RESUMEN
In the context of oxygen evolution reaction (OER), the construction of high-valent transition metal sites to trigger the lattice oxygen oxidation mechanism is considered crucial for overcoming the performance limitations of traditional adsorbate evolution mechanism. However, the dynamic evolution of lattice oxygen during the reaction poses significant challenges for the stability of high-valent metal sites, particularly in high-current-density water-splitting systems. Here, we have successfully constructed Co-O-Fe catalytic active motifs in cobalt-iron Prussian blue analogs (CoFe-PBA) through oxygen plasma bombardment, effectively activating lattice oxygen reactivity while sustaining robust stability. Our spectroscopic and theoretical studies reveal that the Co-O-Fe bridged motifs enable a unique double-exchange interaction between Co and Fe atoms, promoting the formation of high-valent Co species as OER active centers while maintaining Fe in a low-valent state, preventing its dissolution. The resultant catalyst (CoFe-PBA-30) requires an overpotential of only 276 mV to achieve 1000 mA cm-2. Furthermore, the assembled alkaline exchange membrane electrolyzer using CoFe-PBA-30 as anode material achieves a high current density of 1 A cm-2 at 1.76 V and continuously operates for 250 hours with negligible degradation. This work provides significant insights for activating lattice oxygen redox without compromising structure stability in practical water electrolyzers.
RESUMEN
Proton exchange membrane (PEM) electrolysis holds great promise for green hydrogen production, but suffering from high loading of platinum-group metals (PGM) for large-scale deployment. Anchoring PGM-based materials on supports can not only improve the atomic utilization of active sites but also enhance the intrinsic activity. However, in practical PEM electrolysis, it is still challenging to mediate hydrogen adsorption/desorption pathways with high coverage of hydrogen intermediates over catalyst surface. Here, operando generated stable palladium (Pd) hydride nanoclusters anchored on tungsten carbide (WCx) supports were constructed for hydrogen evolution in PEM electrolysis. Under PEM operando conditions, hydrogen intercalation induces formation of Pd hydrides (PdHx) featuring weakened hydrogen binding energy (HBE), thus triggering reverse hydrogen spillover from WCx (strong HBE) supports to PdHx sites, which have been evidenced by operando characterizations, electrochemical results and theoretical studies. This PdHx-WCx material can be directly utilized as cathode electrocatalysts in PEM electrolysis with ultralow Pd loading of 0.022â mg cm-2, delivering the current density of 1â A cm-2 at the cell voltage of ~1.66â V and continuously running for 200â hours without obvious degradation. This innovative strategy via tuning the operando characteristics to mediate reverse hydrogen spillover provide new insights for designing high-performance supported PGM-based electrocatalysts.
RESUMEN
Metal-organic frameworks (MOFs)-related Cu materials are promising candidates for promoting electrochemical CO2 reduction to produce valuable chemical feedstocks. However, many MOF materials inevitable undergo reconstruction under reduction conditions; therefore, exploiting the restructuring of MOF materials is of importance for the rational design of high-performance catalyst targeting multi-carbon products (C2). Herein, a facile solvent process is choosed to fabricate HKUST-1 with an anionic framework (a-HKUST-1) and utilize it as a pre-catalyst for alkaline CO2RR. The a-HKUST-1 catalyst can be electrochemically reduced into Cu with significant structural reconstruction under operating reaction conditions. The anionic HKUST-1 derived Cu catalyst (aHD-Cu) delivers a FEC2H4 of 56% and FEC2 of ≈80% at -150 mA cm-2 in alkaline electrolyte. The resulting aHD-Cu catalyst has a high electrochemically active surface area and low coordinated sites. In situ Raman spectroscopy indicates that the aHD-Cu surface displays higher coverage of *CO intermediates, which favors the production of hydrocarbons.
