Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 127
Filtrar
1.
Nat Cancer ; 5(9): 1427-1447, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39242942

RESUMEN

Prostate cancer (PCa) exhibits significant geoethnic disparities as reflected by distinct variations in the cancer genome and disease progression. Here, we perform a comprehensive proteogenomic characterization of localized high-risk PCa utilizing paired tumors and nearby tissues from 125 Chinese male patients, with the primary objectives of identifying potential biomarkers, unraveling critical oncogenic events and delineating molecular subtypes with poor prognosis. Our integrated analysis highlights the utility of GOLM1 as a noninvasive serum biomarker. Phosphoproteomics analysis reveals the crucial role of Ser331 phosphorylation on FOXA1 in regulating FOXA1-AR-dependent cistrome. Notably, our proteomic profiling identifies three distinct subtypes, with metabolic immune-desert tumors (S-III) emerging as a particularly aggressive subtype linked to poor prognosis and BCAT2 catabolism-driven PCa progression. In summary, our study provides a comprehensive resource detailing the unique proteomic and phosphoproteomic characteristics of PCa molecular pathogenesis and offering valuable insights for the development of diagnostic and therapeutic strategies.


Asunto(s)
Biomarcadores de Tumor , Factor Nuclear 3-alfa del Hepatocito , Neoplasias de la Próstata , Proteogenómica , Humanos , Masculino , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/diagnóstico , Neoplasias de la Próstata/metabolismo , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/sangre , Proteogenómica/métodos , Factor Nuclear 3-alfa del Hepatocito/genética , Factor Nuclear 3-alfa del Hepatocito/metabolismo , China , Pronóstico , Receptores Androgénicos/genética , Receptores Androgénicos/metabolismo , Pueblo Asiatico/genética , Persona de Mediana Edad , Fosforilación , Anciano , Regulación Neoplásica de la Expresión Génica , Pueblos del Este de Asia
2.
Transl Androl Urol ; 13(8): 1378-1387, 2024 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-39280670

RESUMEN

Background: Gleason grade group (GG) upgrading is associated with increased biochemical recurrence (BCR), local progression, and decreased cancer-specific survival (CSS) in prostate cancer (PCa). However, descriptions of the risk factors of GG upgrading are scarce. The objective of this study was to identify risk factors and establish a model to predict GG upgrading. Methods: There were 361 patients with PCa who underwent radical prostatectomy between May 2011 and February 2022 enrolled. Univariate and multivariate logistic regression analyses were identified and nomogram further narrowed down the contributing factors in GG upgrading. The correction curve and decision curve were used to assess the model. Results: In the overall cohort, 141 patients had GG upgrading. But the subgroup cohort (GG ≤2) showed that 68 patients had GG upgrading. Multivariate logistic regression analysis showed that in the overall cohort, total prostate-specific antigen (tPSA) ≥10 ng/mL, systemic immune-inflammation index (SII) >379.50, neutrophil-lymphocyte ratio (NLR) >2.13, the GG of biopsy ≥3, the number of positive cores >3 were independent risk factors in GG upgrading. In the cohort of biopsy GG ≤2, multivariate logistic regression showed that the tPSA ≥10 ng/mL, SII >379.50 and the number of positive cores >3 were independent risk factors in GG upgrading. A novel model predicting GG upgrading was established based on these three parameters. The area under the curve (AUC) of the prediction model was 0.759. The C-index of the nomogram was 0.768. The calibration curves of the model showed good predictive performance. Clinical decision curves indicated clinical benefit in the interval of 20% to 90% of threshold probability and good clinical utility. Conclusions: Combined levels of tPSA, SII and the positive biopsy cores distinguish patients with high-risk GG upgrading in the group of biopsy GG ≤2 and are helpful in the decision of treatment plans.

