Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Fish Biol ; 2024 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-38852940

RESUMEN

The Poyang Lake region is home to large-blackspot loaches (LBL), small-blackspot loaches (SBL), and non-blackspot loaches (NBL), Misgurnus anguillicaudatus. To investigate the impact of tyrosinase on spot development, the complementary DNAs (cDNA) of tyrosinase in M. anguillicaudatus (designated as Matyr) were cloned using the rapid amplification of cDNA ends (RACE)-PCR method. The full-length cDNA for Matyr was 2020 bp, and the open-reading frame comprised 1617 bp, encoding a predicted protein with 538 amino acids. Phylogenetic studies revealed that MaTyr was first grouped with Tyr of Triplophysa tibetana and Leptobotia taeniops, and then Tyr of other cyprinid fish. The quantitative reverse-transcription-PCR results show that Matyr was highly expressed in the muscle, caudal fin, and dorsal skin. The Matyr gene's messenger RNA expression pattern steadily increased from the fertilized ovum period to the somitogenesis period, and from the muscle effect stage to 6 days after fertilization, it considerably increased (p < 0.01). The Matyr hybridization signals with similar location could be found in all developmental stages of three kinds of loaches using whole-mount in situ hybridization (WISH) technology and were the strongest during the organ development period and melanin formation period. Dot hybridization signals in LBLs rapidly spread to the back of the body beginning at the period when the eyes first formed melanin, and their dimensions were larger than those of NBLs during the same time period. The body color of loaches could change reversibly with black/white background adaptation. The α-msh, mitfa, and tyr are mainly expressed in loaches adapted with a black background. Tyr gene could be involved in the development of blackspots and body color polymorphism, and contribute to organ development in the loach.

2.
RSC Adv ; 14(17): 12255-12264, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38628483

RESUMEN

In this study, walnut shell (WS) was used as feedstock, incorporating lithium carbonate (LC), sodium carbonate (SC), potassium carbonate (PC), and potassium hydroxide (PH) as pyrolysis catalysts and carbonization activators. A one-step method that allows catalytic pyrolysis and carbonization to be carried out consecutively under their respective optimal conditions is employed, enabling the concurrent production of high-quality pyrolysis oil, pyrolysis gas, and carbon materials from biomass conversion. The effects of LC, SC, PC, and PH on the yield and properties of products derived from WS pyrolysis as well as on the properties and performance of the resulting carbon materials were examined. The results indicated that the addition of LC, SC, PC, and PH enhanced the secondary cracking of tar, leading to increased solid and gas yields from WS. Additionally, it increased the production of phenolic compounds in bio-oil and H2 in syngas, concurrently yielding a walnut shell-based carbon material exhibiting excellent electrochemical performance. Specifically, when PC was used as an additive, the phenolic content in the pyrolysis oil increased by 27.64% compared to that without PC, reaching 74.9%, but the content of ketones, acids, aldehydes, and amines decreased. The hydrogen content increased from 2.5% (without the addition of PC) to 12.75%. The resulting carbon (WSC-PC) displayed a specific surface area of 598.6 m2 g-1 and achieved a specific capacitance of 245.18 F g-1 at a current density of 0.5 A g-1. Even after 5000 charge and discharge cycles at a current density of 2 A g-1, the capacitance retention rate remained at 98.16%. This method effectively enhances the quality of the biomass pyrolysis oil, gas, and char, contributing to the efficient and clean utilization of biomass in industrial applications.

3.
ACS Omega ; 8(25): 22820-22826, 2023 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-37396251

RESUMEN

Preparing ash-less coal and further converting it into chemicals is an efficient and promising means for lignite utilization. This work performed depolymerization of lignite to prepare ash-less coal (SDP) and separated it into the hexane-soluble fraction (HS), toluene-soluble fraction (TS), and tetrahydrofuran-soluble fraction (THFS). The structure of SDP and those of subfractions were characterized by elemental analysis, gel permeation chromatography, Fourier transform infrared spectroscopy, and synchronous fluorescence spectroscopy. The results show that SDP is a mixture of aromatic derivatives containing alkyl substituents and oxygen-containing functional groups. The number of condensed aromatic rings, the amount of oxygen-containing functional groups, and the molecular weight gradually increase as HS < TS < THFS. SDP was further analyzed by 1H-NMR and 13C-NMR to calculate its structural parameters. The macromolecule of THFS contains 15.8 total ring systems with 9.2 aromatic rings and 6.6 naphthenic rings. On average, each THFS molecule contains 6.1 alcohol hydroxyl groups, 3.9 phenol hydroxyl groups, 1.4 carboxyl groups, and 1.0 inactive oxygen-containing functional groups. The dominant reactions occurred during depolymerization are the breakage of ether linkages. The average THFS molecule consists of 3.3 structural units with aromatic nuclei (2.8 rings on average) linked with methylene, naphthene, and so forth.

