RESUMEN
Malignant melanoma (MM) is a common and highly invasive malignant tumor in clinical practice that is prone to occur in the skin and mucosa and prone to early metastasis. The common sites of metastasis are the liver, lungs, brain, etc. Metastatic gastrointestinal mucosa is relatively rare. Once metastasis occurs, the prognosis of patients is significantly worse. This article reports a case diagnosed as MM with liver, stomach, and duodenal metastasis by ultrasound-guided endoscopic puncture at Fengdu People's Hospital in Chongqing, with gastrointestinal discomfort as the initial symptom and a history of melanoma. Therefore, when a patient has a history of melanoma surgery and presents with digestive symptoms, it is necessary to consider the disease. Regular endoscopic screening should be performed, and early surgical treatment and postoperative chemotherapy combined with targeted therapy may improve patient prognosis and prolong patient survival.
RESUMEN
Objective: This study aims to develop and evaluate the biocompatibility and osteogenic potential of a novel injectable strontium-doped hydroxyapatite bone-repair material. Methods: The properties of strontium-doped hydroxyapatite/chitosan (Sr-HA/CS), hydroxyapatite/chitosan (HA/CS) and calcium phosphate/chitosan (CAP/CS) were assessed following their preparation via physical cross-linking and a one-step simplified method. Petri dishes containing Escherichia coli and Staphylococcus epidermidis were inoculated with the material for in vitro investigations. The material was also co-cultured with stem cells derived from human exfoliated deciduous teeth (SHEDs), to assess the morphology and proliferation capability of the SHEDs, Calcein-AM staining and the Cell Counting Kit-8 assay were employed. Osteogenic differentiation of SHEDs was determined using alkaline phosphatase (ALP) staining and Alizarin Red staining. For in vivo studies, Sr-HA/CS was implanted into the muscle pouch of mice and in a rat model of ovariectomy-induced femoral defects. Hematoxylin-eosin (HE) staining was performed to determine the extent of bone formation and defect healing. The formation of new bone was determined using Masson's trichrome staining. The osteogenic mechanism of the material was investigated using Tartrate-resistant acid phosphatase (TRAP) staining and immunohistochemical studies. Results: X-ray diffraction (XRD) and energy-dispersive spectroscopy (EDS) showed that strontium was successfully doped into HA. The Sr-HA/CS material can be uniformly squeezed using a syringe with a 13% swelling rate. Sr-HA/CS had a significant antibacterial effect against both E. coli and S. epidermidis (p < 0.05), with a stronger effect observed against E. coli. The Sr-HA/CS significantly improved cell proliferation and cell viability in vitro studies (p < 0.05). Compared to CAP/CS and CS, Sr-HA/CS generated a substantially greater new bone area during osteoinduction experiments (p < 0.05, p < 0.001). The Sr-HA/CS material demonstrated a significantly higher rate of bone repair in the bone defeat studies compared to the CAP/CS and CS materials (p < 0.01). The OCN-positive area and TRAP-positive cells in Sr-HA/CS were greater than those in control groups (p < 0.05). Conclusion: A novel injectable strontium-doped HA bone-repair material with good antibacterial properties, biocompatibility, and osteoinductivity was successfully prepared.
RESUMEN
In order to solve the problem of the insufficient range of the traditional fast mirror (FSM) angle measurement system in practical applications, a 2D large-angle FSM photoelectric angle measurement system based on the principle of diffuse reflection is proposed. A mathematical model of the angle measurement system is established by combining the physical properties of the diffuse reflecting plate, such as the rotation angle, rotation center, rotation radius, reflection coefficient and the radius of the diffuse reflecting surface. This paper proposes a method that optimizes the degree of nonlinearity based on this mathematical model. The system is designed and tested. The experimental results show that changing the diffuse reflection surface area can improve the nonlinearity of the angle measurement system effectively. When the radius of the diffuse reflection surface is 3.3 mm, the range is ±20°, the non-linearity is 0.74%, and the resolution can reach up to 2.3â³. The system's body is simple and compact. It is also capable of measuring a wider range of angles while linearity is guaranteed.
