Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Small ; : e2404442, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39224046

RESUMEN

Li2SrSiO4:Eu2+ is a promising substitute for traditional Y3Al5O12:Ce3+ (YAG:Ce3+) owing to its strong orange-yellow emission of 4f-5d transition originating from Eu2+ dopant, covering the more red-light region. However, its inevitable luminescence thermal quenching at high temperatures and the self-oxidation of Eu2+ strongly impede their applications. Their remediation remains highly challenging. Herein, an anti-self-oxidation(ASO) concept of Eu2+ in Li2SrSiO4 substrate by adding trivalent rare-earth ions (A3+: A = La, Gd, Y, Lu) for highly efficient and stable orange-yellow light emission have been proposed. A significantly increased orange-yellow emission (202% improvement) from Li2Sr0.95A0.05SiO4:Eu2+ with a wide range near-zero thermal quenching is obtained, superior to other Eu2+ activated phosphors. The presence of A3+ ions with various radii modifies the ASO degree of Eu2+ ions, achieving the tunable chemical state, composition, electronic configuration, crystal-field strength, and luminescent characteristics of the developed phosphors. For the proof of the concept, a W-LED device and a PDMS (Polydimethylsiloxane) luminescent film are fabricated, endowing excellent luminescence performance and thermal stability and the huge application prospects of Li2SrSiO4:Eu2+ in lighting and display fields.

2.
J Environ Manage ; 366: 121875, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39018863

RESUMEN

Currently, microbial contamination issues have globally brought out a huge health threat to human beings and animals. To be specific, microorganisms including bacteria and viruses display durable ecological toxicity and various diseases to aquatic organisms. In the past decade, the photocatalytic microorganism inactivation technique has attracted more and more concern owing to its green, low-cost, and sustainable process. A variety kinds of photocatalysts have been employed for killing microorganisms in the natural environment. However, two predominant shortcomings including low activity of photocatalysts and diverse impacts of water characteristics are still displayed in the current photocatalytic disinfection system. So far, various strategies to improve the inherent activity of photocatalysts. Other than the modification of photocatalysts, the optimization of environments of water bodies has been also conducted to enhance microorganisms inactivation. In this mini-review, we outlined the recent progress in photocatalytic sterilization of microorganisms. Meanwhile, the relevant methods of photocatalyst modification and the influences of water body characteristics on disinfection ability were thoroughly elaborated. More importantly, the relationships between strategies for constructing advanced photocatalytic microorganism inactivation systems and improved performance were correlated. Finally, the perspectives on the prospects and challenges of photocatalytic disinfection were presented. We sincerely hope that this critical mini-review can inspire some new concepts and ideas in designing advanced photocatalytic disinfection systems.


Asunto(s)
Desinfección , Desinfección/métodos , Catálisis , Bacterias/efectos de la radiación , Bacterias/efectos de los fármacos
3.
Foods ; 13(3)2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38338525

RESUMEN

The cooking method is extremely important for the production of low-salt, wet-marinated, fermented golden pomfret because it strongly influences its flavor components and organoleptic quality. There are also significant differences in flavor preferences in different populations. The present study analyzed differences in the aroma characteristics of wet-marinated fermented golden pomfret after boiling, steaming, microwaving, air-frying, and baking using a combination of an electronic nose, GC-IMS, and SPME-GC-MS. Electronic nose PCA showed that the flavors of the boiled (A), steamed (B), and microwaved (C) treatment groups were similar, and the flavors of the baking (D) and air-frying (E) groups were similar. A total of 72 flavor compounds were detected in the GC-IMS analysis, and the comparative analysis of the cooked wet-marinated and fermented golden pomfret yielded a greater abundance of flavor compounds. SPME-GC-MS analysis detected 108 flavor compounds, and the results were similar for baking and air-frying. Twelve key flavor substances, including hexanal, isovaleraldehyde, and (E)-2-dodecenal, were identified by orthogonal partial least-squares discriminant analysis (OPLS-DA) and VIP analysis. These results showed that the cooking method could be a key factor in the flavor distribution of wet-marinated fermented golden pomfret, and consumers can choose the appropriate cooking method accordingly. The results can provide theoretical guidance for the more effective processing of fish products and the development of subsequent food products.