RESUMEN
Inefficient active site utilization of oxygen evolution reaction (OER) catalysts have limited the energy efficiency of proton exchange membrane (PEM) water electrolysis. Here, an atomic grid structure is demonstrated composed of high-density Ir sites (≈10 atoms per nm2) on reactive MnO2-x support which mediates oxygen coverage-enhanced OER process. Experimental characterizations verify the low-valent Mn species with decreased oxygen coordination in MnO2-x exert a pivotal impact in the enriched oxygen coverage on the surface during OER process, and the distributed Ir atomic grids, where highly electrophilic IrâO(II-δ)- bonds proceed rapidly, render intense nucleophilic attack of oxygen radicals. Thereby, this metal-support cooperation achieves ultra-low overpotentials of 166 mV at 10 mA cm-2 and 283 mV at 500 mA cm-2, together with a striking mass activity which is 380 times higher than commercial IrO2 at 1.53 V. Moreover, its high OER performance also markedly surpasses the commercial Ir black catalyst in PEM electrolyzers with long-term stability.
RESUMEN
Copper is one of the predominant water pollutants. Excessive exposure to copper can cause harm to animal health, affecting the central nervous system and causing blood abnormalities. Cuproptosis is a novel form of cell death that differs from previous programmed cell death methods. However, the impact of copper on the intestines remains unclear. Therefore, we investigated the effects of different concentrations of copper exposure on the intestinal proteome of Takifugu rubripes (T. rubripes). Relevant biomarkers were used to detect cuproptosis. We revealed the crosstalk relationship between cuproptosis and self-rescue at different concentrations, and discussed the feasibility of using potential cuproptosis indicators as anti-infection factors. We observed intestinal damage in the three copper exposure groups, especially in T. rubripes treated with 100 and 500⯵g/L copper, with shedding and breakage of intestinal villus and fuzzy and loose structure of intestinal mucosa. The presence of copper stress not only causes cuproptosis but also oxidative damage caused by reactive oxygen species (ROS). The results of quantitative proteomics by TMT showed that compared to the 50 and 100⯵g/L copper exposure groups, the expression of glutaminase, pyruvate kinase, and skin mucus lectin in the 500⯵g/L group was significantly increased. The positive mediators COX5A and CTNNB1, as well as the negative mediators CD4 and FDXR, were found to be differentially expressed. Using the protein expression trends of cuproptosis indicator factors FDX1 and DLAT to indicate the concentration of copper ions in the environment. In addition, we found a new effect of promoting ferroptosis: providing additional copper ions can activate the phenomenon of ferroptosis. Our results expand our understanding of the potential health risks of copper in T. rubripes. At the same time, it is of great significance for the process of copper poisoning and the development of new environmental toxicology detection reagents.
Asunto(s)
Cobre , Proteoma , Takifugu , Contaminantes Químicos del Agua , Animales , Cobre/toxicidad , Proteoma/efectos de los fármacos , Takifugu/metabolismo , Contaminantes Químicos del Agua/toxicidad , Estrés Oxidativo/efectos de los fármacos , Mucosa Intestinal/efectos de los fármacos , Mucosa Intestinal/metabolismo , Intestinos/efectos de los fármacos , Biomarcadores/metabolismo , Especies Reactivas de Oxígeno/metabolismoRESUMEN
The Japanese puffer, Takifugu rubripes, is a commercially important fish species in China that is under serious threat from white spot disease (cyptocaryoniasis), which leads to heavy economic losses. We previously found that interleukin-1ß (IL-1ß), an important cytokine with a potential role in resistance against pathogens, was one of the most significantly differentially up-regulated proteins in the gills and spleen of T. rubripes infected by the protozoan parasite Cryptocaryon irritans. In this study, we assessed the potential function of T. rubripes IL-1ß (TrIL-1ß) in fish infected with C. irritans. Phylogenetic analysis indicated that the TrIL-1ß protein sequence was most closely related to that of Atlantic salmon (Salmo salar) (67.2 %). The incubation experiments revealed that TrIL-1ß may reduce trophont activity by destroying membranes. Immunofluorescence experiments showed that recombinant TrIL-1ß promoted the expression of endogenous IL-1ß, which penetrated and disrupted the cell membranes of trophonts. Transmission electron microscopy showed that the IL-1ß group had less tissue damage compared with control groups of fish. IL-1ß-small interfering RNA and IL-1ß overexpression experiments were performed in head kidney primary cells, and challenge experiments were performed in vitro. Quantitative RT-PCR results showed that TrIL-1ß regulated and activated MyD88/NF-κB and MyD88/MAPK/p38 signaling pathways during C. irritans infection. TrIL-1ß also promoted the differential expression of IgM, showing that it was involved in humoral immunity of T. rubripes. The cumulative mortality experiment show that TrIL-1ß could protect fish against C. irritans infection. These results enrich current knowledge about the molecular structure of TrIL-1ß. They also suggested that recombinant TrIL-1ß could be used as an adjuvant in a subunit vaccine against C. irritans infection, which is of profound importance for the prevention and control of parasitic diseases in T. rubripes.