RESUMEN
For the past 50 years, hydroxyapatite (HA) has been widely used in bone defect repair because it is the main inorganic component of the mineral phase of a human bone. Extensive preclinical and clinical studies have shown that strontium (Sr) can safely and effectively help prevent and treat bone diseases, including osteoporosis. These findings have resulted in the concept of integrating Sr and HA for bone disease management. The doped Sr can improve the physicochemical properties of HA and enhance its angiogenic and bone regeneration ability. Nevertheless, no study has reviewed the design strategy of Sr-doped HA (Sr-HA) to understand its biological roles. Therefore, in this article, we review recent developments in Sr-HA preparation and its effect on osteogenesis and angiogenesis in vitro and in vivo along with key suggestions for future research and development.
Asunto(s)
Angiogénesis , Osteogénesis , Humanos , Hidroxiapatitas/química , Hidroxiapatitas/farmacología , Durapatita/química , Durapatita/farmacología , Estroncio/farmacología , Estroncio/químicaRESUMEN
Postoperative intestinal ileus is common after laparoscopic surgery, the incidence of those after hysterectomy was 9.2%. Anesthesia is one of the independent risk factors of postoperative ileus. Dexmedetomidine has been widely used in perioperative anesthesia and previous reports suggested that intraoperative dexmedetomidine may be associated with the improvement of gastrointestinal function recovery after abdominal surgery. We hypothesized that dexmedetomidine could improve gastrointestinal function recovery after laparoscopic hysteromyomectomy. Participants in elective laparoscopic hysteromyomectomy were enrolled with a single dose of 0.5 µg kg-1 dexmedetomidine or the same volume of placebo intravenously administered for 15 min, followed by continuous pumping of 0.2 µg kg-1 h-1 of corresponding drugs until 30 min before the end of surgery. The primary outcome was the time to first flatus. Secondary outcomes were the time to first oral feeding and the first defecation, the occurrence of flatulence, pain score and postoperative nausea and vomiting until 48 h after the surgery. Eventually, 106 participants (54 in dexmedetomidine group and 52 in placebo group) were included for final analysis. The time to first flatus (SD, 25.83 [4.18] vs 27.67 [3.77], P = 0.019), oral feeding time (SD, 27.29 [4.40] vs 28.92 [3.82], P = 0.044), the time to first defecation (SD, 59.82 [10.49] vs 63.89 [7.71], P = 0.025), abdominal distension (n%, 12 (22.2) vs 21 (40.4), P = 0.044), PONV at 24 h (n%, 10 (18.5) vs 19 (36.5), P = 0.037), NRS 6 h (3.15(0.68) vs 3.46 (0.87), P = 0.043) and NRS 12 h (3.43 (0.88) vs 3.85 (0.85), P = 0.014) of dexmedetomidine group were significantly shorter than those of the placebo group. Intraoperative dexmedetomidine reduced the time to first flatus, first oral feeding, and first defecation. These results suggested that this treatment may be a feasible strategy for improving postoperative gastrointestinal function recovery in patients undergoing laparoscopic hysteromyomectomy.
Asunto(s)
Dexmedetomidina , Ileus , Laparoscopía , Método Doble Ciego , Femenino , Flatulencia , Humanos , Dolor Postoperatorio , Recuperación de la FunciónRESUMEN
Objective: The study aimed to explore a new approach for the treatment of osteosarcoma through combining biomaterials with next-generation small molecule-based targeted therapy. Methods: The model of osteosarcoma was established by 4-hydroxyaminoquinoline 1-oxide (4-HAQO) in mice while the collagen-thermosensitive hydrogel-calcium phosphate (CTC) biocomposites were prepared, and the small molecule inhibitors were virtually screened and synthesized. Then, for the osteosarcoma cell line, MG-63 cells were used to validate our bioinformatic findings in vitro, and the mouse osteosarcoma models were treated by combing CTC composites and small-molecule inhibitors after debridement. Results: Five compounds, namely, ZINC150338698, ZINC14768621, ZINC4217203, ZINC169291448, and ZINC85537017, were found in the ZINK database. Finally, ZINC150338698 was selected for chemical synthesis and experimental verification. The results of the MTT assay and Hoechst staining showed that the small-molecule inhibitor ZINC150338698 could significantly induce MG-63 cell death. Furthermore, CTC composites and ZINC150338698 could repair the bone defects well after the debridement of osteosarcoma. In addition, the biomaterials and small-molecule inhibitors have good biocompatibility and biosafety. Conclusion: Our findings not only offer systems biology approach-based drug target identification but also provide new clues for developing novel treatment methods for future osteosarcoma research.
