Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Colloid Interface Sci ; 673: 860-873, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38908285

RESUMEN

Volatile organic compounds (VOCs) in the air pose great health risks to humans and the environment. Adsorptive separation technology has proven effective in mitigating VOC pollution, with the adsorbent being the critical component. Therefore, the development of highly efficient adsorbent materials is crucial. Carbon nanofibers, known for their physical-chemical stability and rapid adsorption kinetics, are promising candidates for removing VOCs from the air. However, the relatively simple porous structures and inert surface chemical properties of traditional carbon nanofibers present challenges in further enhancing their application performance further. Herein, a hierarchical porous carbon nanofibrous membrane was prepared using electrospinning technology and a one-step carbonization & activation method. Phenolic resin and polyacrylonitrile were used as co-precursors, with silica nanoparticles serving as the dopant. The resulting membrane exhibited a specific surface area of up to 1560.83 m2/g and surfaces rich in functional O-/N- groups. With a synergistic effect of developed micro- and meso-pores and active chemical surfaces, the carbon nanofibrous membrane demonstrated excellent adsorption separation performance for various VOCs, with comparable adsorption capacities and fast kinetics. Moreover, the membrane displayed remarkable reusability and dynamic adsorption performance for different VOCs, indicating its potential for practical applications.

2.
Molecules ; 29(10)2024 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-38792141

RESUMEN

Ceramic fibers have the advantages of high temperature resistance, light weight, favorable chemical stability and superior mechanical vibration resistance, which make them widely used in aerospace, energy, metallurgy, construction, personal protection and other thermal protection fields. Further refinement of the diameter of conventional ceramic fibers to microns or nanometers could further improve their thermal insulation performance and realize the transition from brittleness to flexibility. Processing traditional two-dimensional (2D) ceramic fiber membranes into three-dimensional (3D) ceramic fiber aerogels could further increase porosity, reduce bulk density, and reduce solid heat conduction, thereby improving thermal insulation performance and expanding application areas. Here, a comprehensive review of the newly emerging 2D ceramic micro-nanofiber membranes and 3D ceramic micro-nanofiber aerogels is demonstrated, starting from the presentation of the thermal insulation mechanism of ceramic fibers, followed by the summary of 2D ceramic micro-nanofiber membranes according to different types, and then the generalization of the construction strategies for 3D ceramic micro-nanofiber aerogels. Finally, the current challenges, possible solutions, and future prospects of ceramic micro-nanofiber materials are comprehensively discussed. We anticipate that this review could provide some valuable insights for the future development of ceramic micro-nanofiber materials for high temperature thermal insulation.

3.
Polymers (Basel) ; 16(2)2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38257052

RESUMEN

Activated carbon fibers (ACFs) derived from various polymeric fibers with the characteristics of a high specific surface area, developed pore structure, and good flexibility are promising for the new generation of chemical protection clothing. In this paper, a polyacrylonitrile-based ACF felt was prepared via the process of liquid phase pre-oxidation, along with a one-step carbonization and chemical activation method. The obtained ACF felt exhibited a large specific surface area of 2219.48 m2/g and pore volume of 1.168 cm3/g, as well as abundant polar groups on the surface. Owing to the developed pore structure and elaborated surface chemical property, the ACF felt possessed an intriguing adsorption performance for a chemical warfare agent simulant dipropyl sulfide (DPS), with the highest adsorption capacity being 202.38 mg/g. The effects of the initial concentration of DPS and temperature on the adsorption performance of ACF felt were investigated. Meanwhile, a plausible adsorption mechanism was proposed based on the kinetic analysis and fitting of different adsorption isotherm models. The results demonstrated that the adsorption process of DPS onto ACF felt could be well fitted with a pseudo-second-order equation, indicating a synergistic effect of chemical adsorption and physical adsorption. We anticipate that this work could be helpful to the design and development of advanced ACF felts for the application of breathable chemical protection clothing.

