RESUMEN
Hydrolyzable tannins (HTs) have garnered significant attention due to their proven beneficial effects in the clinical treatment of various diseases. The cupule of Chinese cork oak (Quercus variabilis Blume) has been used as raw material of traditional medicine for centuries for its high content of HTs. Previous studies have identified UGT84A13 as a key enzyme in the HT biosynthesis pathway in Q. variabilis, but the transcriptional regulation network of UGT84A13 remains obscure. Here, we performed a comprehensive genome-wide identification of the TCP transcription factors in Q. variabilis, elucidating their molecular evolution and gene structure. Gene expression analysis showed that TCP3 from the CIN subfamily and TCP6 from the PCF subfamily were co-expressed with UGT84A13 in cupule. Further functional characterization using dual-luciferase assays confirmed that TCP3, rather than TCP6, played a role in the transcriptional regulation of UGT84A13, thus promoting HT biosynthesis in the cupule of Q. variabilis. Our work identified TCP family members in Q. variabilis for the first time, and provided novel insights into the transcriptional regulatory network of UGT84A13 and HT biosynthesis in Q. variabilis, explaining the reason why the cupule enriches HTs that could be used for traditional medicine.
RESUMEN
Emergence heterogeneity caused by epicotyl dormancy contributes to variations in seedling quality during large-scale breeding. However, the mechanism of epicotyl dormancy release remains obscure. We first categorized the emergence stages of Chinese cork oak (Quercus variabilis) using the BBCH-scale. Subsequently, we identified the key stage of the epicotyl dormancy process. Our findings indicated that cold stratification significantly released epicotyl dormancy by increasing the levels of gibberellic acid 3 (GA3) and GA4. Genes associated with GA biosynthesis and signaling also exhibited altered expression patterns. Inhibition of GA biosynthesis by paclobutrazol (PAC) treatment severely inhibited emergence, with no effect on seed germination. Different concentrations (50 µM, 100 µM, and 200 µM) of GA3 and GA4+7 treatments of germinated seeds demonstrated that both can promote the emergence, with GA4 exhibiting a more pronounced effect. In conclusion, this study provides valuable insights into the characterization of epicotyl dormancy in Chinese cork oak and highlights the critical role of GA biosynthesis in seedling emergence. These findings serve as a basis for further investigations on epicotyl dormancy and advancing large-scale breeding techniques.
Asunto(s)
Germinación , Giberelinas , Latencia en las Plantas , Reguladores del Crecimiento de las Plantas , Quercus , Regulación de la Expresión Génica de las Plantas , Giberelinas/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Quercus/crecimiento & desarrollo , Plantones/crecimiento & desarrollo , TriazolesRESUMEN
Chinese cork oak (Quercus variabilis Blume) is a widespread tree species with high economic and ecological values. Chinese cork oak exhibits epicotyl dormancy, causing emergence heterogeneity and affecting the quality of seedling cultivation. Gibberellic acid-stimulated transcript (GAST) is a plant-specific protein family that plays a crucial regulatory role in plant growth, development, and seed germination. However, their evolution in Chinese cork oak and roles in epicotyl dormancy are still unclear. Here, a genome-wide identification of the GAST gene family was conducted in Chinese cork oak. Ten QvGAST genes were identified, and nine of them were expressed in seed. The physicochemical properties and promoter cis-acting elements of the selected Chinese cork oak GAST family genes indicated that the cis-acting elements in the GAST promoter are involved in plant development, hormone response, and stress response. Germinated seeds were subjected to gibberellins (GAs), abscisic acid (ABA), and fluridone treatments to show their response during epicotyl dormancy release. Significant changes in the expression of certain QvGAST genes were observed under different hormone treatments. QvGAST1, QvGAST2, QvGAST3, and QvGAST6 exhibited upregulation in response to gibberellin. QvGAST2 was markedly upregulated during the release of epicotyl dormancy in response to GA. These findings suggested that QvGAST2 might play an important role in epicotyl dormancy release. This study provides a basis for further analysis of the mechanisms underlying the alleviation of epicotyl dormancy in Chinese cork oak by QvGASTs genes.
RESUMEN
Hydrolyzable tannins (HTs), predominant polyphenols in oaks, are widely used in grape wine aging, feed additives, and human healthcare. However, the limited availability of a high-quality reference genome of oaks greatly hampered the recognition of the mechanism of HT biosynthesis. Here, high-quality reference genomes of three Asian oak species (Quercus variabilis, Quercus aliena, and Quercus dentata) that have different HT contents were generated. Multi-omics studies were carried out to identify key genes regulating HT biosynthesis. In vitro enzyme activity assay was also conducted. Dual-luciferase and yeast one-hybrid assays were used to reveal the transcriptional regulation. Our results revealed that ß-glucogallin was a biochemical marker for HT production in the cupules of the three Asian oaks. UGT84A13 was confirmed as the key enzyme for ß-glucogallin biosynthesis. The differential expression of UGT84A13, rather than enzyme activity, was the main reason for different ß-glucogallin and HT accumulation. Notably, sequence variations in UGT84A13 promoters led to different trans-activating activities of WRKY32/59, explaining the different expression patterns of UGT84A13 among the three species. Our findings provide three high-quality new reference genomes for oak trees and give new insights into different transcriptional regulation for understanding ß-glucogallin and HT biosynthesis in closely related oak species.
Asunto(s)
Biomarcadores , Regulación de la Expresión Génica de las Plantas , Genoma de Planta , Genómica , Taninos Hidrolizables , Quercus , Biomarcadores/metabolismo , Genómica/métodos , Taninos Hidrolizables/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regiones Promotoras Genéticas/genética , Quercus/genética , Quercus/metabolismo , Especificidad de la EspecieRESUMEN
The lower part of offshore construction wharfs is mostly a steel structure system composed of steel pipe piles, whose corrosion level directly affects the structural safety performance of steel wharfs in service. The currently common corrosion detection methods can only sample and inspect steel pile after it has been dismantled, making it impractical for in-service monitoring during the operational period of the steel pile. In this paper, a deep learning-based image classification model is first established to recognize the type of corroded area on steel pipe piles. The model achieves a recognition accuracy of 99.14 % in automatically identifying different types of corroded areas, including full immersion zone, tidal range zone, and splash zone. Subsequently, digital image processing technology is utilized to automatically calculate the corroded area of steel pipe piles. The method proposed in this paper can obtain the key information, such as type of corrosion area and area of the steel pipe pile corrosion area, without damaging their structural performance during the service. With this data, the mechanical performance of steel pipe piles can be analyzed, and the structural safety of the in-service steel pipe piles can be determined, thereby ensuring the safety of the construction wharf.
RESUMEN
The bioeconomy drives the development of life science and biotechnology as a blueprint for the future development of human society, and offers a cross-cutting perspective on the societal transformation towards long-term sustainability and the transition away from the non-renewable economy. Moreover, the sustainable bioeconomy strategies are consistent with the United Nation's (UN) Sustainable Development Goals (SDG) and are becoming the centre of the achievement for SDG. The Chinese '14th Five-Year Plan for Bioeconomy Development' (2021-2025), including the development goals of China's bioeconomy containing biomedicine, agriculture, bio-manufacturing and bio-security as a strategic priority, is discussed. The plan offers three pathways to improve bioeconomy, including technological innovation, industrialisation and policy supports. Finally, it concludes China's first bioeconomy development plan as a success, suggesting the key role of industrial biotechnology in bioeconomy.