Asunto(s)
Infecciones por Cilióforos , Enfermedades de los Peces , Interleucina-1beta , Takifugu , Animales , Takifugu/parasitología , Takifugu/metabolismo , Takifugu/genética , Infecciones por Cilióforos/parasitología , Infecciones por Cilióforos/inmunología , Infecciones por Cilióforos/veterinaria , Enfermedades de los Peces/parasitología , Enfermedades de los Peces/inmunología , Interleucina-1beta/metabolismo , Interleucina-1beta/genética , Cilióforos/efectos de los fármacos , Proteínas de Peces/genética , Proteínas de Peces/metabolismo , Proteínas de Peces/inmunología , FilogeniaRESUMEN
BACKGROUND: The ubiquitin-proteasome pathway (UPP) has been proven to play important roles in cancer. AIM: To investigate the prognostic significance of genes involved in the UPP and develop a predictive model for liver cancer based on the expression of these genes. METHODS: In this study, UPP-related E1, E2, E3, deubiquitylating enzyme, and proteasome gene sets were obtained from the Kyoto Encyclopedia of Genes and Genomes (KEGG) database, aiming to screen the prognostic genes using univariate and multivariate regression analysis and develop a prognosis predictive model based on the Cancer Genome Atlas liver cancer cases. RESULTS: Five genes (including autophagy related 10, proteasome 20S subunit alpha 8, proteasome 20S subunit beta 2, ubiquitin specific peptidase 17 like family member 2, and ubiquitin specific peptidase 8) were proven significantly correlated with prognosis and used to develop a prognosis predictive model for liver cancer. Among training, validation, and Gene Expression Omnibus sets, the overall survival differed significantly between the high-risk and low-risk groups. The expression of the five genes was significantly associated with immunocyte infiltration, tumor stage, and postoperative recurrence. A total of 111 differentially expressed genes (DEGs) were identified between the high-risk and low-risk groups and they were enriched in 20 and 5 gene ontology and KEGG pathways. Cell division cycle 20, Kelch repeat and BTB domain containing 11, and DDB1 and CUL4 associated factor 4 like 2 were the DEGs in the E3 gene set that correlated with survival. CONCLUSION: We have constructed a prognosis predictive model in patients with liver cancer, which contains five genes that associate with immunocyte infiltration, tumor stage, and postoperative recurrence.
RESUMEN
Electrocatalytic carbon dioxide/carbon monoxide reduction reaction (CO(2)RR) has emerged as a prospective and appealing strategy to realize carbon neutrality for manufacturing sustainable chemical products. Developing highly active electrocatalysts and stable devices has been demonstrated as effective approach to enhance the conversion efficiency of CO(2)RR. In order to rationally design electrocatalysts and devices, a comprehensive understanding of the intrinsic structure evolution within catalysts and micro-environment change around electrode interface, particularly under operation conditions, is indispensable. Synchrotron radiation has been recognized as a versatile characterization platform, garnering widespread attention owing to its high brightness, elevated flux, excellent directivity, strong polarization and exceptional stability. This review systematically introduces the applications of synchrotron radiation technologies classified by radiation sources with varying wavelengths in CO(2)RR. By virtue of in situ/operando synchrotron radiationanalytical techniques, we also summarize relevant dynamic evolution processes from electronic structure, atomic configuration, molecular adsorption, crystal lattice and devices, spanning scales from the angstrom to the micrometer. The merits and limitations of diverse synchrotron characterization techniques are summarized, and their applicable scenarios in CO(2)RR are further presented. On the basis of the state-of-the-art fourth-generation synchrotron facilities, a perspective for further deeper understanding of the CO(2)RR process using synchrotron radiation analytical techniques is proposed.