RESUMEN
This paper proposes a new type of flexible force-sensitive structure that is resistant to gamma radiation and is made of tungsten oxide (WO3) powder, polydimethylsiloxane (PDMS), and carbon nanotube (CNT) sponge. The thickness of the sample was 2.2 mm, the middle interlayer was composed of a carbon nanotube (CNT) sponge and PDMS to form a conductive layer, and the upper and lower layers were made of tungsten oxide and PDMS, which formed a gamma-ray shielding layer. When the particle size of the tungsten oxide powder was 50 nm, 100 nm, and 1 µm, the composite force-sensitive structure exhibited better force-sensitive performance. The composite force-sensitive structure was irradiated with doses of 5, 20, 50, and 100 KGy through 60Co- rays with an energy of 1.25 MeV. The results showed that the force-sensitive characteristics changed little in significance after irradiation by different doses of gamma rays, indicating that the force-sensitive structure has good resistance to gamma radiation. This flexible stress sensor can be used in soft robots and health inspection, even in harsh environments without significant performance loss.
RESUMEN
Objective: The objective of this study is to compare the bone induction of five kinds of calcium phosphate (Ca-P) biomaterials implanted in mice and explore the vascularization and particle-size-related osteoinductive mechanism. Methods: The following five kinds of Ca-P biomaterials including hydroxyapatite (HA) and/or tricalcium phosphate (TCP) were implanted in the muscle of 30 BALB/c mice (n = 6): 20 nm HA (20HA), 60 nm HA (60HA), 12 µm HA (12HA), 100 nm TCP (100TCP) and 12 µm HA + 100 nm TCP (HATCP). Then, all animals were put on a treadmill to run 30 min at a 6 m/h speed each day. Five and ten weeks later, three mice of each group were killed, and the samples were harvested to assess the osteoinductive effects by hematoxylin eosin (HE), Masson's trichrome and safranine−fast green stainings, and the immunohistochemistry of the angiogenesis and osteogenesis markers CD31 and type I collagen (ColI). Results: The numbers of blood vessels were 139 ± 29, 118 ± 25, 78 ± 15, 65 ± 14 in groups HATCP, 100TCP, 60HA and 20HA, respectively, which were significantly higher than that of group 12HA (12 ± 5) in week 5 (p < 0.05). The area percentages of new bone tissue were (7.33 ± 1.26)% and (8.49 ± 1.38)% in groups 100TCP and HATCP, respectively, which were significantly higher than those in groups 20HA (3.27 ± 0.38)% and 60HA (3.43 ± 0.27)% (p < 0.05); however, no bone tissue was found in group 12HA 10 weeks after transplantation. The expression of CD31 was positive in new blood vessels, and the expression of ColI was positive in new bone tissue. Conclusions: Nanoscale Ca-P biomaterials could induce osteogenesis in mice muscle, and the osteoinductive effects of TCP were about 124% higher than those of 20HA and 114% higher than those of 60HA. The particle size of the biomaterials affected angiogenesis and osteogenesis. There was a positive correlation between the number of blood vessels and the area percentage of new bone tissue; therefore, osteoinduction is closely related to vascularization. Our results provide an experimental basis for the synthesis of calcium−phosphorus matrix composites and for further exploration of the osteoinductive mechanism.
RESUMEN
In this paper, a carbon nanotube (CNT)/polydimethylsiloxane (PDMS) composite force-sensitive structure with good flexibility is proposed and fabricated, and the measurement of scanning electron microscopy (SEM) and Raman are carried out. The equivalent circuit of force-sensitive test of structure is performed and analyzed under direct current (DC) and alternating current (AC) conditions. Under AC conditions, experimental results further show that the sensitivity and sensitivity factors of force-sensitive structures are 0.15 KPa-1 and 2.17 in the pressure range of 600-1000 KPa compressive stress and 20-50% tensile stress, respectively. These results are increased by 36.4% and 38.2% compared to the results of compressive stress (0.11 KPa-1) and tensile stress (1.57) under DC conditions, respectively. It shows that the carbon nanotube/PDMS composite has higher test accuracy under AC conditions.