3.
J Infect Dis ; 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39136574

RESUMEN

BACKGROUND: Surgical site infection (SSI) is a common and costly complication in spinal surgery. Identifying risk factors and preventive strategies is crucial for reducing SSIs. GPT-4 has evolved from a simple text-based tool to a sophisticated multimodal data expert, invaluable for clinicians. This study explored GPT-4's applications in SSI management across various clinical scenarios. METHODS: GPT-4 was employed in various clinical scenarios related to SSIs in spinal surgery. Researchers designed specific questions for GPT-4 to generate tailored responses. Six evaluators assessed these responses for logic and accuracy using a 5-point Likert scale. Inter-rater consistency was measured with Fleiss' kappa, and radar charts visualized GPT-4's performance. RESULTS: The inter-rater consistency, measured by Fleiss' kappa, ranged from 0.62 to 0.83. The overall average scores for logic and accuracy were 24.27±0.4 and 24.46±0.25 on 5-point Likert scale. Radar charts showed GPT-4's consistently high performance across various criteria. GPT-4 demonstrated high proficiency in creating personalized treatment plans tailored to diverse clinical patient records and offered interactive patient education. It significantly improved SSI management strategies, infection prediction models, and identified emerging research trends. However, it had limitations in fine-tuning antibiotic treatments and customizing patient education materials. CONCLUSIONS: GPT-4 represents a significant advancement in managing SSIs in spinal surgery, promoting patient-centered care and precision medicine. Despite some limitations in antibiotic customization and patient education, GPT-4's continuous learning, attention to data privacy and security, collaboration with healthcare professionals, and patient acceptance of AI recommendations suggest its potential to revolutionize SSI management, requiring further development and clinical integration.

4.
Adv Sci (Weinh) ; 11(32): e2404171, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39031840

RESUMEN

Hepatic ischemia-reperfusion injury (HIRI) is a prevalent issue during liver resection and transplantation, with currently no cure or FDA-approved therapy. A promising drug, Cyclosporin A (CsA), ameliorates HIRI by maintaining mitochondrial homeostasis but has systemic side effects due to its low bioavailability and high dosage requirements. This study introduces a biomimetic CsA delivery system that directly targets hepatic lesions using mesenchymal stem cell (MSC) membrane-camouflaged liposomes. These hybrid nanovesicles (NVs), leveraging MSC-derived proteins, demonstrate efficient inflammatory chemotaxis, transendothelial migration, and drug-loading capacity. In a HIRI mouse model, the biomimetic NVs accumulated at liver injury sites entered hepatocytes, and significantly reduced liver damage and restore function using only one-tenth of the CsA dose typically required. Proteomic analysis verifies the protection mechanism, which includes reactive oxygen species inhibition, preservation of mitochondrial integrity, and reduced cellular apoptosis, suggesting potential for this biomimetic strategy in HIRI intervention.


Asunto(s)
Ciclosporina , Modelos Animales de Enfermedad , Liposomas , Células Madre Mesenquimatosas , Daño por Reperfusión , Animales , Ciclosporina/farmacología , Ciclosporina/administración & dosificación , Daño por Reperfusión/prevención & control , Ratones , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/efectos de los fármacos , Biomimética/métodos , Hígado/metabolismo , Hígado/efectos de los fármacos , Sistemas de Liberación de Medicamentos/métodos , Masculino , Ratones Endogámicos C57BL
5.
J Pathol ; 264(1): 68-79, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39022843

RESUMEN

Metastasis is the primary culprit behind cancer-related fatalities in multiple cancer types, including prostate cancer. Despite great advances, the precise mechanisms underlying prostate cancer metastasis are far from complete. By using a transgenic mouse prostate cancer model (TRAMP) with and without Phf8 knockout, we have identified a crucial role of PHF8 in prostate cancer metastasis. By complexing with E2F1, PHF8 transcriptionally upregulates SNAI1 in a demethylation-dependent manner. The upregulated SNAI1 subsequently enhances epithelial-to-mesenchymal transition (EMT) and metastasis. Given the role of the abnormally activated PHF8/E2F1-SNAI1 axis in prostate cancer metastasis and poor prognosis, the levels of PHF8 or the activity of this axis could serve as biomarkers for prostate cancer metastasis. Moreover, targeting this axis could become a potential therapeutic strategy for prostate cancer treatment. © 2024 The Pathological Society of Great Britain and Ireland.