4.
RSC Adv ; 12(16): 9933-9943, 2022 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-35424958

RESUMEN

Owing to the large dynamic adsorption performance and excellent mechanical strength, spherical activated carbon (SAC) has been widely applied in the field of biochemical protection. However, the adsorbed chemical warfare agent molecules might easily escape from the pores of SAC due to the impact of ambient temperature and humidity, resulting in secondary pollution. Herein, to improve the adsorption performance of SAC, an excessive impregnation method was used to fabricate nano-silver functionalized spherical activated carbon (Ag-SAC). The surface physicochemical structure of the obtained Ag-SAC was extensively studied, and dipropyl sulfide (DPS), a simulant of sulfur mustard (HD), was employed as the adsorbate to evaluate its adsorption capability. The effects of AgNO3 impregnation concentration, reaction time, initial concentration and temperature on the adsorption performance, were investigated. The equilibrium adsorption capacity of Ag-SAC towards DPS increased by 13.41% compared with that of pristine SAC. Kinetic models, adsorption isotherm models, and adsorption thermodynamics were used to study the adsorption mechanism. The results revealed that the adsorption of DPS by Ag-SAC is a mixed synergistic process, which includes chemical adsorption and physical adsorption. Moreover, the Ag-SAC exhibited good antibacterial characteristics, with an antibacterial rate over 99.28% against Escherichia coli. We anticipate that the Ag-SAC could be a promising material for the development of high performance breathable biochemical protection clothing.

5.
Phytother Res ; 35(11): 6401-6416, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34585457

RESUMEN

Although renal fibrosis is a common complication of chronic kidney disease (CKD), effective options for its treatment are currently limited. In this study, we evaluated the renal protective effect and possible mechanism of eleutheroside B. In order to solve the allergic reactions, side effects, and low oral bioavailability of eleutheroside B, we successfully prepared PLGA (poly [lactic-co-glycolic acid])-eleutheroside B nanoparticles (NPs) with the diameter of about 128 nm. In vitro and in vivo results showed that eleutheroside B could inhibit expression levels of α-smooth muscle actin (α-SMA) and collagen I. Molecular docking results showed that eleutheroside B bound to Smad3 and significantly decreased the expression of phospho-Smad3 (p-Smad3). Silencing Smad3 reversed the fibrotic protective effect of eleutheroside B in HK2 cells. Furthermore, small animal imaging showed that NPs can selectively accumulate in the UUO kidneys of mice, and retention time reached as long as 7 days. In conclusion, our results suggested that eleutheroside B is a potential drug to protect renal fibrosis and PLGA-eleutheroside B NPs could facilitate specific targeted therapy for renal fibrosis.


Asunto(s)
Fibrosis , Enfermedades Renales , Nanopartículas , Animales , Glucósidos , Glicolatos , Enfermedades Renales/tratamiento farmacológico , Ratones , Simulación del Acoplamiento Molecular , Fenilpropionatos , Copolímero de Ácido Poliláctico-Ácido Poliglicólico , Proteína smad3
6.
Eur J Pharmacol ; 910: 174501, 2021 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-34529980

RESUMEN

Renal fibrosis is the main pathological feature of the occurrence and development of chronic nephropathy. At present, there is no effective treatment, except for renal transplantation and dialysis. Previous studies have shown that nano-preparations can be used as a therapeutic tool to target organs. In this study, we studied the therapeutic effect and mechanism of Chinese medicine monomer Gypenoside (Gyp) XLIX on renal fibrosis and explored the targeting and therapeutic effects of polylactic acid-co-glycoside (PLGA)-Gyp XLIX nanoparticles in unilateral ureteral occlusion (UUO) kidney. Gyp XLIX and PLGA-Gyp XLIX nanoparticles were used to treat UUO mice and Human renal tubular epithelial (HK2) cells stimulated by transforming growth factor-ß (TGF-ß). Histopathological and molecular biological techniques were used to detect the expression of type I collagen and alpha-smooth muscle actin (α-SMA). To investigate the in vivo targeting of PLGA nanoparticles, they were loaded with 1,1-dioctadecyl-3,3,3,3-tetramethylindotricarbocyanine iodide and injected into UUO mice. We evaluated the effect of Gyp XLIX nanoparticles on TGF-ß/Smad3 pathway, a central driver for renal fibrosis in Smad-deficient HK2 cells. Fluorescence imaging showed that the PLGA nanoparticles around 120 nm could be targeted to the UUO kidney. Compared with Gyp XLIX, PLGA-Gyp XLIX nanoparticles could effectively inhibit renal fibrosis and reduce collagen deposition and reduce renal tubular necrosis. Gyp XLIX decreased the phosphorylation of Smad3, but could not further reduce the levels of type I collagen and α-SMA in Smad-deficient cells. This study opens a promising way for targeted drug treatment of renal fibrosis.


