RESUMEN
Background: Head and neck squamous cell carcinoma (HNSC) is the 7th most common type of cancer in the world. Through the advantages of The Cancer Genome Atlas (TCGA) large-scale sequencing-based genome analysis technology, we can explore the potential molecular mechanisms that can improve the prognosis of HNSC patients. Methods: The HNSC transcriptome and clinical data were downloaded from TCGA database. A univariate survival analysis and differential expression analysis were conducted to obtain the intersection gene set. A protein-protein interaction (PPI) analysis, modular analysis, and Gene Ontology (GO)/Kyoto Encyclopedia of Genes and Genomes (KEGG) functional enrichment analysis were then conducted to identify the hub genes. Clinical correlation analysis, univariate and multivariate Cox regression analyses were performed on the identified hub genes to determine the prognostic impact of hub genes on HNSC patients. Results: In total, 601 intersecting gene sets were obtained. A modular analysis was conducted, and the highest scoring module was 19.304. Based on the GO/KEGG enrichment analysis results, CD247 molecule (CD247) was ultimately selected as the gene for this study. The CD247 were divided into a high-expression group and a low-expression group. The Kaplan-Meier survival curve analysis showed that there was a significant difference between the 2 groups (P<0.0001). The median survival time of the low-expression CD247 group was 30.9 months, and the 5-year survival rate was 36.4%. While the median survival time of the high-expression CD247 group was 68.8 months, and the 5-year survival rate was 52.3%. The clinical correlation analysis showed that CD247 was significantly negatively correlated with pathological tumor stage (pT) and pathological nodal extracapsular spread. Gene Set Enrichment Analysis (GSEA) showed that CD247 activating KEGG pathway hsa04650 and hsa04660. Conclusions: CD247 is an independent protective factor in the prognosis of HNSC patients. By activating the hsa04650 and hsa04660 pathways, the expression of interferon gamma, interleukin (IL)-2, and IL-10 is promoted, which in turn improves the tumor immune monitoring ability of the body, induces tumor cell apoptosis, and inhibits tumor cell growth. CD247 is a potential target for improving the clinical treatment effect of HNSC and the prognosis of patients.
RESUMEN
Breast cancer stem-like cells (BCSLCs) with a CD44+/CD24-/low phenotype initiate the invasion and metastasis of breast cancer. The expression of New York oesophageal squamous cell carcinoma 1 (NY-ESO-1), one of the most immunogenic cancer-testicular antigens, is largely restricted to cancer and germ cells/placental trophoblasts, with little to no expression in normal adult somatic cells. Currently, few studies have reported the expression or function of NY-ESO-1 in BCSLCs. In the present study, immunohistochemistry indicated enhanced expression levels of NY-ESO-1/CD44 (P<0.01) and decreased expression levels of CD24 (P<0.01) in metastatic breast cancer tissues (MBCT) compared with non-MBCT. Additionally, the co-localization of CD44, CD24 and NY-ESO-1 in tissue samples was determined using immunofluorescence analysis. The results revealed that the expression of NY-ESO-1/CD44/CD24 was associated with breast cancer metastasis. Moreover, Spearman's rank correlation analysis indicated that CD44/CD24 expression was significantly correlated with that of NY-ESO-1. In the present study, mammosphere culture, a valuable method of BCSLC enrichment, was used to enrich MCF-7 and SK-BR-3 BCSLCs; immunofluorescence, western blotting and flow cytometry demonstrated increased expression levels of NY-ESO-1 and CD44, and low expression levels of CD24 in BCSLCs. Furthermore, the cell migration and invasion assays verified that BCSLCs with an increased NY-ESO-1 expression level exhibited greater invasive and migratory capacity compared with parental breast cancer cells. In addition to previously reported findings from the Oncomine database, it was ascertained that CD44+/CD24-/low BCSLCs with an increased level of NY-ESO-1 expression initiated the invasion and metastasis of breast cancer; therefore, NY-ESO-1 may serve as a novel target for metastatic breast cancer immunotherapy.