RESUMEN
Diatomic-site catalysts (DASCs) inherit the excellent performance of single-atom catalysts (SACs) by utilizing two adjacent atomic metal species to achieve functional complementarity and synergistic effects that improve the carbon dioxide reduction reaction (CO2RR) and H2 evolution reaction (HER) kinetics. Herein, we report a method to further improve the catalytic efficiency of Pt by using Pt and Ru single atoms randomly anchored on a g-C3N4 surface, yielding partial Pt-Ru dimers. The synthesized catalyst exhibits extraordinary photocatalytic activity and stability in both the CO2RR and HER processes. In-depth experimentation, the pH-dependent chemical exchange saturation transfer (CEST) imaging nuclear magnetic resonance (NMR) method, and theoretical analyses reveal that the excellent performance is attributed to orbital coupling between the Pt atoms and the neighboring Ru atoms (mainly dxy and dxz), which decreases the orbital energy levels and weakens the bond strength with intermediates, resulting in improved CO2RR and HER performance. This study successfully applies the pH-dependent CEST imaging NMR method to catalytic reactions, and CO2 adsorption is directly observed using CEST 2D imaging maps. This work presents significant potential for a variety of catalytic reaction applications by systematically designing bimetallic dimers with higher activity and stability.
RESUMEN
Takifugu rubripes (T. rubripes) is a valuable commercial fish, and Cryptocaryon irritans (C. irritans) has a significant impact on its aquaculture productivity. DNA methylation is one of the earliest discovered ways of gene epigenetic modification and also an important form of modification, as well as an essential type of alteration that regulates gene expression, including immune response. To further explore the anti-infection mechanism of T. rubripes in inhibiting this disease, we determined genome-wide DNA methylation profiles in the gill of T. rubripes using whole-genome bisulfite sequencing (WGBS) and combined with RNA sequence (RNA-seq). A total of 4659 differentially methylated genes (DMGs) in the gene body and 1546 DMGs in the promoter between the infection and control group were identified. And we identified 2501 differentially expressed genes (DEGs), including 1100 upregulated and 1401 downregulated genes. After enrichment analysis, we identified DMGs and DEGs of immune-related pathways including MAPK, Wnt, ErbB, and VEGF signaling pathways, as well as node genes prkcb, myca, tp53, and map2k2a. Based on the RNA-Seq results, we plotted a network graph to demonstrate the relationship between immune pathways and functional related genes, in addition to gene methylation and expression levels. At the same time, we predicted the CpG island and transcription factor of four immune-related key genes prkcb and mapped the gene structure. These unique discoveries could be helpful in the understanding of C. irritans pathogenesis, and the candidate genes screened may serve as optimum methylation-based biomarkers that can be utilized for the correct diagnosis and therapy T. rubripes in the development of the ability to resist C. irritans infection.
Asunto(s)
Cilióforos , Metilación de ADN , Enfermedades de los Peces , Takifugu , Takifugu/genética , Takifugu/parasitología , Takifugu/metabolismo , Animales , Enfermedades de los Peces/parasitología , Enfermedades de los Peces/genética , Infecciones por Cilióforos/veterinaria , Infecciones por Cilióforos/genética , Infecciones por Cilióforos/parasitología , Infecciones por Cilióforos/inmunología , Branquias/metabolismo , Branquias/parasitología , Epigénesis Genética , Regulación de la Expresión Génica , Secuenciación Completa del Genoma , Perfilación de la Expresión GénicaRESUMEN
Single-crystal semiconductor-based photocatalysts exposing unique crystallographic facets show promising applications in energy and environmental technologies; however, crystal facet engineering through solid-state synthesis for photocatalytic overall water splitting is still challenging. Herein, we develop a novel crystal facet engineering strategy through solid-state recrystallization to synthesize uniform SrTiO3 single crystals exposing tailored {111} facets. The presynthesized low-crystalline SrTiO3 precursors enable the formation of well-defined single crystals through kinetically improved crystal structure transformation during solid-state recrystallization process. By employing subtle Al3+ ions as surface morphology modulators, the crystal surface orientation can be precisely tuned to a controlled percentage of {111} facets. The photocatalytic overall water splitting activity increases with the exposure percentage of {111} facets. Owing to the outstanding crystallinity and favorable anisotropic surface structure, the SrTiO3 single crystals with 36.6% of {111} facets lead to a 3-fold enhancement of photocatalytic hydrogen evolution rates up to 1.55 mmol·h-1 in a stoichiometric ratio of 2:1 than thermodynamically stable SrTiO3 enclosed with isotropic {100} facets.
