Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sensors (Basel) ; 24(4)2024 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-38400349

RESUMEN

The attainment of a substantial aperture in the rotating synthetic aperture imaging system involves the rotation of a slender rectangular primary mirror. This constitutes a pivotal avenue of exploration in space telescope research. Due to the considerable aspect ratio of the primary mirror, environmental disturbances can significantly impact its surface shape. Active optical technology can rectify surface shape irregularities through the detection of wavefront information. The Phase Diversity (PD) method utilizes images captured by the imaging system to compute wavefront information. In this study, the PD method is applied to rotating synthetic and other rectangular aperture imaging systems, employing Legendre polynomials to model the wavefront. The study delved into the ramifications stemming from the aperture aspect ratio and aberration size.

2.
Sensors (Basel) ; 24(3)2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38339620

RESUMEN

Segmented plane mirrors constitute a crucial component in the self-aligned detection process for large-aperture space optical imaging systems. Surface shape errors inherent in segmented plane mirrors primarily manifest as tilt errors and piston errors between sub-mirrors. While the detection and adjustment techniques for tilt errors are well-established, addressing piston errors poses a more formidable challenge. This study introduces a novel approach to achieve long-range, high-precision, and efficient co-phase detection of segmented plane mirrors by proposing a segmented plane mirror shape detection method based on grazing incidence interferometry. This method serves to broaden the detection range of piston errors, mitigate the issue of the 2π ambiguity resulting from piston errors in co-phase detection, and extend the detection capabilities of the interferometer. By manipulating the incident angle of the interferometer, both rough and precise adjustments of the segmented plane mirrors can be effectively executed.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...