Asunto(s)
Medicamentos Herbarios Chinos/farmacología , Túbulos Renales/patología , Sistema de Administración de Fármacos con Nanopartículas/química , Insuficiencia Renal Crónica/tratamiento farmacológico , Saponinas/administración & dosificación , Animales , Línea Celular , Modelos Animales de Enfermedad , Medicamentos Herbarios Chinos/uso terapéutico , Fibrosis , Técnicas de Silenciamiento del Gen , Humanos , Túbulos Renales/efectos de los fármacos , Masculino , Ratones , Insuficiencia Renal Crónica/patología , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Proteína smad3/genética , Proteína smad3/metabolismo , Organismos Libres de Patógenos Específicos , Factor de Crecimiento Transformador beta/metabolismo
7.
Materials (Basel) ; 13(23)2020 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-33260626

RESUMEN

This paper investigated the feasibility of enhancing the interface between lignocellulosic fibers and a polypropylene matrix via structure alteration of lignin at elevated temperatures. Alkali treatment can remove gum substances from lignocellulose fibers effectively at elevated temperatures but easily causes damages to fiber strength. In previous studies on directional delignification of lignocellulosic fibers, loss of fiber strength is avoided but condensation and degradation of lignin are accelerated. So far, few reports have been available on the effect of lignin structures on the interface between fibers and a matrix. In this study, jute fibers with different lignin structures are produced at 100 and 130 °C for reinforcing a polypropylene matrix. The interface between the fibers and matrix is analyzed. The result shows that decrease in aliphatic hydroxyl concentration by 9.5% at 130 °C from 3 to 5 h contributes to a 14.2% decrease in the surface energy of jute fibers. Meanwhile, the polydispersity index of lignin decreases from 1.21 to 1.15. Centralized distribution of lignin molecule-weight and reduction in fiber surface energy improves the interface between the fibers and matrix, which manifests as a 30.8% increase in the impact strength of the composites. Similar improvement is not observed in the composites reinforced with jute fibers at 100 °C, due to the absence of lignin-structure changes. This paper provides a new strategy to improve the interface between lignocellulose fibers and a hydrophobic matrix.

8.
Materials (Basel) ; 12(24)2019 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-31817989

RESUMEN

Graphene-based three-dimensional (3D) magnetic assemblies have attracted great research attention owing to their multiple natures inherited from 3D graphene assemblies and magnetic materials. However, at present, the practical applications of graphene-based magnetic materials are limited by the relative complex synthesis procedure and harsh operation conditions. Hence, a facile and green synthesis strategy is highly desired. Herein, a magnetic graphene aerogel with magnetite nanoparticles in-situ synthesized on the surface of its frameworks was fabricated through a green and facile strategy. The synthesis process was performed in a gentle condition with low energy consumption. The obtained graphene aerogels exhibited superior magnetism with a saturation magnetization of 55.7 emu·g-1. With the merits of well-developed pore structures, high surface area, and robust magnetic property, the obtained composite aerogels exhibited intriguing adsorption and photo-Fenton catalytic degradation performances for the organic dyes in water. Moreover, the utilized graphene aerogels could be recycled from the water due to their effective magnetic separation performance, indicating a promising capability for practical applications in the area of water remediation. We anticipate this synthesis strategy could provide some guidance for the design and development of 3D magnetic assemblies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...