RESUMEN
Polar materials with spontaneous polarization (Ps) have emerged as highly promising photocatalysts for efficient photocatalytic H2 evolution owing to the Ps-enhanced photogenerated carrier separation. However, traditional inorganic polar materials often suffer from limitations such as wide band gaps and poor carrier transport, which hinders their photocatalytic H2 evolution efficiency. Here, we rationally synthesized a series of isostructural two-dimensional (2D) aromatic Dion-Jacobson (DJ) perovskites, namely (2-(2-Aminoethyl)pyridinium)PbI4 (2-APDPI), (3-(2-Aminoethyl)pyridinium)PbI4 (3-APDPI), and (4-(2-Aminoethyl)pyridinium)PbI4 (4-APDPI), where 2-APDPI and 4-APDPI crystalize in polar space groups with piezoelectric constants (d33) of approximately 40â pm V-1 and 3-APDPI adopts a centrosymmetric structure. Strikingly, owing to the Ps-facilitated separation of photogenerated carriers, polar 2-APDPI and 4-APDPI exhibit a 3.9- and 2.8-fold increase, respectively, in photocatalytic H2 evolution compared to the centrosymmetric 3-APDPI. As a pioneering study, this work provides an efficient approach for exploring new polar photocatalysts and highlights their potential in promoting photocatalytic H2 evolution.
RESUMEN
As a prototypical photocatalyst, TiO[Formula: see text] has been extensively studied. An interesting yet puzzling experimental fact was that P25-a mixture of anatase and rutile TiO[Formula: see text]-outperforms the individual phases; the origin of this mysterious fact, however, remains elusive. Employing rigorous first-principles calculations, here we uncover a metastable intermediate structure (MIS), which is formed due to confinement at the anatase/rutile interface. The MIS has a high conduction-band minimum level and thus substantially enhances the overpotential of the hydrogen evolution reaction. Also, the corresponding band alignment at the interface leads to efficient separation of electrons and holes. The interfacial confinement additionally creates a wide distribution of the band gap in the vicinity of the interface, which in turn improves optical absorption. These factors all contribute to the enhanced photocatalytic efficiency in P25. Our insights provide a rationale to the puzzling superior photocatalytic performance of P25 and enable a strategy to achieve highly efficient photocatalysis via interface engineering.
RESUMEN
Polysaccharide from Asarum sieboldii Miq (ASP) was extracted and five phosphorylation polysaccharides with different degree of substitution were obtained, namely ASPP1, ASPP2, ASPP3, ASPP4, and ASPP5 (ASPPs). The physical and chemical structure and biological activities were studied. The results suggested that the carbohydrate and protein content were reduced while uronic acid was increased after phosphorylation modification. The molecular weight of ASPPs was significantly lower than that of ASP. ASPPs were acidic heteropolysaccharides mainly composed of galacturonic acid, galactose, glucose, fructose, and arabinose. The UV-vis spectrum indicated that the polysaccharides did not contain nucleic acid or protein after modification. The Fourier transform infrared spectrum demonstrated that ASPPs contained characteristic absorption peaks of P=O and P-O-C near 1270 and 980â cm-1 . ASPPs presented a triple helix conformation, but it was not presented in ASP. The scanning electron microscopy analysis showed that the surface topography and particle structure of ASP were different after modification. Compared with ASP, ASPPs enhanced the activity to scavenge DPPH and ABTS free radicals and possessed more protective ability to DNA oxidation caused by OHâ , GSâ , and AAPH free radicals. These results suggest that chemical modification is beneficial for the exploitation and utilization of natural polysaccharides.
Asunto(s)
Antioxidantes , Asarum , Antioxidantes/farmacología , Antioxidantes/química , Fosforilación , Polisacáridos/farmacología , Polisacáridos/química , Radicales Libres , Espectroscopía Infrarroja por Transformada de FourierRESUMEN
The imbalance of redox homeostasis is a major characteristic of aging and contributes to the pathogenesis of various aging-related diseases. As a regulatory hub of redox homeostasis, nuclear factor erythroid 2-related factor 2 (NRF2) can attenuate oxidative stress by activating the transcription of many antioxidant enzymes. China is the birthplace of traditional Chinese medicine (TCM) which has been wildly used as medicine for thousands of years. Recently, TCM as anti-aging medicine has attracted enormous attention. Focusing on the NRF2 signaling pathway, this paper summarizes the correlation between various anti-aging TCM and the NRF2 signaling, and discusses the common key mechanisms by which TCM slows the aging process by targeting the NRF2 signaling network.
