Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Adv Healthc Mater ; 12(24): e2300682, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37289540

RESUMEN

Thrombolytic and antithrombotic therapies are limited by short circulation time and the risk of off-target hemorrhage. Integrating a thrombus-homing strategy with photothermal therapy are proposed to address these limitations. Using glycol chitosan, polypyrrole, iron oxide and heparin, biomimicking GCPIH nanoparticles are developed for targeted thrombus delivery and thrombolysis. The nanoassembly achieves precise delivery of polypyrrole, exhibiting biocompatibility, selective accumulation at multiple thrombus sites, and enhanced thrombolysis through photothermal activation. To simulate targeted thrombolysis, a microfluidic model predicting thrombolysis dynamics in realistic pathological scenarios is designed. Human blood assessments validate the precise homing of GCPIH nanoparticles to activated thrombus microenvironments. Efficient near-infrared phototherapeutic effects are demonstrated at thrombus lesions under physiological flow conditions ex vivo. The combined investigations provide compelling evidence supporting the potential of GCPIH nanoparticles for effective thrombus therapy. The microfluidic model also offers a platform for advanced thrombolytic nanomedicine development.


Asunto(s)
Nanopartículas , Trombosis , Humanos , Polímeros/uso terapéutico , Microfluídica , Pirroles , Fibrinolíticos/farmacología , Fibrinolíticos/uso terapéutico , Trombosis/tratamiento farmacológico , Trombosis/patología , Nanopartículas/uso terapéutico , Terapia Trombolítica
2.
Life (Basel) ; 11(12)2021 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-34947927

RESUMEN

Despite improvements in cancer treatments resulting in higher survival rates, the proliferation and metastasis of tumors still raise new questions in cancer therapy. Therefore, new drugs and strategies are still needed. Midazolam (MDZ) is a common sedative drug acting through the γ-aminobutyric acid receptor in the central nervous system and also binds to the peripheral benzodiazepine receptor (PBR) in peripheral tissues. Previous studies have shown that MDZ inhibits cancer cell proliferation but increases cancer cell apoptosis through different mechanisms. In this study, we investigated the possible anticancer mechanisms of MDZ on different cancer cell types. MDZ inhibited transforming growth factor ß (TGF-ß)-induced cancer cell proliferation of both A549 and MCF-7 cells. MDZ also inhibited TGF-ß-induced cell migration, invasion, epithelial-mesenchymal-transition, and Smad phosphorylation in both cancer cell lines. Inhibition of PBR by PK11195 rescued the MDZ-inhibited cell proliferation, suggesting that MDZ worked through PBR to inhibit TGF-ß pathway. Furthermore, MDZ inhibited proliferation, migration, invasion and levels of mesenchymal proteins in MDA-MD-231 triple-negative breast cancer cells. Together, MDZ inhibits cancer cell proliferation both in epithelial and mesenchymal types and EMT, indicating an important role for MDZ as a candidate to treat lung and breast cancers.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...