Asunto(s)
Factor de Transcripción E2F1 , Transición Epitelial-Mesenquimal , Histona Demetilasas , Neoplasias de la Próstata , Factores de Transcripción de la Familia Snail , Factores de Transcripción , Masculino , Neoplasias de la Próstata/patología , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/enzimología , Animales , Factores de Transcripción de la Familia Snail/metabolismo , Factores de Transcripción de la Familia Snail/genética , Humanos , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Factor de Transcripción E2F1/metabolismo , Factor de Transcripción E2F1/genética , Ratones , Histona Demetilasas/metabolismo , Histona Demetilasas/genética , Regulación Neoplásica de la Expresión Génica , Línea Celular Tumoral , Ratones Noqueados , Transducción de Señal , Metástasis de la Neoplasia , Ratones Transgénicos , Movimiento Celular
6.
Nat Commun ; 15(1): 4760, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38834654

RESUMEN

Older livers are more prone to hepatic ischaemia/reperfusion injury (HIRI), which severely limits their utilization in liver transplantation. The potential mechanism remains unclear. Here, we demonstrate older livers exhibit increased ferroptosis during HIRI. Inhibiting ferroptosis significantly attenuates older HIRI phenotypes. Mass spectrometry reveals that fat mass and obesity-associated gene (FTO) expression is downregulated in older livers, especially during HIRI. Overexpressing FTO improves older HIRI phenotypes by inhibiting ferroptosis. Mechanistically, acyl-CoA synthetase long chain family 4 (ACSL4) and transferrin receptor protein 1 (TFRC), two key positive contributors to ferroptosis, are FTO targets. For ameliorative effect, FTO requires the inhibition of Acsl4 and Tfrc mRNA stability in a m6A-dependent manner. Furthermore, we demonstrate nicotinamide mononucleotide can upregulate FTO demethylase activity, suppressing ferroptosis and decreasing older HIRI. Collectively, these findings reveal an FTO-ACSL4/TFRC regulatory pathway that contributes to the pathogenesis of older HIRI, providing insight into the clinical translation of strategies related to the demethylase activity of FTO to improve graft function after older donor liver transplantation.


Asunto(s)
Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato , Coenzima A Ligasas , Ferroptosis , Hígado , Receptores de Transferrina , Daño por Reperfusión , Regulación hacia Arriba , Daño por Reperfusión/metabolismo , Daño por Reperfusión/genética , Daño por Reperfusión/patología , Animales , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/metabolismo , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/genética , Ferroptosis/genética , Hígado/metabolismo , Hígado/patología , Ratones , Receptores de Transferrina/metabolismo , Receptores de Transferrina/genética , Masculino , Coenzima A Ligasas/metabolismo , Coenzima A Ligasas/genética , Ratones Endogámicos C57BL , Humanos , Trasplante de Hígado , Estabilidad del ARN/genética , Antígenos CD
7.
Biochem Biophys Res Commun ; 714: 149973, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38657444

RESUMEN

Acute respiratory distress syndrome (ARDS) is characterized by acute diffuse inflammatory lung injury with a high mortality rate. Mesenchymal stromal cells (MSC) are pluripotent adult cells that can be extracted from a variety of tissues, including the lung. Lung-resident MSC (LR-MSC) located around vascular vessels and act as important regulators of lung homeostasis, regulating the balance between lung injury and repair processes. LR-MSC support the integrity of lung tissue by modulating immune responses and releasing trophic factors. Studies have reported that the STING pathway is involved in the progression of lung injury inflammation, but the specific mechanism is unclear. In this study, we found that STING deficiency could ameliorate lipopolysaccharides (LPS)-induced acute lung injury, STING knockout (STING KO) LR-MSC had an enhanced treatment effect on acute lung injury. STING depletion protected LR-MSC from LPS-induced apoptosis. RNA-sequencing and Western blot results showed that STING KO LR-MSC expressed higher levels of MSC immunoregulatory molecules, such as Igfbp4, Icam1, Hgf and Cox2, than WT LR-MSC. This study highlights that LR-MSC have a therapeutic role in acute lung injury, and we demonstrate that STING deficiency can enhance the immunomodulatory function of LR-MSC in controlling lung inflammation. Thus, STING can be used as an intervention target to enhance the therapeutic effect of MSC.


