Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 140
Filtrar
1.
J Cereb Blood Flow Metab ; : 271678X241240582, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38489769

RESUMEN

Vascular pathology is the second leading cause of cognitive impairment and represents a major contributing factor in mixed dementia. However, biomarkers for vascular cognitive impairment and dementia (VCID) are under-developed. Here we aimed to investigate the potential role of CO2 Cerebrovascular Reactivity (CVR) measured with phase-contrast quantitative flow MRI in cognitive impairment and dementia. Forty-five (69 ± 7 years) impaired (37 mild-cognitive-impairment and 8 mild-dementia by syndromic diagnosis) and 22 cognitively-healthy-control (HC) participants were recruited and scanned on a 3 T MRI. Biomarkers of AD pathology were measured in cerebrospinal fluid. We found that CBF-CVR was lower (p = 0.027) in the impaired (mean±SE, 3.70 ± 0.15%/mmHg) relative to HC (4.28 ± 0.21%/mmHg). After adjusting for AD pathological markers (Aß42/40, total tau, and Aß42/p-tau181), higher CBF-CVR was associated with better cognitive performance, including Montreal Cognitive Assessment, MoCA (p = 0.001), composite cognitive score (p = 0.047), and language (p = 0.004). Higher CBF-CVR was also associated with better physical function, including gait-speed (p = 0.006) and time for five chair-stands (p = 0.049). CBF-CVR was additionally related to the Clinical-Dementia-Rating, CDR, including global CDR (p = 0.026) and CDR Sum-of-Boxes (p = 0.015). CBF-CVR was inversely associated with hemoglobin A1C level (p = 0.017). In summary, CBF-CVR measured with phase-contrast MRI shows associations with cognitive performance, physical function, and disease-severity, independent of AD pathological markers.

2.
Geroscience ; 46(1): 265-282, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37713089

RESUMEN

The blood-brain barrier (BBB) undergoes functional changes with aging which may contribute to cognitive decline. A novel, diffusion prepared arterial spin labeling-based MRI technique can measure the rate of water exchange across the BBB (kw) and may thus be sensitive to age-related alterations in water exchange at the BBB. However, studies investigating relationships between kw and cognition have reported different directions of association. Here, we begin to investigate the direction of associations between kw and cognition in different brain regions, and their possible underpinnings, by evaluating links between kw, cognitive performance, and MRI markers of cerebrovascular dysfunction and/or damage. Forty-seven healthy older adults (age range 61-84) underwent neuroimaging to obtain whole-brain measures of kw, cerebrovascular reactivity (CVR), and white matter hyperintensity (WMH) volumes. Additionally, participants completed uniform data set (Version 3) neuropsychological tests of executive function (EF) and episodic memory (MEM). Voxel-wise linear regressions were conducted to test associations between kw and cognitive performance, CVR, and WMH volumes. We found that kw in the frontoparietal brain regions was positively associated with cognitive performance but not with CVR or WMH volumes. Conversely, kw in the basal ganglia was negatively associated with cognitive performance and CVR and positively associated with regional, periventricular WMH volume. These regionally dependent associations may relate to different physiological underpinnings in the relationships between kw and cognition in neocortical versus subcortical brain regions in older adults.


Asunto(s)
Barrera Hematoencefálica , Sustancia Blanca , Humanos , Anciano , Anciano de 80 o más Años , Agua , Envejecimiento , Cognición
3.
Magn Reson Imaging ; 105: 92-99, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37939974

