasias Ováricas/genética , Proliferación Celular , Citocinas , Estrés del Retículo Endoplásmico/genética
16.
Tissue Barriers ; 11(1): 2039003, 2023 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-35262466

RESUMEN

Cholix (Chx) is secreted by non-pandemic strains of Vibrio cholerae in the intestinal lumen. For this exotoxin to induce cell death in non-polarized cells in the intestinal lamina propria, it must traverse the epithelium in the fully intact form. We identified host cell elements in polarized enterocytes associated with Chx endocytosis and apical to basal (A→B) vesicular transcytosis. This pathway overcomes endogenous mechanisms of apical vesicle recycling and lysosomal targeting by interacting with several host cell proteins that include the 75 kDa glucose-regulated protein (GRP75). Apical endocytosis of Chx appears to involve the single membrane spanning protein TMEM132A, and interaction with furin before it engages GRP75 in apical vesicular structures. Sorting within these apical vesicles results in Chx being trafficked to the basal region of cells in association with the Lectin, Mannose Binding 1 protein LMAN1. In this location, Chx interacts with the basement membrane-specific heparan sulfate proteoglycan perlecan in recycling endosomes prior to its release from this basal vesicular compartment to enter the underlying lamina propria. While the furin and LMAN1 elements of this Chx transcytosis pathway undergo cellular redistribution that are reflective of the polarity shifts noted for coatamer complexes COPI and COPII, GRP75 and perlecan fail to show these dramatic rearrangements. Together, these data define essential steps in the A→B transcytosis pathway accessed by Chx to reach the intestinal lamina propria where it can engage and intoxicate certain non-polarized cells.


The Vibrio cholerae exotoxin protein cholix interacts with a number of host cell proteins, including GRP75, to facilitate its vesicular transcytosis across polarized intestinal epithelial cells following apical endocytosis.


Asunto(s)
Furina , Transcitosis , Endocitosis , Proteínas de la Membrana
17.
Neurosci Bull ; 38(5): 489-504, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-34783985

RESUMEN

Studies have shown that spatial attention remarkably affects the trial-to-trial response variability shared between neurons. Difficulty in the attentional task adjusts how much concentration we maintain on what is currently important and what is filtered as irrelevant sensory information. However, how task difficulty mediates the interactions between neurons with separated receptive fields (RFs) that are attended to or attended away is still not clear. We examined spike count correlations between single-unit activities recorded simultaneously in the primary visual cortex (V1) while monkeys performed a spatial attention task with two levels of difficulty. Moreover, the RFs of the two neurons recorded were non-overlapping to allow us to study fluctuations in the correlated responses between competing visual inputs when the focus of attention was allocated to the RF of one neuron. While increasing difficulty in the spatial attention task, spike count correlations were either decreased to become negative between neuronal pairs, implying competition among them, with one neuron (or none) exhibiting attentional enhancement of firing rate, or increased to become positive, suggesting inter-neuronal cooperation, with one of the pair showing attentional suppression of spiking responses. Besides, the modulation of spike count correlations by task difficulty was independent of the attended locations. These findings provide evidence that task difficulty affects the functional interactions between different neuronal pools in V1 when selective attention resolves the spatial competition.


Asunto(s)
Corteza Visual , Animales , Atención/fisiología , Macaca mulatta , Neuronas/fisiología , Estimulación Luminosa , Corteza Visual Primaria , Corteza Visual/fisiología
18.
Heliyon ; 8(12): e12214, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36636221

RESUMEN

Background: Gastric cancer (GC) is one of the most common cancers of the digestive tract, with the fifth-highest incidence and third highest mortality rate in the world. Methods: In this study, the Kaplan-Meier Plotter database was used to analyze the correlation between the expression of the glutathione peroxidase (GPX) family and the clinical prognosis of gastric cancer (GC). The prognostic value of increased GPX family mRNA expression in GC patients in different clinical stages, with different differentiation degrees, in different genders and human epidermal growth factor receptor-2 (HER2) status, and treated with different therapeutic regimens was also studied. Results: The results showed that with the increase of GPX1 and GPX2 mRNA low expression levels, the overall survival (OS) of gastric cancer patients was longer. However, when the high expression levels of GPX3, GPX5 and GPX6 mRNA increased, gastric cancer patients presented good OS, while the increase of GPX4 mRNA expression level had no significant correlation with OS in gastric cancer patients. Conclusion: The results of this study are expected to provide a reliable basis for the clinical treatment of GC and lay a foundation for the development of a novel GC treatment approach.