Asunto(s)
Lesión Pulmonar Aguda , Lipopolisacáridos , Pulmón , Proteínas de la Membrana , Células Madre Mesenquimatosas , Ratones Endogámicos C57BL , Animales , Lipopolisacáridos/toxicidad , Células Madre Mesenquimatosas/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/deficiencia , Pulmón/patología , Pulmón/metabolismo , Lesión Pulmonar Aguda/inducido químicamente , Lesión Pulmonar Aguda/patología , Lesión Pulmonar Aguda/terapia , Lesión Pulmonar Aguda/metabolismo , Ratones , Ratones Noqueados , Apoptosis , Masculino
9.
Front Pharmacol ; 15: 1298409, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38375038

RESUMEN

Background: Remimazolam has shown similar or even superior properties to propofol in procedural sedation in adults, but few studies have been conducted in pediatric populations. Thus, we aimed to compare the effect and safety of remimazolam and propofol combined with low dose esketamine for pediatric same-day bidirectional endoscopy (BDE). Methods: Pediatrics <18 years scheduled for elective BDE under sedation were included and randomly assigned to remimazolam group (R group) or propofol group (P group). The primary outcome was the success rate of sedation. Secondary outcomes include sedation-related information and adverse events. Mean arterial pressure (MAP), heart rate (HR), and perfusion index (PI) were recorded during sedation. Results: A total of 106 patients were enrolled and analyzed. The success rate of sedation was 100% in both groups. Compared with the P group, the induction time of the R group was significantly prolonged (p < 0.001), and the incidence of injection pain, intraoperative respiratory depression, hypotension and bradycardia was significantly lower (p < 0.001). The changes in MAP, HR and PI were relatively stable in the R group compared with the P group. Additionally, awake time significantly decreased with age by approximately 1.12 index points for each increase in age in the P group (p = 0.002) but not in the R group (p > 0.05). Furthermore, the decline in PI and PI ratio during BDE was related to body movement in the P group. Conclusion: Remimazolam combined with low dose esketamine has a non-inferior sedative effect than propofol for pediatric BDE, with no injection pain, less respiratory depression, more stable hemodynamics. Moreover, early detection of the decline in PI may avoid harmful stimulation under light anesthesia. Clinical trial registration: https://www.clinicaltrials.gov/study/NCT05686863?id=NCT05686863&rank=1, NCT05686863.

10.
Ann Med Surg (Lond) ; 86(1): 245-251, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38222740

RESUMEN

Introduction and importance: The feasibility of combined tislelizumab with gemcitabine and cisplatin as a neoadjuvant regimen for muscle-invasive bladder cancer (MIBC) remains to be investigated. Case presentation: The neoadjuvant treatment not only shrunk tumours significantly but also lowered their stages from T4bN1M0, T3N0M0, and T3bN0M0 to pT1, pT0 and pTis, respectively. The treatment suppressed tumour cell proliferation and promoted luminal-to-basal transition. Clinical discussion: MIBC is an aggressive bladder cancer with poor prognosis. All three patients with MIBC benefited greatly from the neoadjuvant regimen (tislelizumab + gemcitabine + cisplatin). It appears that the effect of the treatment is independent of the levels of programmed death-ligand 1 nor the subtype of urothelial bladder cancer. Conclusion: Combination of tislelizumab with gemcitabine and cisplatin appeared to be a safe and efficacious neoadjuvant therapy for MIBC.

11.
ACS Appl Mater Interfaces ; 16(6): 7917-7926, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38263633

RESUMEN

Advanced fabrics with thermal wet management capability as low energy consumption media contribute to personal cooling and drying. Nevertheless, it remains a great challenge to obtain intelligent fabrics with adjustable thermal conductivity (TC) capable of bridging the supply and demand between human body temperature and self-adaptive thermal conduction. Herein, we report hygroscopic-shrinkage nanofiber-based fabrics with excellent moisture sensitivity and significant volume shrinkage, which benefits the construction of high-density thermal conductive pathways by absorbing sweat, with a maximum sweat absorption rate reaching up to 1781%. The TC of the shrunken fabric is significantly increased from the initial 0.102 to 0.731 W·m-1 K-1 with a volume shrinkage rate of 89% due to the synergistic effect of van der Waals force, capillary force, viscous resistance, and gravity. Besides, an enhanced TC of the resulting fabrics facilitates rapid heat transfer to the environments. By capturing the surface temperature variations of the fabric after shrinkage and commercially available cotton/Coolmax, we obtained the fabric that releases the same amount of heat in a shorter period of time (3.3 s). With its exceptional personal thermal and wet management properties, this study paves the way for designing new-generation intelligent fabrics capable of creating more comfortable microclimates.