RESUMEN

OBJECTIVE: Cerebral venous oxygenation (Yv) is a key parameter for the brain's oxygen utilization and has been suggested to be a valuable biomarker in various brain diseases including hypoxic ischemic encephalopathy in neonates and Alzheimer's disease in older adults. T2-Relaxation-Under-Spin-Tagging (TRUST) MRI is a widely used technique to measure global Yv level and has been validated against gold-standard PET. However, subject motion during TRUST MRI scan can introduce considerable errors in Yv quantification, especially for noncompliant subjects. The aim of this study was to develop an Automatic Rejection based on Tissue Signal (ARTS) algorithm for automatic detection and exclusion of motion-contaminated images to improve the precision of Yv quantification. METHODS: TRUST MRI data were collected from a neonatal cohort (N = 37, 16 females, gestational age = 39.12 ± 1.11 weeks, postnatal age = 1.89 ± 0.74 days) and an older adult cohort (N = 223, 134 females, age = 68.02 ± 9.01 years). Manual identification of motion-corrupted images was conducted for both cohorts to serve as a gold-standard. 9.3% of the images in the neonatal datasets and 0.4% of the images in the older adult datasets were manually identified as motion-contaminated. The ARTS algorithm was trained using the neonatal datasets. TRUST Yv values, as well as the estimation uncertainty (ΔR2) and test-retest coefficient-of-variation (CoV) of Yv, were calculated with and without ARTS motion exclusion. The ARTS algorithm was tested on datasets of older adults: first on the original adult datasets with little motion, and then on simulated adult datasets where the percentage of motion-corrupted images matched that of the neonatal datasets. RESULTS: In the neonatal datasets, the ARTS algorithm exhibited a sensitivity of 0.95 and a specificity of 0.97 in detecting motion-contaminated images. Compared to no motion exclusion, ARTS significantly reduced the ΔR2 (median = 3.68 Hz vs. 4.89 Hz, P = 0.0002) and CoV (median = 2.57% vs. 6.87%, P = 0.0005) of Yv measurements. In the original older adult datasets, the sensitivity and specificity of ARTS were 0.70 and 1.00, respectively. In the simulated adult datasets, ARTS demonstrated a sensitivity of 0.91 and a specificity of 1.00. Additionally, ARTS significantly reduced the ΔR2 compared to no motion exclusion (median = 2.15 Hz vs. 3.54 Hz, P < 0.0001). CONCLUSION: ARTS can improve the reliability of Yv estimation in noncompliant subjects, which may enhance the utility of Yv as a biomarker for brain diseases.


Asunto(s)
Enfermedad de Alzheimer , Encéfalo , Femenino , Recién Nacido , Humanos , Anciano , Lactante , Preescolar , Persona de Mediana Edad , Reproducibilidad de los Resultados , Encéfalo/diagnóstico por imagen , Oxígeno , Imagen por Resonancia Magnética/métodos , Biomarcadores
4.
Planta ; 258(5): 84, 2023 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-37736857

RESUMEN

MAIN CONCLUSION: CsGolS2-1 and CsGolS2-2 are involved in the transcriptional mechanism and play an important role in the drought response of tea plants. GolS is critical for the biosynthesis of galactinol and has been suggested to contribute to drought tolerance in various plants. However, whether GolS plays a role in drought response and the underlying transcriptional mechanism of GolS genes in response to drought stress in tea plants is still unclear. In this study, we found that drought stress promotes the accumulation of galactinol in tea leaves and that the expression of CsGolS2-1 and CsGolS2-2, which encode proteins capable of catalyzing galactinol biosynthesis, is continuously and dramatically induced by drought stress. Moreover, transgenic Arabidopsis plants expressing CsGolS2-1 and CsGolS2-2 were more drought-tolerant than WT plants, as evidenced by increased cell membrane stability. In addition, the drought-responsive transcription factor CsWRKY2 has been shown to positively regulate the expression of CsGolS2-1 and CsGolS2-2 by directly binding to their promoters. Furthermore, CsVQ9 was found to interact with CsWRKY2 and promote its transcriptional function to activate CsGolS2-1 and CsGolS2-2 expression. Taken together, our findings provide insights not only into the positive role played by CsGolS2-1 and CsGolS2-2 in the drought response of tea plants but also into the transcriptional mechanisms involved.


Asunto(s)
Arabidopsis , Camellia sinensis , Sequías , Camellia sinensis/genética , Resistencia a la Sequía , Arabidopsis/genética , Plantas Modificadas Genéticamente ,
5.
Stroke ; 54(11): 2785-2793, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37712232

RESUMEN

BACKGROUND: Increasing evidence suggests that enlarged perivascular spaces (ePVS) are associated with cognitive dysfunction in aging. However, the pathogenesis of ePVS remains unknown. Here, we tested the possibility that baseline cerebrovascular dysfunction, as measured by a magnetic resonance imaging measure of cerebrovascular reactivity, contributes to the later development of ePVS. METHODS: Fifty cognitively unimpaired, older adults (31 women; age range, 60-84 years) underwent magnetic resonance imaging scanning at baseline and follow-up separated by ≈2.5 years. ePVS were counted in the basal ganglia, centrum semiovale, midbrain, and hippocampus. Cerebrovascular reactivity, an index of the vasodilatory capacity of cerebral small vessels, was assessed using carbon dioxide inhalation while acquiring blood oxygen level-dependent magnetic resonance images. RESULTS: Low baseline cerebrovascular reactivity values in the basal ganglia were associated with increased follow-up ePVS counts in the basal ganglia after controlling for age, sex, and baseline ePVS values (estimate [SE]=-3.18 [0.96]; P=0.002; [95% CI, -5.11 to -1.24]). This effect remained significant after accounting for self-reported risk factors of cerebral small vessel disease (estimate [SE]=-3.10 [1.00]; P=0.003; [CI, -5.11 to -1.09]) and neuroimaging markers of cerebral small vessel disease (estimate [SE]=-2.72 [0.99]; P=0.009; [CI, -4.71 to -0.73]). CONCLUSIONS: Our results demonstrate that low baseline cerebrovascular reactivity is a risk factor for later development of ePVS.