4.
Foods ; 13(2)2024 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-38254607

RESUMEN

The effect of temperature fluctuations on the freshness of shrimp in simulated trays was investigated by setting a freeze-thaw (F-T) cycle of 12 h after freezing at -20 °C and thawing at 1 °C under refrigeration. The results showed that the shrimp's physicochemical properties deteriorated to different extents with the increase in F-T cycles. The total colony count of shrimp was 6.07 lg CFU/g after 21 cycles, and the volatile saline nitrogen content reached 30.36 mg/100 g, which exceeded the edible standard. In addition, the sensory quality and textural properties (hardness, elasticity, chewiness, and adhesion) declined to different degrees with increased F-T cycles. LF-NMR and protein property measurements showed that F-T cycles resulted in reduced water holding capacity and protein denaturation, which were the main factors leading to the deterioration of shrimp quality. Furthermore, flavor changes were analyzed using an electronic nose sensor to establish a freshness model. The W1W, W1S, W2S, and W5S sensors were correlated with the quality changes in shrimp and used as the main sensors for detecting the freshness of Penaeus vannamei. As a result, to better maintain the overall freshness, temperature fluctuations should be minimized in sales and storage, and fewer than 8 F-T cycles should be performed.

5.
ACS Omega ; 8(43): 40362-40374, 2023 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-37929130

RESUMEN

To improve the permeability of wood, three chemical reagents were used to pretreat Chinese fir, white oak, and poplar. Through a factorial experiment with the mass change rate of the wood as the indicator, NaOH was preliminarily selected as the pretreatment agent. Further orthogonal experiments were conducted to explore the effects of NaOH concentration, temperature, and treatment time on the mass change rate, dye uptake rate, transverse dye penetration rate, and color difference of the wood. A fuzzy, comprehensive analysis was used to optimize the pretreatment process. The results showed that after NaOH pretreatment, the highest mass change rates of Chinese fir, white oak, and poplar were 11.30, 10.66, and 8.53%, respectively. Compared with untreated wood, the dye uptake rate of three wood species increased by 1.05, 1.43, and 1.13 times, respectively; the radial dye penetration rate increased by 5.05, 4.14, and 3.38 times, respectively; and the tangential dye penetration rate increased by 3.91, 3.45, and 3.84 times, respectively. These findings indicate an enhancement in permeability for all three wood species following NaOH pretreatment. The brightness of the three wood species decreased after NaOH pretreatment, while the yellow and red colors increased in Chinese fir and poplar and decreased in white oak. Scanning electron microscopy showed that pits in the wood opened after pretreatment, while extractives decreased. Infrared spectroscopy analysis indicated varying degrees of extraction effects from NaOH pretreatment across the three wood species, along with increased active hydroxyl groups within the wood structure. X-ray diffraction analysis revealed that NaOH dissolved noncrystalline substances in wood, leading to improved crystallinity. These experimental findings provide essential data for future endeavors in wood pretreatment and subsequent staining processes.