Asunto(s)
Medicina Tradicional China , Factor 2 Relacionado con NF-E2 , Factor 2 Relacionado con NF-E2/metabolismo , Estrés Oxidativo , Transducción de SeñalRESUMEN
The Omicron variant of the severe acute respiratory syndrome coronavirus 2 (SARSCoV2) infected a substantial proportion of Chinese population, and understanding the factors underlying the severity of the disease and fatality is valuable for future prevention and clinical treatment. We recruited 64 patients with invasive ventilation for COVID-19 and performed metatranscriptomic sequencing to profile host transcriptomic profiles, plus viral, bacterial, and fungal content, as well as virulence factors and examined their relationships to 28-day mortality were examined. In addition, the bronchoalveolar lavage fluid (BALF) samples from invasive ventilated hospital/community-acquired pneumonia patients (HAP/CAP) sampled in 2019 were included for comparison. Genomic analysis revealed that all Omicron strains belong to BA.5 and BF.7 sub-lineages, with no difference in 28-day mortality between them. Compared to HAP/CAP cohort, invasive ventilated COVID-19 patients have distinct host transcriptomic and microbial signatures in the lower respiratory tract; and in the COVID-19 non-survivors, we found significantly lower gene expressions in pathways related viral processes and positive regulation of protein localization to plasma membrane, higher abundance of opportunistic pathogens including bacterial Alloprevotella, Caulobacter, Escherichia-Shigella, Ralstonia and fungal Aspergillus sydowii and Penicillium rubens. Correlational analysis further revealed significant associations between host immune responses and microbial compositions, besides synergy within viral, bacterial, and fungal pathogens. Our study presents the relationships of lower respiratory tract microbiome and transcriptome in invasive ventilated COVID-19 patients, providing the basis for future clinical treatment and reduction of fatality.
Asunto(s)
COVID-19 , Microbiota , Neumonía , Humanos , COVID-19/genética , COVID-19/metabolismo , SARS-CoV-2/genética , Respiración Artificial , Pulmón , Neumonía/metabolismo , BacteriasRESUMEN
Electroreduction of CO2 to valuable multicarbon (C2+) products is a highly attractive way to utilize and divert emitted CO2. However, a major fraction of C2+ selectivity is confined to less than 90% by the difficulty of coupling C-C bonds efficiently. Herein, we identify the stable Cu0/Cu2+ interfaces derived from copper phosphate-based (CuPO) electrocatalysts, which can facilitate C2+ production with a low-energy pathway of OC-CHO coupling verified by in situ spectra studies and theoretical calculations. The CuPO precatalyst shows a high Faradaic efficiency (FE) of 69.7% towards C2H4 in an H-cell, and exhibits a significant FEC2+ of 90.9% under industrially relevant current density (j = -350 mA cm-2) in a flow cell configuration. The stable Cu0/Cu2+ interface breaks new ground for the structural design of electrocatalysts and the construction of synergistic active sites to improve the activity and selectivity of valuable C2+ products.
RESUMEN
Electrocatalytic water splitting is one of the most commercially valuable pathways of hydrogen production especially combined with renewable electricity; however, efficient and durable electrocatalysts are urgently needed to reduce electric energy consumption. Here, we reported a Ru and Fe co-doped Mo2 C on nitrogen doped carbon via a controllable two-step method, which can be used for efficient and enduring hydrogen evolution reaction. At 10, 100 and 200â mA cm-2 in acidic electrolyte, the resultant Ru-Fe/Mo2 C@NC delivered low overpotentials of 31, 78 and 103â mV, respectively, which are comparable to that of the commercial Pt/C (20â wt %). At an applied current density of 100â mA cm-2 , stable hydrogen production was conducted for 120â h without obvious degradation. In alkaline media, Ru-Fe/Mo2 C@NC can also deliver a current density of 100â mA cm-2 for more than 100â h. Furthermore, the Ru-Fe/Mo2 C@NC electrocatalyst was used as cathode in an anion exchange membrane water electrolyzer under industrial environments for robust hydrogen production. The characterization and electrochemical results prove the synergism effects between Ru, Fe dopants and Mo2 C for promoting hydrogen evolution activity. This work would pave a new avenue to fabricate low-cost, high-performance hydrogen evolution electrocatalysts for industrial water electrolyzers.