Asunto(s)
Ganglios Basales , Enfermedades de los Pequeños Vasos Cerebrales , Humanos , Femenino , Anciano , Persona de Mediana Edad , Anciano de 80 o más Años , Ganglios Basales/diagnóstico por imagen , Envejecimiento , Imagen por Resonancia Magnética , Neuroimagen , Enfermedades de los Pequeños Vasos Cerebrales/complicaciones
6.
Acta Biochim Pol ; 70(3): 567-574, 2023 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-37721476

RESUMEN

OBJECTIVE: A recent high-throughput sequencing showed that circular RNA Rho-associated kinase 1 (circROCK1) is abnormally highly expressed in sepsis, but whether it is involved in sepsis development remains unclear. The objective of this study was to investigate the biological function of circROCK1 in sepsis-induced myocardial injury and reveal its potential downstream molecular mechanism. METHODS: Real-time reverse transcriptase-polymerase chain reaction was applied to detect circROCK1 and miR-96-5p expressions in the serum of septic patients. Spearman correlation analysis examined the correlation between circROCK1 and the clinicopathological characteristics of septic patients. The Cecal puncture and ligation (CLP) method was used to establish an in vivo sepsis model. circROCK1 and miR-96-5p expressions in mice were modified by injection of lentivirus or oligonucleotide. The left ventricular systolic pressure, left ventricular end-diastolic pressure, and the maximum increase/decrease rate of left ventricular pressure were checked. ELISA was applied to detect inflammatory factors levels as well as myocardial injury markers levels. Hematoxylin and eosin staining was performed to observe pathological changes in myocardial tissues, and Western blot examined phosphorylated nuclear factor (NF)-κB and oxidative stress-responsive 1 (OXSR1) expression. Dual luciferase reporter experiment was conducted to confirm the targeting relationship between circROCK1, OXSR1, and miR-96-5p. RESULTS: circROCK1 and OXSR1 were highly expressed in sepsis and miR-96-5p was under-expressed. circROCK1 was positively correlated with serum creatinine, C-reactive protein, procalcitonin, and sequential organ failure assessment scores in septic patients. Silencing circROCK1 could improve the diastolic and systolic function of CLP mice, as well as myocardial damage, reduce myocardial tissue edema and necrosis, and inhibit inflammatory factor level and phosphorylated NF-κB expression. Down-regulating miR-96-5p promoted myocardial injury in CLP mice. Silencing circROCK1 and miR-96-5p inhibited and promoted OXSR1 expression, respectively. Both circROCK1 and OXSR1 had a targeting relationship with miR-96-5p. CONCLUSION: CircROCK1 promotes myocardial injury in septic mice by regulating the miR-96-5p/OXSR1 axis, and it can be used as a potential target for treating septic myocardial dysfunction.


Asunto(s)
MicroARNs , Miocardio , Animales , Ratones , Western Blotting , Proteína C-Reactiva , Ciego , MicroARNs/genética
7.
Front Neuroimaging ; 2: 1205459, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37554643

RESUMEN

Cerebrovascular reactivity (CVR) is typically assessed with a carbon dioxide (CO2) stimulus combined with BOLD fMRI. Recently, resting-state (RS) BOLD fMRI has been shown capable of generating CVR maps, providing a potential for broader CVR applications in neuroimaging studies. However, prior RS-CVR studies have primarily been performed at a spatial resolution of 3-4 mm voxel sizes. It remains unknown whether RS-CVR can also be obtained at high-resolution without major degradation in image quality. In this study, we investigated RS-CVR mapping based on resting-state BOLD MRI across a range of spatial resolutions in a group of healthy subjects, in an effort to examine the feasibility of RS-CVR measurement at high resolution. Comparing the results of RS-CVR with the maps obtained by the conventional CO2-inhalation method, our results suggested that good CVR map quality can be obtained at a voxel size as small as 2 mm isotropic. Our results also showed that, RS-CVR maps revealed resolution-dependent sensitivity. However, even at a high resolution of 2 mm isotropic voxel size, the voxel-wise sensitivity is still greater than that of typical task-evoked fMRI. Scan duration affected the sensitivity of RS-CVR mapping, but had no significant effect on its accuracy. These findings suggest that RS-CVR mapping can be applied at a similar resolution as state-of-the-art fMRI studies, which will broaden the use of CVR mapping in basic science and clinical applications including retrospective analysis of previously collected fMRI data.