4.
Front Immunol ; 14: 1119902, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36793729

RESUMEN

The phenomenon of intestinal dysfunction is widely observed in white shrimp (Litopenaeus vannamei) culture, and ß-1,3-glucan has been confirmed to be beneficial in intestinal health with a lack understanding of its underlying mechanism. Proteobacteria, Firmicutes, and Actinobacteria served as the predominant phyla inhabiting the intestine of white shrimp, whilst a significant variation in their proportion was recorded in shrimp fed with basal and ß-1,3-glucan supplementation diets in this study. Dietary supplementation of ß-1,3-glucan could dramatically increase the microbial diversity and affect microbial composition, concurrent with a notable reduction in the ratio of opportunistic pathogen Aeromonas, gram-negative microbes, from Gammaproteobacteria compared to the basal diet group. The benefits for microbial diversity and composition by ß-1,3-glucan improved the homeostasis of intestinal microbiota through the increase of specialists' number and inhibition of microbial competition caused by Aeromonas in ecological networks; afterward, the inhibition of Aeromonas by ß-1,3-glucan diet dramatically suppressed microbial metabolism related to lipopolysaccharide biosynthesis, followed by a conspicuous decrease in the intestinal inflammatory response. The improvement of intestinal health referred to the elevation in intestinal immune and antioxidant capacity, ultimately contributing to the growth of shrimp fed ß-1,3-glucan. These results suggested that ß-1,3-glucan supplementation improved the intestinal health of white shrimp through the modulation of intestinal microbiota homeostasis, the suppression of intestinal inflammatory response, and the elevation of immune and antioxidant capacity, and subsequently promoted the growth of white shrimp.


Asunto(s)
Microbioma Gastrointestinal , Penaeidae , Animales , Suplementos Dietéticos/análisis , Antioxidantes , Glucanos , Intestinos/microbiología
5.
Polymers (Basel) ; 14(19)2022 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-36235918

RESUMEN

Molecularly imprinted solid-phase extraction to treat biological samples has attracted considerable attention. Herein, molecularly imprinted polymer (MIP) microspheres with porous structures were prepared by a combined suspension-iniferter polymerization method using capecitabine (CAP) as a template molecule. This material was subsequently used as a solid-phase extraction agent to separate and enrich drug molecules in urine samples. UV analysis revealed that methacrylate (MAA) was an ideal functional monomer, and 1H Nuclear Magnetic Resonance (1H NMR), Ultraviolet (UV), and Fourier transform-infrared (FT-IR) spectroscopic analyses were used to study the interaction forces between MAA and CAP, demonstrating that hydrogen bonding was the primary interaction force. MIPs with outstanding selectivity were successfully prepared, and the analysis of their surface morphology and chemical structure revealed a spherical morphology with small holes distributed across a rough surface. This surface morphology significantly reduced the mass transfer resistance of template molecules, providing an ideal template recognition effect. Using the molecularly imprinted solid-phase extraction method, CAP and the structural analog cytidine (CYT) were pretreated in urine samples and quantified by HPLC. The results showed that CAP and CYT recoveries reached 97.2% and 39.8%, respectively, with a limit of detection of 10.0-50.0 µg·mL-1. This study provides a novel approach to drug molecule pretreatment that can be applied in drug separation and functional materials science fields.

6.
Polymers (Basel) ; 14(10)2022 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-35631893

RESUMEN

Anion exchange affinity-based controllable surface imprinting is an effective approach to overcome low imprinting efficiency and high non-specific binding capacity. The template proteins were first immobilized on the anchored tetraalkylammonium groups of the nanoparticles via anion exchange affinity-based interactions, enabling monolayer sorption using a low template concentration. The combined use of surface-initiated photoiniferter-mediated polymerization to precisely control the imprinted film thickness, allowing the formation of homogeneous binding cavities, and the construction of effective binding sites resulted in a low non-specific binding capacity and high imprinting efficiency. The obtained imprinted films benefited from the anion exchange mechanism, exhibiting a higher imprinting factor and faster binding rate than the reference material. Binding tests revealed that the binding strength and selective recognition properties could be tuned to a certain extent by adjusting the NaCl concentration. Additionally, in contrast to the harsh template elution conditions of the covalent immobilization approach, over 80% of the template molecules were readily removed from the imprinted films using supersonic elution with an aqueous mixture of NaCl and HAc. Introducing template immobilization by anion exchange interactions to the synthesis of imprinted materials may provide a new approach for effective biomacromolecular imprinting.