RESUMEN
BACKGROUND: Bladder urothelial carcinoma (BUC) ranks second in the incidence of urogenital system tumors, and the treatment of BUC needs to be improved. Puerarin, a traditional Chinese medicine (TCM), has been shown to have various effects such as anti-cancer effects, the promotion of angiogenesis, and anti-inflammation. This study investigates the effects of puerarin on BUC and its molecular mechanisms. METHODS: Through GeneChip experiments, we obtained differentially expressed genes (DEGs) and analyzed these DEGs using the Ingenuity® Pathway Analysis (IPA®), Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) pathway enrichment analyses. The Cell Counting Kit 8 (CCK8) assay was used to verify the inhibitory effect of puerarin on the proliferation of BUC T24 cells. String combined with Cytoscape® was used to create the Protein-Protein Interaction (PPI) network, and the MCC algorithm in cytoHubba plugin was used to screen key genes. Gene Set Enrichment Analysis (GSEA®) was used to verify the correlation between key genes and cell proliferation. RESULTS: A total of 1617 DEGs were obtained by GeneChip. Based on the DEGs, the IPA® and pathway enrichment analysis showed they were mainly enriched in cancer cell proliferation and migration. CCK8 experiments proved that puerarin inhibited the proliferation of BUC T24 cells, and its IC50 at 48 hours was 218µmol/L. Through PPI and related algorithms, 7 key genes were obtained: ITGA1, LAMA3, LAMB3, LAMA4, PAK2, DMD, and UTRN. GSEA showed that these key genes were highly correlated with BUC cell proliferation. Survival curves showed that ITGA1 upregulation was associated with poor prognosis of BUC patients. CONCLUSION: Our findings support the potential antitumor activity of puerarin in BUC. To the best of our knowledge, bioinformatics investigation suggests that puerarin demonstrates anticancer mechanisms via the upregulation of ITGA1, LAMA3 and 4, LAMB3, PAK2, DMD, and UTRN, all of which are involved in the proliferation and migration of bladder urothelial cancer cells.
RESUMEN
BACKGROUND: Iterative decomposition of water and fat with echo asymmetry and least squares estimation quantification sequence (IDEAL-IQ) is based on chemical shift-based water and fat separation technique to get proton density fat fraction. Multiple studies have shown that using IDEAL-IQ to test the stability and repeatability of liver fat is acceptable and has high accuracy. AIM: To explore whether Gadoxetate Disodium (Gd-EOB-DTPA) interferes with the measurement of the hepatic fat content quantified with the IDEAL-IQ and to evaluate the robustness of this technique. METHODS: IDEAL-IQ was used to quantify the liver fat content at 3.0T in 65 patients injected with Gd-EOB-DTPA contrast. After injection, IDEAL-IQ was estimated four times, and the fat fraction (FF) and R2* were measured at the following time points: Pre-contrast, between the portal phase (70 s) and the late phase (180 s), the delayed phase (5 min) and the hepatobiliary phase (20 min). One-way repeated-measures analysis was conducted to evaluate the difference in the FFs between the four time points. Bland-Altman plots were adopted to assess the FF changes before and after injection of the contrast agent. P < 0.05 was considered statistically significant. RESULTS: The assessment of the FF at the four time points in the liver, spleen and spine showed no significant differences, and the measurements of hepatic FF yielded good consistency between T1 and T2 [95% confidence interval: -0.6768%, 0.6658%], T1 and T3 (-0.3900%, 0.3178%), and T1 and T4 (-0.3750%, 0.2825%). R2* of the liver, spleen and spine increased significantly after injection (P < 0.0001). CONCLUSION: Using the IDEAL-IQ sequence to measure the FF, we can obtain results that will not be affected by Gd-EOB-DTPA. The high reproducibility of the IDEAL-IQ sequence makes it available in the scanning interval to save time during multiphase examinations.