8.
NPJ Digit Med ; 6(1): 116, 2023 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-37344684

RESUMEN

Cerebrovascular disease is a leading cause of death globally. Prevention and early intervention are known to be the most effective forms of its management. Non-invasive imaging methods hold great promises for early stratification, but at present lack the sensitivity for personalized prognosis. Resting-state functional magnetic resonance imaging (rs-fMRI), a powerful tool previously used for mapping neural activity, is available in most hospitals. Here we show that rs-fMRI can be used to map cerebral hemodynamic function and delineate impairment. By exploiting time variations in breathing pattern during rs-fMRI, deep learning enables reproducible mapping of cerebrovascular reactivity (CVR) and bolus arrival time (BAT) of the human brain using resting-state CO2 fluctuations as a natural "contrast media". The deep-learning network is trained with CVR and BAT maps obtained with a reference method of CO2-inhalation MRI, which includes data from young and older healthy subjects and patients with Moyamoya disease and brain tumors. We demonstrate the performance of deep-learning cerebrovascular mapping in the detection of vascular abnormalities, evaluation of revascularization effects, and vascular alterations in normal aging. In addition, cerebrovascular maps obtained with the proposed method exhibit excellent reproducibility in both healthy volunteers and stroke patients. Deep-learning resting-state vascular imaging has the potential to become a useful tool in clinical cerebrovascular imaging.

9.
J Am Chem Soc ; 2023 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-36763076

RESUMEN

Fluorescent polyelectrolytes have attracted enormous attention as functional polymer materials. In contrast with the widely studied conjugated polyelectrolytes with ionic groups in side chains, fluorescent main-chain charged polyelectrolytes (MCCPs) have rarely been explored due to the large synthetic difficulty. Herein, we develop a facile and atom-economical N-heterocyclic carbene-directed cascade C-H activation/annulation polymerization strategy that can transform readily available imidazolium substrates and internal diynes into multifunctional fluorescent MCCPs with complex structures and high molecular weights (absolute Mn up to 135 600) in nearly quantitative yields. The presence of multisubstituted polycyclic N-heteroaromatic cations in polymer backbones endow the obtained MCCPs with excellent solution processability, high thermal stability, and dual-state efficient fluorescence in both solution and aggregate states. Benefiting from the strong electron-withdrawing capability of the cationic heterocycles in main chains, multicolored aggregate-state fluorescence can be readily achieved by modifying the substituents around the cationic ring-fused core. Taking advantage of the good photosensitivity of the fluorescent MCCP thin films, multiscale and high-resolution fluorescent photopatterns with different colors can be facilely prepared with potential applications in optical display devices and anticounterfeiting systems. Moreover, the strong electrostatic interactions of these cationic MCCPs with anionic polyelectrolytes enable them to form multicolored fluorescent interfacial polyelectrolyte complexation microfibers with directly visualized internal structures. Such flexible microfibers can be further made into diversified forms of fiber-based macroscopic patterns or painting.

10.
Neuroimage ; 266: 119829, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36565971

RESUMEN

The medial temporal lobe (MTL) is a key area implicated in many brain diseases, such as Alzheimer's disease. As a functional biomarker, the oxygen extraction fraction (OEF) of MTL may be more sensitive than structural atrophy of MTL, especially at the early stages of diseases. However, there is a lack of non-invasive techniques to measure MTL-OEF in humans. The goal of this work is to develop an MRI technique to assess MTL-OEF in a clinically practical time without using contrast agents. The proposed method measures venous oxygenation (Yv) in the basal veins of Rosenthal (BVs), which are the major draining veins of the MTL. MTL-OEF can then be estimated as the arterio-venous difference in oxygenation. We developed an MRI sequence, dubbed arterial-suppressed accelerated T2-relaxation-under-phase-contrast (AS-aTRUPC), to quantify the blood T2 of the BVs, which was then converted to Yv through a well-established calibration model. MTL-OEF was calculated as (Ya-Yv)/Ya × 100%, where Ya was the arterial oxygenation. The feasibility of AS-aTRUPC to quantify MTL-OEF was evaluated in 16 healthy adults. The sensitivity of AS-aTRUPC in detecting OEF changes was assessed by a caffeine ingestion (200 mg) challenge. For comparison, T2-relaxation-under-spin-tagging (TRUST) MRI, which is a widely used global OEF technique, was also acquired. The dependence of MTL-OEF on age was examined by including another seven healthy elderly subjects. The results showed that in healthy adults, MTL-OEF of the left and right hemispheres were correlated (P=0.005). MTL-OEF was measured to be 23.9±3.6% (mean±standard deviation) and was significantly lower (P<0.0001) than the OEF of 33.3±2.9% measured in superior sagittal sinus (SSS). After caffeine ingestion, there was an absolute percentage increase of 9.1±4.0% in MTL-OEF. Additionally, OEF in SSS measured with AS-aTRUPC showed a strong correlation with TRUST OEF (intra-class correlation coefficient=0.94 with 95% confidence interval [0.91, 0.96]), with no significant bias (P=0.12). MTL-OEF was found to increase with age (MTL-OEF=20.997+0.100 × age; P=0.02). In conclusion, AS-aTRUPC MRI provides non-invasive assessments of MTL-OEF and may facilitate future clinical applications of MTL-OEF as a disease biomarker.


