Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Inorg Chem ; 59(13): 9177-9187, 2020 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-32447953

RESUMEN

By taking advantage of the efficient Förster resonance energy transfer (FRET) between near-infrared (NIR)-responsive lanthanide-doped upconversion nanoparticles (UCNPs) and Fenton reagent ferrocenyl compounds (Fc), a series of Fc-UCNPs was designed by functionalizing NaYF4:Yb,Tm nanoparticles with Fc1-Fc5 via surface-coordination chemistry. Fc-UCNP-Lipo nanosystems were then constructed by encapsulating Fc-UCNP inside liposomes for efficient delivery. Fc-UCNP can effectively release ·OH via a NIR-promoted Fenton-like reaction. In vitro and in vivo studies of Fc1-UCNP-Lipo confirmed the preferential accumulation in a tumor site followed by an enhanced uptake of cancer cells. After cellular internalization, the released Fc1-UCNP can effectively promote ·OH generation for tumor growth suppression. Such a Fc1-UCNP-Lipo nanosystem exhibits advantages such as easy fabrication, low drug dosage, and no ferrous ion release.


Asunto(s)
Antineoplásicos/uso terapéutico , Compuestos Ferrosos/uso terapéutico , Nanopartículas del Metal/uso terapéutico , Metalocenos/uso terapéutico , Neoplasias/tratamiento farmacológico , Animales , Antineoplásicos/síntesis química , Antineoplásicos/efectos de la radiación , Línea Celular Tumoral , Portadores de Fármacos/química , Femenino , Compuestos Ferrosos/química , Compuestos Ferrosos/efectos de la radiación , Humanos , Rayos Infrarrojos , Liposomas/química , Nanopartículas del Metal/química , Nanopartículas del Metal/efectos de la radiación , Metalocenos/química , Metalocenos/efectos de la radiación , Ratones Endogámicos BALB C , Neoplasias/patología , Terbio/química , Terbio/efectos de la radiación , Ensayos Antitumor por Modelo de Xenoinjerto , Itrio/química , Itrio/efectos de la radiación
2.
Eur J Pharm Biopharm ; 144: 217-229, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31563632

RESUMEN

Poor encapsulation and high initial burst were two major obstacles for the water-soluble peptide drug loaded microspheres preparation using the industrial emulsification method. In the present study, we hypothesized that the hydrophobic ion-pairing (HIP) complex strategy with a further healing of the pores within the microspheres may improve drug encapsulation and initial burst release. DSS was chosen as the most suitable one among the three test ion-pairing agents (SDS, DSS and STC) due to its high binding efficiency with drug and reversible dissociation capacity in presence of counter ions. The formation of HIP complex between octreotide acetate and DSS successfully reversed the highly water-soluble nature of the drug. A specific S/O/W method was adopted to encapsulate such drug containing HIP complex. The encapsulation efficiency of the drug was greatly improved compared with the conventional W1/O/W2 method (from 44% to 90%). Under the optimal healing conditions (the healing time 6 h, temperature 40 °C and 4% DEP content), the pores within the microspheres were effectively healed. Initial burst amount of octreotide acetate in S/O/W microspheres decreased to 3.56%. The pore healing effect was further confirmed by the scanning electron microscopy and fluorescence microscopy results. In the process of testing the drug release performance of such new strategy in vitro and in vivo, a more satisfactory single phase release profile with sustained and steady drug release was observed. These results suggested that the modified HIP strategy could be a promising platform for water-soluble peptide encapsulation with high encapsulation efficiency, low initial burst and stable drug release mechanism.