12.
Rev Esp Enferm Dig ; 2023 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-38095193

RESUMEN

We report the case of a 48-year-old male who presented with right lower abdominal pain and a mass for 2 weeks and got constipation for 5 days. An abdominal CT scan conducted before admission at other hospitals revealed an obstruction in the blind ascending colon, which was suspected to be a malignant tumor. Proctoscopy revealed peritoneal implantation metastasis and multiple pelvic lymph nodes. Physical examination was unremarkable except for multiple lymph node enlargements in the inguinal area, without pain. A whole-body contrast-enhanced FDG-PET/CT revealed lymphoma involvement in the ascending colon, peritoneum, bone marrow, and lymph nodes in multiple regions of the body, with DLBCL as a suspected diagnosis. Pathological findings from the colonoscopy revealed atypical lymphocyte infiltration and Immunostaining indicated the presence of atypical lymphocytes with Ki-67 (90%) and tested positive for CD20, CD19, CD10, and BCL-6. Based on the above findings, stage IV DLBCL was diagnosed. Furthermore, EBV-DNA amplification was positive. The patient received R-CHOP treatment for 2 days before experiencing symptoms of fevers, chills, and abdominal pain. He underwent emergency surgery due to intestinal perforation, and preoperative blood tests revealed HIV-positive. The prognosis for the patient is poor due to sepsis.

13.
Nanoscale ; 16(1): 343-359, 2023 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-38062769

RESUMEN

Clinicians have attempted to discover a noninvasive, easy-to-perform, and accurate method to distinguish benign and malignant renal masses. The targeted nanobubbles (NBs) we constructed that target the specific membrane antigen of renal cell carcinoma (RCC), G250, and contain indocyanine green (ICG) provide multimodal enhanced imaging capability in ultrasound/photoacoustic/fluorescence for RCC which may possibly solve this problem. In this study, we encapsulated ICG in the lipid shell of the NBs by mechanical oscillation, then anti-G250 nanobodies (AGN) were coupled to the surfaces by the biotin-streptavidin bridge method, and the nanobubble named AGN/ICG-NB was completely constructed. The average particle diameter of the prepared AGN/ICG-NBs was (427.2 ± 4.50) nm, and the zeta potential was (-13.33 ± 1.01) mV. Immunofluorescence and flow cytometry confirmed the specific binding capability of AGN/ICG-NBs to G250-positive cells. In vitro imaging experiments confirmed the multimodal imaging capability of AGN/ICG-NBs, and the in vivo imaging experiments demonstrated the specifically enhanced ability of AGN/ICG-NBs for ultrasound/photoacoustic/fluorescence imaging of human-derived RCC tumors. The biosafety of AGN/ICG-NB was verified by CCK-8 assay, organ H&E staining and blood biochemical indices. In conclusion, the targeted nanobubbles we prepared with ultrasound/photoacoustic/fluorescence multimodal imaging capabilities provide a potentially feasible approach to address the need for early diagnosis and differential diagnosis of renal masses.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Humanos , Carcinoma de Células Renales/diagnóstico por imagen , Línea Celular Tumoral , Ultrasonografía/métodos , Verde de Indocianina , Imagen Multimodal , Neoplasias Renales/diagnóstico por imagen
15.
Sci Adv ; 9(31): eadf3566, 2023 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-37531433