Asunto(s)
Venas Cerebrales , Oxígeno , Adulto , Humanos , Anciano , Cafeína , Encéfalo/irrigación sanguínea , Imagen por Resonancia Magnética/métodos , Venas Cerebrales/diagnóstico por imagen , Consumo de Oxígeno , Circulación Cerebrovascular
11.
Alzheimers Dement ; 19(2): 569-577, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-35791732

RESUMEN

INTRODUCTION: Oxygen extraction fraction (OEF) reflects the balance between oxygen delivery and consumption. We longitudinally measured OEF in older adults to examine the relationship with markers of Alzheimer's disease (AD) and vascular pathology. METHODS: One hundred thirty-seven participants were studied at two time-points at an interval of 2.16 years. OEF was measured using T2 -relaxation-under-spin-tagging (TRUST) magnetic resonance imaging (MRI). The association between OEF and vascular risks, white matter hyperintensities (WMH), cerebrospinal fluid (CSF) measures of amyloid beta (Aß), total tau (t-tau), and phosphorylated tau 181 (p-tau181) was examined. RESULTS: OEF increased from baseline to follow-up. The increase in OEF was more prominent in individuals with high vascular risks compared to those with low vascular risks, and was associated with progression of vascular risks and the growth in WMH volume. OEF change was not related to CSF markers of AD pathology or their progression. DISCUSSION: Longitudinal OEF change in older adults is primarily related to vascular pathology.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Humanos , Anciano , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/metabolismo , Oxígeno , Disfunción Cognitiva/patología , Encéfalo/patología , Proteínas tau/líquido cefalorraquídeo , Biomarcadores/líquido cefalorraquídeo
12.
ACS Nano ; 16(12): 21002-21012, 2022 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-36448781

RESUMEN

Carbon nitride semiconductors are competitive candidates for visible-light-responsive photocatalysts, but encounter weakened exciton dissociation arising from the elevated Coulomb force of singlet Frenkel excitons with narrowing bandgaps. We overcome this contradiction by co-infusing π-electron-rich domains and polarizable hydroxyl units into mesoporous carbon nitride, realized by solution thermal shock. The embedded delocalized π-conjugated aromatic domains derived from nonconjugated macromolecules downshift the conduction band edge and contribute to spatial separation of photogenerated electrons in the lowest unoccupied molecular orbital and holes in the highest occupied molecular orbital. Meanwhile, polarizable hydroxyls induce distinct electron flow from heptazine-based skeletons to periphery sites and enhance water adsorption as well as proton reduction capacity. Consequently, the polymeric carbon nitride delivers an enhanced hydrogen evolution rate that is 17.5 times larger than thermally treated counterparts derived from urea fabricated via conventional strategies. These results show that our strategy can infuse different functional motifs into carbon nitride and thus improve photocatalytic activity.