19.
Zhongguo Zhong Yao Za Zhi ; 46(22): 5727-5735, 2021 Nov.
Artículo en Chino | MEDLINE | ID: mdl-34951160

RESUMEN

Mecicinal plants boast abundant natural compounds with significant pharmacological activity, and such compounds, featuring diversified and complex structures, can be used for research and development of drugs. At present, these natural compounds are directly extracted from herbs which, however, suffer from damaged wild resources and shortage of planting resources attributing to the increasing demand. Moreover, the low content in medicinal plants and complex structures are another challenge to the research and development of drugs. Heterologous synthesis with synthetic biology methods is a solution that has attracted wide attention. Synthetic bio-logy for the production of natural active compounds in Chinese medicinal plants involves the exploration of key enzymes in compound bio-synthetic pathways from plants, analysis of enzyme functions and mechanisms, and reconstruction and optimization of biosynthetic pathways in microorganisms for efficient synthesis of compounds. This study briefed the development process of synthetic biology and the biosynthetic pathways of terpenoids, alkaloids, and flavonoids, and summarized the related strategies of synthetic biology such as the reconstruction and optimization of metabolic pathways, regulation of fermentation process, and strain improvement, and the latest applications of heterogeneous synthetic biology in the production of natural compounds from Chinese medicinals. This study is expected to serve as a reference for the efficient production of terpenoids, alkaloids, flavonoids, and other active compounds from Chinese medicinal plants with strategies of synthetic biology.


Asunto(s)
Alcaloides , Plantas Medicinales , Vías Biosintéticas , China , Biología Sintética
20.
J Immunol ; 205(11): 3191-3204, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-33148717

RESUMEN

IL-10 is a potent anti-inflammatory cytokine capable of suppressing a number of proinflammatory signals associated with intestinal inflammatory diseases, such as ulcerative colitis and Crohn's disease. Clinical use of human IL-10 (hIL-10) has been limited by anemia and thrombocytopenia following systemic injection, side effects that might be eliminated by a gut-restricted distribution. We have identified a transcytosis pathway used by cholix, an exotoxin secreted by nonpandemic forms of the intestinal pathogen Vibrio cholerae A nontoxic fragment of the first 386 aa of cholix was genetically fused to hIL-10 to produce recombinant AMT-101. In vitro and in vivo characterization of AMT-101 showed it to efficiently cross healthy human intestinal epithelium (SMI-100) by a vesicular transcytosis process, activate hIL-10 receptors in an engineered U2OS osteosarcoma cell line, and increase cellular phospho-STAT3 levels in J774.2 mouse macrophage cells. AMT-101 was taken up by inflamed intestinal mucosa and activated pSTAT3 in the lamina propria with limited systemic distribution. AMT-101 administered to healthy mice by oral gavage or to cynomolgus monkeys (nonhuman primates) by colonic spray increased circulating levels of IL-1R antagonist (IL-1Ra). Oral gavage of AMT-101 in two mouse models of induced colitis prevented associated pathological events and plasma cytokine changes. Overall, these studies suggest that AMT-101 can efficiently overcome the epithelial barrier to focus biologically active IL-10 to the intestinal lamina propria.


Asunto(s)
Colitis/metabolismo , Interleucina-10/metabolismo , Mucosa Intestinal/metabolismo , Animales , Células Cultivadas , Colon/metabolismo , Enfermedad de Crohn/metabolismo , Citocinas/metabolismo , Femenino , Humanos , Inflamación/metabolismo , Macaca fascicularis , Macrófagos/metabolismo , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones SCID , Membrana Mucosa/metabolismo , Ratas , Ratas Wistar , Transcitosis/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...