6.
Inorg Chem ; 62(32): 12814-12821, 2023 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-37535927

RESUMEN

Multifunctional single-molecule magnets (SMMs) have sparked great interest, but chiral SMMs obtained via spontaneous resolution are rarely reported. We synthesized a series of chiral trinuclear hepta-coordinate lanthanide complexes [ZnII3LnIII3] (1 for Dy, 2 for Tb, 3 for Gd, and 4 for Dy0.07Y0.93) using the achiral flexible ligand H2L (2,2'-[1,2-ethanediylbis[(ethylimino)methylene]]bis[3,5-dimethylphenol]). The complexes crystallize in the chiral P63 group space, and two enantiomers of different chirality are spontaneously resolved. Three [Zn(L)Cl]- anions utilize the two phenoxy oxygen atoms of each L2- to coordinate with three lanthanide ions, respectively, and the three hepta-coordinate D5h lanthanide ions are arranged in a triangle. The chirality comes from the propeller arrangement of the peripheral three bidentate chelate L2- ligands like octahedral [M(AA)3]n+/- (M = transition metal ions; AA = bidentate chelate ligands, e.g., 2,2'-bipyridine, 1,10-phenathroline, ethylenediamine, acac- or oxalate). Complex 1 exhibits an AC susceptibility signal and is frequency-dependent, which is typical of SMMs. Complex 4, doped with a large amount of diamagnetic Y(III) in Dy(III), exhibits Ueff = 48.3 K and τ0 = 4.4 × 10-8 s in experiments. Complex 2 shows circularly polarized luminescence and apparent photoluminescence, typical of the f-f transitions of Tb(III).

7.
Inorg Chem ; 62(2): 893-903, 2023 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-36599618

RESUMEN

To date, non-contact luminescence thermometry methods based on fluorescence intensity ratio (FIR) technology have been studied extensively. However, designing phosphors with high relative sensitivity (Sr) has become a research hotspot. In this work, Eu3+ single-doped Ca2Sb2O7:Eu3+ phosphors with a high Sr value for dual-emitting-center luminescence thermometry are developed and proposed. The anti-thermal quenching behavior of Eu3+ originating from the energy transfer (ET) of host → Eu3+ is found and proved in the designed phosphors. Interestingly, adjustable color emission from blue to orange can be achieved. Surprisingly, the degree of the anti-thermal quenching behavior of Eu3+ gradually reduces from 240 to 127% as the Eu3+ doping content increases from 0.005 to 0.05 mol, attributed to most Eu3+ being located in the low symmetrical [Ca1O8] dodecahedral site. According to the differentiable responses of the host and Eu3+ to temperature, the maximal Sr value reaches 3.369% K-1 (383 K). Moreover, the ambient temperature can be intuitively predicted by observing the emitting color. Owing to the excellent performance in optical thermometry, color-tunable properties, and outstanding acid and alkali resistance for polydimethylsiloxane (PDMS) films, the developed Eu3+ single-doped Ca2Sb2O7:Eu3+ phosphors are expected to be prospective candidates in luminescence thermometers and LED devices in various conditions.

8.
Sensors (Basel) ; 22(18)2022 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-36146208

RESUMEN

In order to solve the tracking accuracy problem of the redundant manipulator, a PI control method with Henry gas solubility optimization parameter regulator (PI-HGSO) is proposed in this paper. This method consists of the controller and the parameter regulator. The characteristic is that the position deviation of a manipulator is equivalent to a specific function; namely, the proportional-integral (PI) controller is used to adjust the deviation input. The error can be better corrected by the processing of the PI controller so that the inverse kinematics solution of the minimum error can be realized. At the same time, the parameter selection of PI controllers has always been a difficulty in controller design. To address the problem, Henry gas solubility optimization (HGSO) is selected as a parameter regulator to optimize the parameters and obtain the optimal controller, thereby achieving high-precision trajectory tracking. Experiments on 9-DOF redundant manipulator show that our method achieves competitive tracking accuracy in contrast with others. Meanwhile, the efficiency and accuracy of the PI controller are greatly guaranteed by using HGSO to automatically optimize controller parameters instead of making approximate adjustments through infinite manual trial and error. Therefore, the feasibility and competitive superiority of PI-HGSO is fully proved in trajectory planning of redundant manipulators.