13.
Sci Transl Med ; 14(665): eabn2956, 2022 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-36197967

RESUMEN

Individuals with glucose transporter type I deficiency (G1D) habitually experience nutrient-responsive epilepsy associated with decreased brain glucose. However, the mechanistic association between blood glucose concentration and brain excitability in the context of G1D remains to be elucidated. Electroencephalography (EEG) in G1D individuals revealed nutrition time-dependent seizure oscillations often associated with preserved volition despite electrographic generalization and uniform average oscillation duration and periodicity, suggesting increased facilitation of an underlying neural loop circuit. Nonlinear EEG ictal source localization analysis and simultaneous EEG/functional magnetic resonance imaging converged on the thalamus-sensorimotor cortex as one potential circuit, and 18F-deoxyglucose positron emission tomography (18F-DG-PET) illustrated decreased glucose accumulation in this circuit. This pattern, reflected in a decreased thalamic to striatal 18F signal ratio, can aid with the PET imaging diagnosis of the disorder, whereas the absence of noticeable ictal behavioral changes challenges the postulated requirement for normal thalamocortical activity during consciousness. In G1D mice, 18F-DG-PET and mass spectrometry also revealed decreased brain glucose and glycogen, but preserved tricarboxylic acid cycle intermediates, indicating no overall energy metabolism failure. In brain slices from these animals, synaptic inhibition of cortical pyramidal neurons and thalamic relay neurons was decreased, and neuronal disinhibition was mitigated by metabolic sources of carbon; tonic-clonic seizures were also suppressed by α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor inhibition. These results pose G1D as a thalamocortical synaptic disinhibition disease associated with increased glucose-dependent neuronal excitability, possibly in relation to reduced glycogen. Together with findings in other metabolic defects, inhibitory neuron dysfunction is emerging as a modulable mechanism of hyperexcitability.


Asunto(s)
Glucemia , Estado de Conciencia , Animales , Errores Innatos del Metabolismo de los Carbohidratos , Carbono/metabolismo , Desoxiglucosa , Electroencefalografía , Proteínas Facilitadoras del Transporte de la Glucosa/metabolismo , Glucógeno/metabolismo , Ratones , Proteínas de Transporte de Monosacáridos/deficiencia , Convulsiones , Tálamo/metabolismo , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiónico
14.
Biosensors (Basel) ; 12(9)2022 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-36140107

RESUMEN

Photodynamic therapy (PDT), emerging as a minimally invasive therapeutic modality with precise controllability and high spatiotemporal accuracy, has earned significant advancements in the field of cancer and other non-cancerous diseases treatment. Thereinto, type I PDT represents an irreplaceable and meritorious part in contributing to these delightful achievements since its distinctive hypoxia tolerance can perfectly compensate for the high oxygen-dependent type II PDT, particularly in hypoxic tissues. Regarding the diverse type I photosensitizers (PSs) that light up type I PDT, aggregation-induced emission (AIE)-active type I PSs are currently arousing great research interest owing to their distinguished AIE and aggregation-induced generation of reactive oxygen species (AIE-ROS) features. In this review, we offer a comprehensive overview of the cutting-edge advances of novel AIE-active type I PSs by delineating the photophysical and photochemical mechanisms of the type I pathway, summarizing the current molecular design strategies for promoting the type I process, and showcasing current bioapplications, in succession. Notably, the strategies to construct highly efficient type I AIE PSs were elucidated in detail from the two aspects of introducing high electron affinity groups, and enhancing intramolecular charge transfer (ICT) intensity. Lastly, we present a brief conclusion, and a discussion on the current limitations and proposed opportunities.


Asunto(s)
Neoplasias , Fotoquimioterapia , Humanos , Neoplasias/tratamiento farmacológico , Oxígeno , Fármacos Fotosensibilizantes/química , Fármacos Fotosensibilizantes/uso terapéutico , Especies Reactivas de Oxígeno
15.
PLoS One ; 17(9): e0274220, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36170233

RESUMEN

Cerebrovascular Reactivity (CVR) provides an assessment of the brain's vascular reserve and has been postulated to be a sensitive marker in cerebrovascular diseases. MRI-based CVR measurement typically employs alterations in arterial carbon dioxide (CO2) level while continuously acquiring Blood-Oxygenation-Level-Dependent (BOLD) images. CO2-inhalation and resting-state methods are two commonly used approaches for CVR MRI. However, processing of CVR MRI data often requires special expertise and may become an obstacle in broad utilization of this promising technique. The aim of this work was to develop CVR-MRICloud, a cloud-based CVR processing pipeline, to enable automated processing of CVR MRI data. The CVR-MRICloud consists of several major steps including extraction of end-tidal CO2 (EtCO2) curve from raw CO2 recording, alignment of EtCO2 curve with BOLD time course, computation of CVR value on a whole-brain, regional, and voxel-wise basis. The pipeline also includes standard BOLD image processing steps such as motion correction, registration between functional and anatomic images, and transformation of the CVR images to canonical space. This paper describes these algorithms and demonstrates the performance of the CVR-MRICloud in lifespan healthy subjects and patients with clinical conditions such as stroke, brain tumor, and Moyamoya disease. CVR-MRICloud has potential to be used as a data processing tool for a variety of basic science and clinical applications.