Asunto(s)
Liberación de Fármacos/efectos de los fármacos , Iones/química , Péptidos/química , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química , Animales , Composición de Medicamentos/métodos , Interacciones Hidrofóbicas e Hidrofílicas , Masculino , Microscopía Electrónica de Rastreo/métodos , Microesferas , Tamaño de la Partícula , Ratas , Ratas Sprague-Dawley , Solventes/química , Temperatura , Agua/química
3.
Pharm Res ; 36(8): 119, 2019 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-31165279

RESUMEN

PURPOSE: The purpose of this study was to characterize and detail the mechanism of a smart Ca2+ release depot (Ca3(PO4)2) about its ability for sustainable inhibition on peptide acylation within PLGA microspheres. METHODS: The octreotide acetate release and acylation kinetics were analyzed by RP-HPLC. Changes of Ca2+ concentration and adsorption behavior were determined by a Calcium Colorimetric Assay Kit. The inner pH changes were delineated by a classic pH sensitive probe, Lysosensor yellow/ blue® dextran. Morphological changes of microspheres, adsorption between polymer and additive, transformation of Ca3(PO4)2 were characterized using SEM, FTIR and SSNMR separately. RESULTS: Before and after microspheres formulation, the property and effectiveness of Ca3(PO4)2 were investigated. Compared with a commonly used calcium salt (CaCl2), high encapsulation efficiency (96.56%) of Ca3(PO4)2 guarantees lasting effectiveness. In an increasingly acidic environment that simulated polymer degradation, the poorly water-soluble Ca3(PO4)2 could absorb protons and transform into the more and more soluble CaHPO4 and Ca(H2PO4)2 to produce sufficient Ca2+ according to severity of acylation. The corresponding Ca2+ produce capacity fully met the optimum inhibition requirement since the real-time adsorption sites (water-soluble carboxylic acids) inside the degrading microspheres were rare. A sustained retention of three switchable calcium salts and slow release of Ca2+ were observed during the microsphere incubation. FTIR results confirmed the long-term inhibition effect induced by Ca3(PO4)2 on the adsorption between drug and polymer. CONCLUSIONS: With the presence of the smart Ca2+ depot (Ca3(PO4)2) in the microspheres, a sustainable and long-term inhibition of peptide acylation was achieved.


Asunto(s)
Calcio/química , Microesferas , Péptidos/química , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química , Acilación , Adsorción , Fosfatos de Calcio/química , Cationes Bivalentes , Portadores de Fármacos , Liberación de Fármacos , Concentración de Iones de Hidrógeno , Cinética , Octreótido/química , Protones , Solubilidad , Electricidad Estática , Agua/química
4.
Eur J Pharm Sci ; 134: 69-80, 2019 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-31002985

RESUMEN

Polymer degradation within the controlled-release depots comprising of lactide and glycolide (PLGA) forms an acidic microenvironment, in which severe acylation of the peptide by the polymer degradation products takes place. The aim of this study was to make out the role of the inner µpH on peptide acylation within the microspheres and how could it influence the reaction. The effects of pH on the acylation reaction within microspheres were composed of two aspects. Firstly, the inherent effect of pH on the acylation reaction itself was figured out: with the pH environment going up from acid to neutral, a model peptide (octreotide acetate) acylation became more and more serious. Then, the multivariate effect of pH on the dynamic microsphere delivery system especially the state of the acylation substrates (drug and oligomer) was investigated. When the inner pH was neutralized by Ca(OH)2 to varying degrees, polymer degradation rate, drug release rate, polymer degradation mechanism and oligomer accumulation state within the microspheres all changed. These changes highly affected the mass transfer of the acylation substrates to the external release medium. Neutralization of the µpH prolonged the retention time of drug and oligomer within the microspheres. Water absorption and single microsphere swelling experiments all showed a higher retention amount of acylation substrates during the critical period for peptide acylation. Generally, when the inner µpH was neutralized, except that the neutral environment itself promoted acylation reaction, the effects of pH on the dynamic system were also highly responsible for the serious acylation within the microspheres.