RESUMEN

For clear cell renal cell carcinoma (ccRCC), lipid deposition plays important roles in the development, metastasis, and drug resistance. However, the molecular mechanisms underlying lipid deposition in ccRCC remain largely unknown. By conducting an unbiased CRISPR-Cas9 screening, we identified the epigenetic regulator plant homeodomain finger protein 8 (PHF8) as an important regulator in ccRCC lipid deposition. Moreover, PHF8 is regulated by von Hippel-Lindau (VHL)/hypoxia-inducible factor (HIF) axis and essential for VHL deficiency-induced lipid deposition. PHF8 transcriptionally up-regulates glutamate-ammonia ligase (GLUL), which promotes the lipid deposition and ccRCC progression. Mechanistically, by forming a complex with c-MYC, PHF8 up-regulates TEA domain transcription factor 1 (TEAD1) in a histone demethylation-dependent manner. Subsequently, TEAD1 up-regulates GLUL transcriptionally. Pharmacological inhibition of GLUL by l-methionine sulfoximine not only repressed ccRCC lipid deposition and tumor growth but also enhanced the anticancer effects of everolimus. Thus, the PHF8-GLUL axis represents a potential therapeutic target for ccRCC treatment.


Asunto(s)
Carcinoma de Células Renales , Glutamato-Amoníaco Ligasa , Histona Demetilasas , Neoplasias Renales , Factores de Transcripción , Humanos , Carcinoma de Células Renales/metabolismo , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Histona Demetilasas/metabolismo , Neoplasias Renales/metabolismo , Lípidos , Procesamiento Proteico-Postraduccional , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Glutamato-Amoníaco Ligasa/metabolismo
16.
Aging Clin Exp Res ; 35(10): 2127-2136, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37490260

RESUMEN

AIMS: To construct and validate an intraoperative hypothermia risk prediction model for elderly patients undergoing total hip arthroplasty (THA). METHODS: We collected data from 718 patients undergoing THA in a tertiary hospital from January 2021 to December 2022. Of these patients, 512 were assigned to the modeling group from January 2021 to April 2022, and 206 participants were assigned to the validation group from May 2022 to December 2022. A logistic regression analysis was performed to construct the model. The area under the curve (AUC) was used to test the model's predictive ability. RESULTS: The incidence rate of intraoperative hypothermia was 51.67%. The risk factors entered into the risk prediction model were age, preoperative hemoglobin level, intraoperative blood loss, postoperative hemoglobin level, and postoperative systolic blood pressure. The model was constructed as follows: logit (P) = - 10.118 + 0.174 × age + 1.366 × 1 (preoperative hemoglobin level) + 0.555 × 1 (postoperative hemoglobin level) + 0.009 × 1 (intraoperative blood loss) + 0.066 × 1 (postoperative systolic blood pressure). Using the Hosmer-Lemeshow test, the P value was 0.676 (AUC, 0.867). The Youden index, sensitivity, and specificity were 0.602, 0.790, and 0.812, respectively. The incidence rates of intraoperative hypothermia in the modeling and validation groups were 53.15% and 48.06%, respectively. The correct practical application rate was 89.81%. This model had good application potential. CONCLUSIONS: This risk prediction model has good predictive value and can accurately predict the occurrence of intraoperative hypothermia in patients who undergo THA, which provides reliable guidance for clinical work and has good clinical application value.


Asunto(s)
Artroplastia de Reemplazo de Cadera , Hipotermia , Humanos , Anciano , Hipotermia/epidemiología , Hipotermia/etiología , Artroplastia de Reemplazo de Cadera/efectos adversos , Factores de Riesgo , Incidencia , Hemoglobinas , Estudios Retrospectivos
17.
Front Genet ; 14: 1224949, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37470039

RESUMEN

NUS1 is responsible for encoding of the Nogo-B receptor (NgBR), which is a subunit of cis-prenyltransferase. Over 25 variants in NUS1 have been reported, and these variants have been found to be associated with various phenotypes, such as congenital disorders of glycosylation (CDG) and developmental and epileptic encephalopathy (DEE). We report on the case of a patient who presented with language and motor retardation, epilepsy, and electroencephalogram abnormalities. Upon conducting whole-exome sequencing, we discovered a novel pathogenic variant (chr6:118024873, NM_138459.5: c.791 + 6T>G) in NUS1, which was shown to cause Exon 4 to be skipped, resulting in a loss of 56 amino acids. Our findings strongly suggest that this novel variant of NUS1 is responsible for the development of neurological disorders, including epilepsy. It is believed that the truncation of Nogo-B receptor results in the loss of cis-prenyltransferase activity, which may be the underlying cause of the disease.