7.
ACS Omega ; 6(46): 31058-31065, 2021 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-34841148

RESUMEN

In this study, variations in the free radical concentration, degree of swelling (Q), and extraction yield of Buertai coal (C%, 80.4%) in 11 solvents with different characteristics were determined to investigate the interaction between the coal and solvent, as well as the bond cleavage during solvent extraction. Derivative thermogravimetry (DTG) results for the residues and raw coal were compared to confirm whether the covalent bond breaks during solvent extraction. The free radical concentration decreases in certain solvents but increases in a few others. The relative free radical concentration, Q, and extraction yield are positively correlated. The charge-transfer capability of the solvent, and in particular its electron-donating capability, plays an essential role in influencing the interaction between the coal and solvent. The increase in the free radical concentration during solvent extraction can be attributed to (1) the formation or decomposition of charge-transfer complexes, (2) dissociation of charge-transfer complexes into radical ions, and (3) breakage of weak covalent bonds. DTG results show the occurrence of weak covalent bonds breakage at temperatures of 133.9-320.1 °C during solvent extraction due to the reduction of the bond energy caused by the formation of radical ions.

8.
Ecol Evol ; 9(13): 7808-7818, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31346442

RESUMEN

The strong expansion potential of invasive plants is often attributed to fast adaptive responses to stress. However, the evolution of tolerance to one stressor may affect the responses to other stressors. Currently, it remains unclear what effect the evolution to one stressor might have on the responses to other single or combined stressors. Moreover, it is unknown how this might differ between invasive and native species.Invasive plants (Mikania micrantha and Bidens pilosa) and native plants (Merremia hederacea and Sida acuta) from low- and high-salinity habitats were grown under control and stressful conditions [salt stress, water stress (drought/waterlogging), and their combinations]. We explored the effects of evolved salt tolerance on the responses to water stress/combined stresses and the underlying trait mechanisms.The high-salinity populations of all species exhibited stronger salt tolerance than the low-salinity populations. As to the tolerance to other stressors, the high-salinity and low-salinity populations of the invasive species were similar, whereas the high-salinity populations of the native species exhibited stronger tolerance than the low-salinity populations under most stress treatments. However, the enhanced salt tolerance in native species was accompanied by reduced total biomass under control condition. The stress tolerance of native species correlated with leaf production rate and allocation to root, while the performance of native species under control condition correlated with leaf morphology and carbon assimilation rate. This suggests a trade-off between salt tolerance and performance in the native but not the invasive species, probably resulting from altered phenotypic/physiological traits. SYNTHESIS: Our work suggests that the evolution of tolerance to one stressor may have stronger effects on the tolerance to other stressors of the native compared with the invasive species. This may be a new paradigm to explain the greater advantage of invasive vs. native species in highly stressful habitats.

9.
Bioresour Technol ; 156: 372-5, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24507874

RESUMEN

Fast pyrolysis of biomass has attracted increasing attention worldwide to produce bio-tars that can be upgraded into liquid fuels and chemicals. However, the bio-tars are usually poor in quality and stability and are difficult to be upgraded. To better understand the nature of the bio-tars, this work reveals radical concentration of tars derived from pyrolysis of two kinds of biomass. The tars were obtained by condensing the pyrolysis volatiles in 3s. It shows that the tars contain large amounts of radicals, at a level of 10(16)spins/g, and are able to generate more radicals at temperatures of 573K or higher, reaching a level of 10(19)spins/g at 673K in less than 30min. The radical generation in the tar samples is attributed to the formation of THF insoluble matters (coke), which also contain radicals. The radical concentrations of the aqueous liquids obtained in pyrolysis are also studied.


Asunto(s)
Biomasa , Radicales Libres/química , Calor , Breas/química , Coque/análisis , Juglans/química , Zea mays/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...