Asunto(s)
Concentración de Iones de Hidrógeno , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química , Polímeros/química , Acilación , Aminoacilación , Sistemas de Liberación de Medicamentos/métodos , Desarrollo de Medicamentos/métodos , Liberación de Fármacos , Cinética , Microesferas
5.
AAPS PharmSciTech ; 20(4): 155, 2019 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-30924008

RESUMEN

In this paper, a novel formulation of dual-release dry suspension of mosapride citrate (DRDS-MC) was designed which can be quickly released in the stomach while having sustained-release effect. Co-grinding mixture of mosapride citrate (MC) together with L-HPC as hydrophilic excipient was prepared in order to improve the solubility of MC. The co-grinding mixture was characterized by solubility studies, DSC, X-RD, SEM, FTIR, and size distribution before the preparation of the DRDS-MC. Then, the co-grinding mixture was used to prepare DRDS-MC via wet granulation method. The evaluation of DRDS-MC was focused on physicochemical properties, intestinal absorption, and pharmacokinetics. The results of DSC, X-RD, SEM, FTIR, and size distribution indicated that MC resides in co-grinding mixture with no crystalline changes, hydrogen bonds made L-HPC greatly improving the solubility of MC. Then, the dissolution of DRDS-MC reached 70% in pH 1.2 within 2 h, and the 12-h dissolution of MC in pH 6.8 was nearly 80%. The sedimentation volume after 3 h was 0.94 and redispersibility was good. The linear regression equation between in vitro release of DRDS-MC and intestinal absorption fraction in rats was: Y = 29.215 + 47.535*X (r = 0.952). At last, pharmacokinetic studies in beagle dogs demonstrated that DRDS-MC has prolonged effect compared with commercial formulation Gasmotin as a reference. All results indicated that the DRDS-MC could be quickly released in the stomach while having sustained-release effect.


Asunto(s)
Benzamidas/síntesis química , Benzamidas/farmacocinética , Absorción Gastrointestinal/efectos de los fármacos , Fármacos Gastrointestinales/síntesis química , Fármacos Gastrointestinales/farmacocinética , Morfolinas/síntesis química , Morfolinas/farmacocinética , Animales , Estudios Cruzados , Preparaciones de Acción Retardada/síntesis química , Preparaciones de Acción Retardada/farmacocinética , Perros , Evaluación Preclínica de Medicamentos/métodos , Liberación de Fármacos/efectos de los fármacos , Liberación de Fármacos/fisiología , Excipientes/síntesis química , Excipientes/farmacocinética , Absorción Gastrointestinal/fisiología , Masculino , Distribución Aleatoria , Ratas , Solubilidad , Suspensiones
6.
J Pharm Sci ; 108(7): 2367-2376, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30802455

RESUMEN

The purpose of the present study was to make a detailed comparison of 2 similar additives about their opposite effects on the initial burst of octreotide acetate from poly(lactic-co-glycolic acid) microspheres. We focused on identifying the key factor that influenced the initial burst of microspheres induced by small hydrophilic additives. The apparent reason resulting in such differences was different pore closing rates on the surface of these 2 batches. However, the potential mechanism was still unknown. To compare with the single-additive system, these 2 additives were coencapsulated together into the same formulation. Of surprise, the inhibition effect of glucose on burst release somehow disappeared and even turned out to be opposite. This phenomenon greatly reminds us that there must be some interactions between glucose and polymer, which are likely to be disturbed by coencapsulated CaCl2. However, small amount of additive can hardly make any detected difference. Therefore, additive-loaded microspheres without drug were prepared to further investigate the potential factors. Under this condition, differences were found. The key factor for glucose-induced accelerated pore closure and reduction in initial burst was the formation of hydrogen bonds between the glucose molecule and the polymer matrix.


Asunto(s)
Portadores de Fármacos/química , Octreótido/química , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química , Liberación de Fármacos , Glucosa/química , Enlace de Hidrógeno , Interacciones Hidrofóbicas e Hidrofílicas , Microesferas , Tamaño de la Partícula , Propiedades de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...