RESUMEN
A force-sensitive structure of an InAs Quantum Dot (QD) embedded in a high electron mobility transistor (HEMT) is presented in this paper. The size of an InAs QD is about 30 nm prepared by the S-K growth mode, and the force-sensitive structure is fabricated by molecular beam epitaxy (MBE). The force-sensitivity characteristic of the QD HEMT is studied by the electrical and mechanical properties. The electrical characteristics show that the InAs QD-HEMT has linear, cut-off, and saturation operating states, and produces different output currents under different gate voltages, which shows that the structure is reasonable. Furthermore, the results of the output characteristics under different pressure show that the output voltage of the QD-HEMT decreases with the increase in pressure, which indicates that the InAs QD-HEMT has a vital mechanical-electrical coupling characteristic. The output voltage of the InAs QD-HEMT in the range of 0-100 kPa shows that the sensitivity was 1.09 mV/kPa.
RESUMEN
Based on the tactile mechanism of human fingertips, a bionic tactile sensor fabricated from polyvinylidene fluoride piezoelectric film is proposed, which can identify the surface softness, viscoelasticity, thermal conductivity, and texture roughness of the object. The tactile sensor is mounted on the fingertip of the bionic manipulator, which obtains the surface features by touching and sliding the object. The time-domain features of the output signal are used for preliminarily discriminating the softness, viscoelasticity, and heat conduction of the object. Finally, based on the Back Propagation and the Particle Swarm Optimization-Back Propagation neural network algorithm, the recognition experiment of texture roughness is carried out using the PSO algorithm to improve the BP neural network so that the optimized BP algorithm has a higher convergence accuracy. The results show that the PSO-BP algorithm achieved the highest accuracy of 98% for identifying samples with different roughnesses and the average recognition achieved an accuracy of 94%. The bionic piezoelectric tactile sensor proposed in this paper has a good application development prospect in recognizing the surface features of objects and intelligent robots.
RESUMEN
As wireless sensing has developed, wireless behavior recognition has become a promising research area, in which human motion duration is one of the basic and significant parameters to measure human behavior. At present, however, there is no consideration of the duration estimation of human motion leveraging wireless signals. In this paper, we propose a novel system for robust duration estimation of human motion (R-DEHM) with WiFi in the area of interest. To achieve this, we first collect channel statement information (CSI) measurements on commodity WiFi devices and extract robust features from the CSI amplitude. Then, the back propagation neural network (BPNN) algorithm is introduced for detection by seeking a cutting line of the features for different states, i.e., moving human presence and absence. Instead of directly estimating the duration of human motion, we transform the complex and continuous duration estimation problem into a simple and discrete human motion detection by segmenting the CSI sequences. Furthermore, R-DEHM is implemented and evaluated in detail. The results of our experiments show that R-DEHM achieves the human motion detection and duration estimation with the average detection rate for human motion more than 94% and the average error rate for duration estimation less than 8%, respectively.
Asunto(s)
Algoritmos , Movimiento (Física) , Humanos , Análisis de Componente Principal , Relación Señal-Ruido , Tecnología InalámbricaRESUMEN
A rapid confirmatory and quantitative method using liquid chromatography-high resolution mass spectrometry (LC-HRMS) was developed to determine sub-µg/kg levels of chloramphenicol (CAP) in meat products. The sample plus deuterated chloramphenicol internal standard was homogenised, extracted with ethyl acetate, centrifuged and the supernatant evaporated to dryness. The residue was re-dissolved in methanol/5% ammonium acetate solution (20:80, v/v), defatted with hexane and directly injected into the LC-MS. Chromatographic separation was performed on a C(18) column using methanol/water (60:40, v/v) as the mobile phase. CAP was detected using selected ion monitoring of the high accurate mass of the molecular ion [M-H](-) of CAP using a LTQ-Orbitrap mass spectrometer in negative electrospray ionisation mode (ESI(-)). The limit of quantification of the method was 0.1 µg/kg using isotope internal standard. Recoveries of CAP spiked at levels of 0.1-1.0 µg/kg ranged from 73 to 99%, and the relative standard deviation ranged 3.9-8.1%.