Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Virol ; 97(4): e0180922, 2023 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-37022194

RESUMEN

Orthotospoviruses, the plant-infecting bunyaviruses, cause serious diseases in agronomic crops and pose major threats to global food security. The family of Tospoviridae contains more than 30 members that are classified into two geographic groups, American-type and Euro/Asian-type orthotospovirus. However, the genetic interaction between different species and the possibility, during mixed infections, for transcomplementation of gene functions by orthotospoviruses from different geographic groups remains underexplored. In this study, minireplicon-based reverse genetics (RG) systems have been established for Impatiens necrotic spot virus (INSV) (an American-type orthotospovirus) and for Calla lily chlorotic spot virus and Tomato zonate spot virus (CCSV and TZSV) (two representative Euro/Asian orthotospoviruses). Together with the earlier established RG system for Tomato spotted wilt virus (TSWV), a type species of the Orthotospovirus American-clade, viral replicase/movement proteins were exchanged and analyzed on interspecies transcomplementation. Whereas the homologous RNA-dependent RNA polymerase (RdRp) and nucleocapsid (N) protein supported the replication of orthotospoviruses from both geographic groups, heterologous combinations of RdRp from one group and N from the other group were unable to support the replication of viruses from both groups. Furthermore, the NSm movement protein (MP), from both geographic groups of orthotospoviruses, was able to transcomplement heterologous orthotospoviruses or a positive-strand Cucumber mosaic virus (CMV) in their movement, albeit with varying efficiency. MP from Rice stripe tenuivirus (RSV), a plant-infecting bunyavirus that is distinct from orthotospoviruses, or MP from CMV also moves orthotospoviruses. Our findings gain insights into the genetic interaction/reassortant potentials for the segmented plant orthotospoviruses. IMPORTANCE Orthotospoviruses are agriculturally important negative-strand RNA viruses and cause severe yield-losses on many crops worldwide. Whereas the emergence of new animal-infecting bunyaviruses is frequently associated with genetic reassortants, this issue remains underexposed with the plant-infecting orthotospovirus. With the development of reverse genetics systems for orthotospoviruses from different geographic regions, the interspecies/intergroup replication/movement complementation between American- and Euro/Asian-type orthotospoviruses were investigated. Genomic RNAs from American orthotospoviruses can be replicated by the RdRp and N from those of Euro/Asia-group orthotospoviruses, and vice versa. However, their genomic RNAs cannot be replicated by a heterologous combination of RdRp from one geographic group and N from another geographic group. Cell-to-cell movement of viral entity is supported by NSm from both geographic groups, with highest efficiency by NSm from viruses belonging to the same group. Our findings provide important insights into the genetic interaction and exchange ability of viral gene functions between different species of orthotospovirus.


Asunto(s)
Genética Inversa , Tospovirus , Replicación Viral , Animales , Genética Inversa/métodos , ARN Polimerasa Dependiente del ARN , Tospovirus/genética , Estados Unidos , Replicación Viral/genética , ARN Viral/genética , Proteínas de la Nucleocápside/genética
2.
Plant Dis ; 2020 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-32854603

RESUMEN

Pea (Pisum sativum L.) is an economically important legume crop that is commonly used as dry beans, fresh peas, pods and shoots (Guo et al. 2009). Pea enation mosaic is an important virus disease of pea caused by two viruses in an obligate symbiosis, pea enation mosaic virus 1 (PEMV-1, Enamovirus, Luteoviridae) and pea enation mosaic virus 2 (PEMV-2, Umbravirus, Tombusviridae) (Hema et al. 2014). In November 2019, foliar yellow mosaic and vein enations symptoms were observed from pea plants in five fields of Honghe autonomous prefecture, Yunnan province, China. Incidence of symptomatic plants ranged from 20 to 40% and was distributed in both small and large fields. Leaves with typical virus-like symptoms were collected from five symptomatic pea plants in two fields and used for total RNA extraction. The five extracts of equimolar quantities were pooled into a sample and subjected to High Throughput Sequencing (HTS) by Illumina HiSeq system. Analyses of raw RNA reads were performed using CLC Genomics Workbench 12 (Qiagen). A total of 60,009,746 RNA reads were obtained from the sample, and de novo assembly of the reads using the CLC Genomics generated 88,105 contigs. BLASTN searches revealed the presence of contigs with high similarities to PEMV-1, PEMV-2, Pea seed-borne mosaic virus, and Bean yellow mosaic virus. To confirm the presence of PEMV-1 and PEMV-2 in the samples, two virus-specific primer pairs were designed based on the contig sequences obtained by HTS in this study. Primer pairs PEMV-1F/PEMV-1R (5'-ATGCCGACTAGATCGAAATC-3'/5'-TCAGAGGGAGGCATTCATTA-3') that flank the cp gene of PEMV-1 and PEMV-2F/PEMV-2R (5'-ATGACGATAATCATTAATG-3'/5'-TCACCCGTAGTGAGAGGCA-3') that target the ORF3 region of PEMV-2 were used to amplify the two viruses in RT-PCR. DNA fragments of the expected sizes (PEMV-1, 570 bp; PEMV-2, 693 bp) were amplified from all five samples. The RT-PCR products were cloned and sequenced. Sequence analysis showed that the 570-bp amplicon (MT481989) shared the highest nucleotide sequence identity of 98.95% with PEMV-1 (Z48507), while the 693-bp fragment (MT481990) had the highest nucleotide sequence identity of 97.4% with PEMV-2 isolate JKI (MK948534). One gram of the symptomatic leaves from each of the five plants was homogenized with 5 mL of 0.01 M phosphate-buffered saline (PBS buffer), pH 7.0. Each of the resulted saps was used to inoculate onto five healthy pea seedlings. A total of 25 healthy pea seedlings were inoculated, and 16 inoculated plants developed yellowing and mottling at 10 days post inoculation (dpi); no symptoms were observed on control plants inoculated only with PBS buffer. The formation of the typical enation was observed along the veins of lower side of the symptomatic leaves of the inoculated plants at 30 dpi. PEMV-1 and PEMV-2 infection were confirmed by RT-PCR assays using the specific primer pairs described above. Although the presence of the pea enation mosaic virus complex was suspected in China based on symptomatology (Brunt et al. 1997), to our knowledge, this is the first molecular confirmation of PEMV-1 and PEMV-2 occurrence in China. The co-infection of PEMV-1 and PEMV-2 usually cause severe yield losses; therefore, integration of detection and control measures is important in pea production regions where the two viruses occurred.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...