Asunto(s)
Solubilidad , Fenómenos Biomecánicos
9.
Dalton Trans ; 51(12): 4685-4694, 2022 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-35224599

RESUMEN

Luminescent thermometers provide a non-contact method of probing temperature with high sensitivity and response speed at the nanoscale. Synergistic photoluminescence from different activators can realize high sensitivity for luminescent thermometers by finely selecting ions with specific crystallographic sites. Herein, the more temperature-sensitive Mn4+ and the less-sensitive Eu3+ (or Sm3+) activators are co-doped into a Ca2GdSbO6 matrix to form an effective thermometer, where Mn4+ and Eu3+ (or Sm3+) ions occupy the Sb5+ and Gd3+ sites, respectively. The co-doping of Eu3+ ions or Sm3+ ions leads to lattice expansion of Ca2GdSbO6 matrix and a tuned narrow emission from deep-red to orangish-red. According to the ratio of luminescence intensity, the maximal Sa and Sr values are 0.19 K-0 (347 K) and 1.38% K-( (420 K) for Ca2GdSbO6:Mn4+/Eu3+ probe and 0.26 K-p (363 K) and 1.55% K-( (430 K) for Ca2GdSbO6:Mn4+/Sm3+ probe thermometers, respectively. In addition, thermometers based on Mn4+ emission lifetimes can provide the highest relative sensitivity of 1.47% K-s at 425 K. Thus, the highly-temperature-sensitive Ca2GdSbO6:Mn4+/(Eu3+ or Sm3+) phosphor is a promising candidate for practical luminescence thermometers.

10.
J Oncol ; 2022: 4656661, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35096061

RESUMEN

Osteosarcoma remains a major health problem in teenagers. However, its pathogenesis mechanism remains not fully elucidated. This study aims to identify the prognostic biomarkers for osteosarcoma. In this study, we selected genes with a median absolute deviation (MAD) value of the top 5000 in the GSE32981 dataset for subsequent analysis. Weighted correlation network analysis (WGCNA) was used to construct a coexpression network. WGCNA showed that the tan module and midnight blue module were highly correlated with origin and metastases of osteosarcoma, respectively. Enrichment analysis was conducted using genes in the tan module and midnight blue module. A gene coexpression network was constructed by calculating the Spearman correlation coefficients. Four key genes (LTF, C10orf107, HIST1H2AK, and NEXN) were identified to be correlated with the prognosis of osteosarcoma patients. LTF has the highest AUC value, and its effect on osteosarcoma cells was then evaluated. The effect of LTF overexpression on proliferation, migration, and invasion of MG63 and 143B cells was detected by the CCK-8 assay, transwell cell migration assay, and transwell invasion assay, respectively. The overexpression of LTF promoted the proliferation, migration, and invasion of MG63 and 143B cells. In conclusion, LTF may serve as a prognostic biomarker for osteosarcoma.

11.
Inorg Chem ; 60(22): 17398-17406, 2021 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-34723491

RESUMEN

Modulating the crystal field environment around the emitting ions is an effective strategy to improve the luminescence performance of the practical effective phosphor materials. Here, smaller Y3+ ions are introduced into substituting the Gd3+ sites in Ba2GdNbO6:Mn4+ phosphor to modify the optical properties, including the enhanced luminescence intensity, redshift, and longer lifetime of the Mn4+ ions. The substitution of smaller Y3+ ions leads to lattice contraction and then strengthens pressure on the local structure, enhances lattice rigidity, and suppresses nonradiative transition. Moreover, the prototype phosphor-converted light-emitting diode (LED) demonstrates a continuous change photoelectric performance with a correlated color temperature of 4883-7876 K and a color rendering index of 64.1-83.2, suggesting that it can be one of the most prospective fluorescent materials applied as a warm red component for white LEDss. Thus, the smaller ion partial substitution can provide a concise approach to modulate the crystal field environment around the emitting ions for excellent luminescence properties of phosphors toward the modern artificial light.