Asunto(s)
Dióxido de Carbono , Circulación Cerebrovascular , Encéfalo/irrigación sanguínea , Encéfalo/diagnóstico por imagen , Mapeo Encefálico/métodos , Humanos , Imagen por Resonancia Magnética/métodos
16.
Cell Discov ; 8(1): 77, 2022 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-35945223

RESUMEN

Reprogrammed cell metabolism is deemed as one of the hallmarks of cancer. Hexosamine biosynthesis pathway (HBP) acts as an "energy sensor" in cells to regulate metabolic fluxes. Glutamine-fructose-6-phosphate amidotransferase 1 (GFAT1), the rate-limiting enzyme of HBP, is broadly found with elevated expression in human cancers though its exact and concrete role in tumorigenesis still remains unknown and needs further investigation. P38 mitogen-activated protein kinase (MAPK) is an important component of stress-signaling pathway and plays a critical role in cell fate decision, whereas the underlying mechanism of its activation under nutrient stress also remains elusive. In this study, we show that glucose deprivation induces the interaction of GFAT1 with transforming growth factor ß-activated kinase 1 binding protein 1 (TAB1) in a TAB1 S438 phosphorylation-dependent manner. Subsequently, the binding of GFAT1 to TAB1 facilitates TTLL5-GFAT1-TAB1 complex formation, and the metabolic activity of GFAT1 for glutamate production further contributes to TTLL5-mediated TAB1 glutamylation. In consequence, TAB1 glutamylation promotes the recruitment of p38α MAPK and thus drives p38 MAPK activation. Physiologically, GFAT1-TAB1-p38 signaling promotes autophagy occurrence and thus protects tumor cell survival under glucose deficiency. Clinical analysis indicates that both GFAT1 and TAB1 S438 phosphorylation levels correlate with the poor prognosis of lung adenocarcinoma patients. These findings altogether uncover an unidentified mechanism underlying p38 MAPK signaling regulation by metabolic enzyme upon nutrient stress and provide theoretical rationality of targeting GFAT1 for cancer treatment.

17.
Bioorg Med Chem Lett ; 75: 128951, 2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-36031020

RESUMEN

We report herein, the discovery of BMS-737 (compound 33) as a potent, non-steroidal, reversible small molecule inhibitor demonstrating 11-fold selectivity for CYP17 lyase over CYP17 hydroxylase, as well as a clean xenobiotic CYP profile for the treatment of castration-resistant prostate cancer (CRPC). Extensive SAR studies on the initial lead 1 at three different regions of the molecule resulted in the identification of BMS-737, which demonstrated a robust 83% lowering of testosterone without any significant perturbation of the mineralocorticoid and glucocorticoid levels in cynomologous monkeys in a 1-day PK/PD study.


Asunto(s)
Liasas , Neoplasias de la Próstata Resistentes a la Castración , Neoplasias de la Próstata , Antagonistas de Andrógenos , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/uso terapéutico , Glucocorticoides , Humanos , Masculino , Mineralocorticoides , Neoplasias de la Próstata Resistentes a la Castración/tratamiento farmacológico , Esteroide 17-alfa-Hidroxilasa , Testosterona , Xenobióticos
18.
Magn Reson Med ; 88(5): 2259-2266, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35754146

RESUMEN

PURPOSE: Caffeine is known to alter brain perfusion by acting as an adenosine antagonist, but its effect on blood-brain barrier (BBB) permeability is not fully elucidated. This study aimed to dynamically monitor BBB permeability to water after a single dose of caffeine tablet using a non-contrast MRI technique. METHODS: Ten young healthy volunteers who were not regular coffee drinkers were studied. The experiment began with a pre-caffeine measurement, followed by four measurements at the post-caffeine stage. Water-extraction-with-phase-contrast-arterial-spin-tagging (WEPCAST) MRI was used to assess the time dependence of BBB permeability to water following the ingestion of 200 mg caffeine. Other cerebral physiological parameters including cerebral blood flow (CBF), venous oxygenation (Yv ), and cerebral metabolic rate of oxygen (CMRO2 ) were also examined. The relationships between cerebral physiological parameters and time were studied with mixed-effect models. RESULTS: It was found that, after caffeine ingestion, CBF and Yv showed a time-dependent decrease (p < 0.001), while CMRO2 did not change significantly. The fraction of arterial water crossing the BBB (E) showed a significant increase (p < 0.001). In contrast, the permeability-surface-area product (PS), i.e., BBB permeability to water, remained constant (p = 0.94). Additionally, it was observed that changes in physiological parameters were non-linear with regard to time and occurred at as early as 9 min after caffeine tablet ingestion. CONCLUSION: These results suggest an unchanged BBB permeability despite alterations in perfusion during a vasoconstrictive caffeine challenge.