18.
Stem Cells Transl Med ; 12(8): 497-509, 2023 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-37399531

RESUMEN

Recent studies have shown a close relationship between the gut microbiota and Crohn's disease (CD). This study aimed to determine whether mesenchymal stem cell (MSC) treatment alters the gut microbiota and fecal metabolite pathways and to establish the relationship between the gut microbiota and fecal metabolites. Patients with refractory CD were enrolled and received 8 intravenous infusions of MSCs at a dose of 1.0 × 106 cells/kg. The MSC efficacy and safety were evaluated. Fecal samples were collected, and their microbiomes were analyzed by 16S rDNA sequencing. The fecal metabolites at baseline and after 4 and 8 MSC infusions were identified by liquid chromatography-mass spectrometry (LC--MS). A bioinformatics analysis was conducted using the sequencing data. No serious adverse effects were observed. The clinical symptoms and signs of patients with CD were substantially relieved after 8 MSC infusions, as revealed by changes in weight, the CD activity index (CDAI) score, C-reactive protein (CRP) level, and erythrocyte sedimentation rate (ESR). Endoscopic improvement was observed in 2 patients. A comparison of the gut microbiome after 8 MSC treatments with that at baseline showed that the genus Cetobacterium was significantly enriched. Linoleic acid was depleted after 8 MSC treatments. A possible link between the altered Cetobacterium abundance and linoleic acid metabolite levels was observed in patients with CD who received MSCs. This study enabled an understanding of both the gut microbiota response and bacterial metabolites to obtain more information about host-gut microbiota metabolic interactions in the short-term response to MSC treatment.


Asunto(s)
Enfermedad de Crohn , Células Madre Mesenquimatosas , Microbiota , Humanos , Enfermedad de Crohn/terapia , Ácido Linoleico , Resultado del Tratamiento , Células Madre Mesenquimatosas/fisiología
19.
Cell Rep ; 42(7): 112690, 2023 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-37384528

RESUMEN

AKT kinase is a key regulator in cell metabolism and survival, and its activation is strictly modulated. Herein, we identify XAF1 (XIAP-associated factor) as a direct interacting protein of AKT1, which strongly binds the N-terminal region of AKT1 to block its K63-linked poly-ubiquitination and subsequent activation. Consistently, Xaf1 knockout causes AKT activation in mouse muscle and fat tissues and reduces body weight gain and insulin resistance induced by high-fat diet. Pathologically, XAF1 expression is low and anti-correlated with the phosphorylated p-T308-AKT signal in prostate cancer samples, and Xaf1 knockout stimulates the p-T308-AKT signal to accelerate spontaneous prostate tumorigenesis in mice with Pten heterozygous loss. And ectopic expression of wild-type XAF1, but not the cancer-derived P277L mutant, inhibits orthotopic tumorigenesis. We further identify Forkhead box O 1 (FOXO1) as a transcriptional regulator of XAF1, thus forming a negative feedback loop between AKT1 and XAF1. These results reveal an important intrinsic regulatory mechanism of AKT signaling.


Asunto(s)
Péptidos y Proteínas de Señalización Intracelular , Neoplasias , Animales , Masculino , Ratones , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Apoptosis/fisiología , Proteínas Reguladoras de la Apoptosis/metabolismo , Carcinogénesis , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de Neoplasias/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo
20.
Biomark Res ; 11(1): 61, 2023 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-37280687

RESUMEN

Stem cells are critical for organism development and the maintenance of tissue homeostasis. Recent studies focusing on RNA editing have indicated how this mark controls stem cell fate and function in both normal and malignant states. RNA editing is mainly mediated by adenosine deaminase acting on RNA 1 (ADAR1). The RNA editing enzyme ADAR1 converts adenosine in a double-stranded RNA (dsRNA) substrate into inosine. ADAR1 is a multifunctional protein that regulate physiological processes including embryonic development, cell differentiation, and immune regulation, and even apply to the development of gene editing technologies. In this review, we summarize the structure and function of ADAR1 with a focus on how it can mediate distinct functions in stem cell self-renewal and differentiation. Targeting ADAR1 has emerged as a potential novel therapeutic strategy in both normal and dysregulated stem cell contexts.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...