12.
Langmuir ; 37(18): 5642-5650, 2021 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-33929198

RESUMEN

The Frank-Kasper (FK) phases self-assembled from block copolymer systems have attracted abiding interest. In this work, the formation mechanism of the complex FK phases from the self-assembly of simple A1B1A2B2 tetrablock copolymers is investigated using self-consistent field theory (SCFT). For a typical set of parameter spaces, we utilize SCFT to construct a number of phase diagrams. In these phase diagrams, the FK phases exhibit a notable stability region. The stable region of the FK phases reveals that the distribution of A1 and A2 blocks can be precisely regulated by tuning the ratio of the A1/A2 block, wherein the long A1 blocks can aggregate within the "core" while the short A2 blocks can form the "shell" of a spherical domain in the FK phases, respectively, to accommodate the sizes and shapes of the spherical domains in the complex spherical packing phases. Besides, we also demonstrate that the existence of the B2 block plays a crucial factor to stabilize the FK phases.

13.
Materials (Basel) ; 13(24)2020 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-33353131

RESUMEN

High-entropy oxides (HEOs) have attracted more and more attention because of their unique structures and potential applications. In this work, (FeCoCrMnZn)3O4 HEO powders were synthesized via a facile solid-state reaction route. The confirmation of phase composition, the observation of microstructure, and the analysis of crystal structure, distribution of elements, and valences of elements were conducted by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDS), and X-ray photoelectron spectroscopy (XPS), respectively. Furthermore, a (FeCoCrMnZn)3O4/nickel foam ((FeCoCrMnZn)3O4/NF) electrode was prepared via a coating method, followed by the investigation of its supercapacitor performance. The results show that, after calcining (FeCoCrMnZn)3O4 powders at 900 °C for 2 h, a single spinel structure (FCC, Fd-3m, a = 0.8399 nm) was obtained with uniform distribution of Fe, Co, Cr, Mn, and Zn elements, the typical characteristic of a high-entropy oxide. In addition, the mass specific capacitance of the (FeCoCrMnZn)3O4/NF composite electrode was 340.3 F·g-1 (with 1 M KOH as the electrolyte and 1 A·g-1 current density), which indicates that the (FeCoCrMnZn)3O4 HEO can be regarded as a prospective candidate for an electrode material in the field of supercapacitor applications.

14.
Nat Commun ; 11(1): 1992, 2020 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-32332751

RESUMEN

Polarization change induced by directional electron transfer attracts considerable attention owing to its fast switching rate and potential light control. Here, we investigate electronic pyroelectricity in the crystal of a mononuclear complex, [Co(phendiox)(rac-cth)](ClO4)·0.5EtOH (1·0.5EtOH, H2phendiox = 9, 10-dihydroxyphenanthrene, rac-cth = racemic 5, 5, 7, 12, 12, 14-hexamethyl-1, 4, 8, 11-tetraazacyclotetradecane), which undergoes a two-step valence tautomerism (VT). Correspondingly, pyroelectric current exhibits double peaks in the same temperature domain with the polarization change consistent with the change in dipole moments during the VT process. Time-resolved Infrared (IR) spectroscopy shows that the photo-induced metastable state can be generated within 150 ps at 190 K. Such state can be trapped for tens of minutes at 7 K, showing that photo-induced polarization change can be realized in this system. These results directly demonstrate that a change in the molecular dipole moments induced by intramolecular electron transfer can introduce a macroscopic polarization change in VT compounds.

15.
Inorg Chem ; 59(4): 2308-2315, 2020 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-31984736

RESUMEN

Two rhodamine 6G-based mononuclear dysprosium complexes, [Dy(LR)(LA)2](ClO4)3·Et2O·1.5MeOH·0.5H2O (1) and [Dy(LR)(H2O)4(MeCN)](ClO4)3·2H2O·MeCN (2) (LR = salicylaldehyde rhodamine 6G hydrazone, LA = 2-pyridylcarboxaldehyde benzoyl hydrazone), are synthesized, aiming at improving the magnetic behavior by modulating their coordination environment. Both complexes own one exclusive short Dy-Ophenoxy coordination bond as the predominant bond and exhibit single-molecule magnet behavior under zero dc field with the energy barrier (Ueff/kB) of 90 K (1) and 320 K (2) and apparent hysteresis at 1.9 K. The ab initio calculations indicate that the short Dy-Ophenoxy bond determines the direction of magnetic anisotropic axis for 1 and 2. The quantum tunneling of magnetization (QTM) between the ground Kramers doublets (KDs) in 1 cannot be neglected, leading to an experimental Ueff/kB much lower than the calculated energy of the first excited state (318.2 K). For 2, the stronger magnetic anisotropy and negligible QTM between the ground KDs guarantees that the energy barrier is close to the calculated energy of first KDs (320.8 K). On the other hand, the presence of ring-opened xanthene moiety makes complexes 1 and 2 in the solid state emit red light with emission bands of 645 and 658 nm, respectively.

16.
Phys Chem Chem Phys ; 21(48): 26333-26341, 2019 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-31782439

RESUMEN

Block copolymers confined in nanopores provide unique achiral systems for the formation of helical structures. With AB diblock copolymers, stable single and double helical structures are observed. Aiming to obtain more different helical structures, we replace the AB diblock copolymer with linear ABC triblock copolymers. We speculate that a core-shell superstructure is formed within the nanopore, which is composed of a C-core cylinder wrapped by B-helices within the A-shell. Accordingly, the pore surface is set to be most attractive to the majority A-block and a typical set of interaction parameters is chosen as χACN ≪ χABN = χBCN = 80 to generate the frustrated interfaces. Furthermore, the volume fraction of B-block is fixed as fB = 0.1 to form helical cylinders. A number of helical structures with strands ranging from 1 to 5 are predicted by self-consistent field theory, and in general, the number of strands decreases as the volume fraction of C-block fC increases in a given nanopore. More surprisingly, the variation of helical strand in the confined system has an opposite trend to that in the bulk, which mainly results from the constraint of the cylindrical confinement on the change of the curvature between the outer A-layer and the inner B/C-superdomain. Our work demonstrates a facile way to fabricate different helical superstructures.

17.
RSC Adv ; 9(36): 20742-20748, 2019 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-35515517

RESUMEN

Highly efficient red-emitting Eu3+-doped double perovskite Ca2YSbO6 phosphors have been successfully prepared by the traditional high-temperature solid state method. The phase purity, photoluminescence and decay properties as a function of the Eu3+ concentration have been investigated in detail. The XRD results demonstrate that all of the obtained phosphors can be assigned to a pure monoclinic structure. Upon 464 nm excitation, a strong red emission situated at 614 nm (5D0-7F2) indicates that Eu3+ ions occupy a site with low symmetry. The quenching concentration of Eu3+ ions reaches as high as 70 mol% and the quenching mechanism is discussed. Especially, the prepared phosphor exhibits a high quantum efficiency of 92.1% and superior thermal stability, with PL intensity at 423 K up to 81.6% of that at room temperature. Moreover, a warm white light with a correlated color temperature of 4720 K and a color rendering index of 82.6 is achieved by fabricating a Ca2YSbO6:Eu3+ phosphor in a 460 nm blue-InGaN chip together with the commercial Y3Al5O12:Ce3+ yellow phosphor.

18.
J Cell Physiol ; 234(6): 8873-8887, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30515784

RESUMEN

Retinal neovascularization occurs in various ocular disorders including proliferative diabetic retinopathy and secondary neovascular glaucoma, resulting in blindness. This paper aims to investigate the effect of microRNA-141-3p (miR-141-3p) on retinal neovascularization and retinal ganglion cells (RGCs) in glaucoma mice through the Docking protein 5 (DOK5)-mediated mitogen-activated protein kinase (MAPK) signaling pathway. Chip retrieval and difference analysis were used for the potential mechanism of miR-141-3p on glaucoma. All modeled mice were transfected with different expression of mimic or inhibitor. The expressions of miR-141-3p, DOK5, and related genes and proteins of the MAPK signaling pathway were detected by Reverse transcription quantitative polymerase chain reaction and western blot analysis. Cell proliferation, lumen formation, and apoptosis in the retinal vascular epithelial cells and RGCs were detected using Matrigel angiogenesis and terminal deoxynucleotidyl transferase mediated dUTP nick-end labeling assays. Moreover, a total of 63 and 294 differentially expressed genes were obtained in GSE2378 and GSE9944 chips, and 4 genes were within the intersection of the chips. In addition, the results showed that miR-141-3p was found to inhibit the DOK5 gene and activate the MAPK pathway. The number of RGCs, the expression of p38, extracellular-signal-regulated kinases (ERK), Jun N-terminal kinase (JNK), IGF-1, VEGF, HIF1-α, Bax, caspase-3, and the extent of p38, ERK, and JNK phosphorylated were decreased with miR-141-3p upregulation. Lastly, the results obtained showed that miR-141-3p inhibited the proliferation of retinal vascular epithelial cells and inhibited angiogenesis, as well as promoted apoptosis of RGCs. The study suggests that miR-141-3p inhibits retinal neovascularization in glaucoma mice by impeding the activation of the DOK5-mediated MAPK signaling pathway.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Glaucoma/metabolismo , Sistema de Señalización de MAP Quinasas/fisiología , MicroARNs/metabolismo , Células Ganglionares de la Retina/metabolismo , Neovascularización Retiniana/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Apoptosis/fisiología , Proliferación Celular , Células Epiteliales/fisiología , Regulación de la Expresión Génica/fisiología , Glaucoma/patología , Ratones , MicroARNs/genética
19.
Inorg Chem ; 57(15): 8978-8987, 2018 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-30035535

RESUMEN

Non-rare-earth Mn4+-doped double-perovskite (Ba1- xSr x)2YSbO6:Mn4+ red-emitting phosphors with adjustable photoluminescence are fabricated via traditional high-temperature sintering reaction. The structural evolution, variation of Mn4+ local environment, luminescent properties, and thermal quenching are studied systematically. With elevation of Sr2+ substituting content, the major diffraction peak moves up to a higher angle gradually. Impressively, with increasing the substitution of Ba2+ with Sr2+ cation from 0 to 100%, the emission band shifts to short-wavelength in a systematic way resulting from the higher transition energy from excited states to ground states. Besides, this blue-shift appearance can be illuminated adequately using the crystal field strength. The thermal quenching of the obtained solid solution is dramatically affected by the composition, with the PL intensity increasing 16% at 423 K going from x = 0 to 1.0. The w-LEDs component constructed by coupling the UV-LED chip with red/green/blue phosphors demonstrate an excellent correlated color temperature (CCT) of 3404 K, as well as color rendering index (CRI) of 86.8.

20.
J Am Chem Soc ; 140(30): 9426-9433, 2018 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-29983062

RESUMEN

Here, we use a pyridinecarbaldehyde rhodamine 6G hydrazone ligand (L) to synthesize an Fe(II) complex 1 for the search of new fluorescent-spin crossover (SCO) materials. Single-crystal structural determinations suggest that the Fe(II) ion is chelated by two ring-opened ligands (L-o) to form a FeN4O2 coordination environment, and intermolecular π---π contacts of the xanthene groups connect the adjacent molecules to form a supramolecular one-dimensional chain. Magnetic susceptibility measurements on complex 1 show that three-step SCO takes place in the temperature range of 120-350 K, and its desolvated form 1-d exhibits SCO around room temperature ( Tc↑ = 343 K and Tc↓ = 303 K) with a wide hysteresis loop of 40 K. Moreover, complex 1-d displays light-induced excited spin-state trapping phenomenon. Intriguingly, the fluorescence intensity of the maximum emission at 560 nm for complex 1-d displays discontinuous variation in the range of 250-400 K, indicative of the occurrence of synergetic fluorescence and SCO.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...