Asunto(s)
Barrera Hematoencefálica , Cafeína , Barrera Hematoencefálica/diagnóstico por imagen , Barrera Hematoencefálica/metabolismo , Encéfalo/irrigación sanguínea , Encéfalo/diagnóstico por imagen , Cafeína/farmacología , Circulación Cerebrovascular/fisiología , Humanos , Imagen por Resonancia Magnética/métodos , Permeabilidad , Agua/metabolismo
19.
Front Neurol ; 13: 858805, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35572919

RESUMEN

Background and Purpose: The vascular tortuosity (VT) of the internal carotid artery (ICA), and vertebral artery (VA) can impact blood flow and neuronal function. However, few studies involved quantitative investigation of VT based on magnetic resonance imaging (MRI). The main purpose of our study was to evaluate the age and gender effects on ICA and VA regarding the tortuosity and flow changes by applying automatic vessel segmentation, centerline tracking, and phase mapping on MR angiography. Methods: A total of 247 subjects (86 males and 161 females) without neurological diseases participated in this study. All subjects obtained T1-weighted MRI, 3D time-of-flight MR angiography, and 2D phase-contrast (PC) MRI scans. To generate quantitative tortuosity metrics from TOF images, the vessel segmentation and centerline tracking were implemented based on Otsu thresholding and fast marching algorithms, respectively. Blood flow and velocity were measured using PC MRI. Among the 247 subjects, 144 subjects (≤ 60 years, 49 males/95 females) were categorized as the young group; 103 subjects (>60 years, 37 males/66 females) were categorized as the old group. Results: Independent t-test showed that older subjects had higher tortuosity metrics, whereas lower blood flow and velocity than young subjects (p < 0.0025, Bonferroni-corrected). Cerebral blood flow calculated using the sum flux of four target arteries normalized by the brain mass also showed significantly lower values in older subjects (p < 0.001). The age was observed to be positively correlated with the VT metrics. Compared to the males, the females demonstrated higher geometric indices within VAs as well as faster age-related vascular profile changes. After adjusting age and gender as covariates, maximum blood velocity is negatively correlated with geometric measurements. No association was observed between blood flux and geometric measures. Conclusions: Vascular auto-segmentation, centerline tracking, and phase mapping provide promising quantitative assessments of tortuosity and its effects on blood flow. The neck arteries demonstrate quantifiable and significant age-related morphological and hemodynamic alterations. Moreover, females showed more distinct vascular changes with age. Our work is built upon a comprehensive quantitative investigation of a large cohort of populations covering adult lifespan using MRI, the results can serve as reference ranges of each decade in the general population.

20.
Cereb Cortex ; 33(1): 135-151, 2022 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-35388407

RESUMEN

Neural-vascular coupling (NVC) is the process by which oxygen and nutrients are delivered to metabolically active neurons by blood vessels. Murine models of NVC disruption have revealed its critical role in healthy neural function. We hypothesized that, in humans, aging exerts detrimental effects upon the integrity of the neural-glial-vascular system that underlies NVC. To test this hypothesis, calibrated functional magnetic resonance imaging (cfMRI) was used to characterize age-related changes in cerebral blood flow (CBF) and oxygen metabolism during visual cortex stimulation. Thirty-three younger and 27 older participants underwent cfMRI scanning during both an attention-controlled visual stimulation task and a hypercapnia paradigm used to calibrate the blood-oxygen-level-dependent signal. Measurement of stimulus-evoked blood flow and oxygen metabolism permitted calculation of the NVC ratio to assess the integrity of neural-vascular communication. Consistent with our hypothesis, we observed monotonic NVC ratio increases with increasing visual stimulation frequency in younger adults but not in older adults. Age-related changes in stimulus-evoked cerebrovascular and neurometabolic signal could not fully explain this disruption; increases in stimulus-evoked neurometabolic activity elicited corresponding increases in stimulus-evoked CBF in younger but not in older adults. These results implicate age-related, demand-dependent failures of the neural-glial-vascular structures that comprise the NVC system.


Asunto(s)
Acoplamiento Neurovascular , Humanos , Animales , Ratones , Anciano , Acoplamiento Neurovascular/fisiología , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Circulación Cerebrovascular/fisiología , Imagen por Resonancia Magnética/métodos , Envejecimiento/fisiología , Oxígeno
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA