Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
mSystems ; 9(9): e0014824, 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39166872

RESUMEN

Enhancing the availability of representative isolates from hydrothermal vents (HTVs) is imperative for comprehending the microbial processes that propel the vent ecosystem. In recent years, Campylobacteria have emerged as the predominant and ubiquitous taxon across both shallow and deep-sea vent systems. Nevertheless, only a few isolates have been cultured, primarily originating from deep-sea HTVs. Presently, no cultivable isolates of Campylobacteria are accessible in shallow water vent systems (<200 m), which exhibit markedly distinct environmental conditions from their deep-sea counterparts. In this study, we enriched a novel isolate (genus Sulfurospirillum, Campylobacteria) from shallow-water HTVs of Kueishan Island. Genomic and physiological analysis revealed that this novel Campylobacteria species grows on a variety of substrate and carbon/energy sources. The pan-genome and phenotypic comparisons with 12 previously isolated Sulfurospirillum species from different environments supported the identification of functional features in Sulfurospirillum genomes crucial for adaptation to vent environments, such as sulfur oxidation, carbon fixation, biofilm formation, and benzoate/toluene degradation, as well as diverse genes related with signal transportation. To conclude, the metabolic characteristics of this novel Campylobacteria augment our understanding of Campylobacteria spanning from deep-sea to shallow-water vent systems.IMPORTANCECampylobacteria emerge as the dominant and ubiquitous taxa within vent systems, playing important roles in the vent ecosystems. However, isolated representatives of Campylobacteria have been mainly from the deep-sea hydrothermal fields, leaving a significant knowledge gap regarding the functions, activities, and adaptation strategies of the vent microorganisms in shallow-water hydrothermal vents (HTVs). This study bridges this gap by providing insights into the phenomics and genomic diversity of genus Sulfurospirillum (order Campylobacterales, class Campylobacteria) based on data derived from a novel isolate obtained from shallow-water HTVs. Our mesophilic isolate of Sulfurospirillum not only augments the genus diversity of Campylobacteria pure cultures derived from vent systems but also serves as the inaugural reference isolate for Campylobacteria in shallow-water environments.


Asunto(s)
Epsilonproteobacteria , Hidrógeno , Respiraderos Hidrotermales , Oxidación-Reducción , Respiraderos Hidrotermales/microbiología , Hidrógeno/metabolismo , Epsilonproteobacteria/genética , Epsilonproteobacteria/aislamiento & purificación , Epsilonproteobacteria/metabolismo , Epsilonproteobacteria/clasificación , Genoma Bacteriano/genética , Filogenia , Adaptación Fisiológica , Crecimiento Quimioautotrófico
2.
Curr Microbiol ; 81(9): 282, 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39060557

RESUMEN

The deep-sea harbors abundant prokaryotic biomass is a major site of organic carbon remineralization and long-term carbon burial in the ocean. Deep-sea trenches are the deepest part of the ocean, and their special geological and morphological features promoting the accumulation of organic matter and active organic carbon turnover. Despite the expanding reports about the organic matter inputs, limited information is known regarding microbial processes in deep-sea trenches. In this study, we investigated the species composition and metabolic potential in surface sediment of the New Britain Trench (NBT), using a metagenomic approach. The predominant microbial taxa in NBT sediment include Proteobacteria, Acidobacteria, Planctomycetes, Actinobacteria and Chloroflexota. The microbial communities showed highly diverse metabolic potentials. Particularly, genes encoding enzymes for degradation of aromatic compounds, as well as those encoding haloalkane dehalogenase and haloacetate dehalogenase were annotated in the NBT surface sediment, which indicate the potential of microorganisms to degrade different types of refractory organic matter. The functional genes encoding enzymes for dissimilatory nitrate reduction, denitrification, and nitrification were also represented in the NBT metagenome. Overall, the microbial communities show high diversity of heterotrophic lineages and metabolic features, supporting their potential contributions in organic carbon metabolism. Meanwhile, Nitrosopumilus, a dominant genus in the surface sediment of the NBT, is a typical ammonia-oxidizing archaea (AOA), with autotrophic CO2 fixation pathways including the 3-hydroxypropionate/4-hydroxybutylate (3HP/4HB) cycle, the reductive TCA (rTCA) cycle. The results demonstrate that autotrophic metabolic processes also play an important role in the surface sediment, by providing newly synthesized organic matter.


Asunto(s)
Bacterias , Sedimentos Geológicos , Sedimentos Geológicos/microbiología , Bacterias/clasificación , Bacterias/genética , Bacterias/metabolismo , Bacterias/aislamiento & purificación , Microbiota , Archaea/clasificación , Archaea/genética , Archaea/metabolismo , Archaea/aislamiento & purificación , Filogenia , Agua de Mar/microbiología , Metagenoma , Metagenómica , ARN Ribosómico 16S/genética , Carbono/metabolismo , Biodiversidad
3.
Mar Environ Res ; 199: 106626, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38950495

RESUMEN

Understanding the distribution of halogenated organic compounds (HOCs) in marine sediments is essential for understanding the marine carbon and halogen cycling, and also important for assessing the ecosystem health. In this study, a method based on combustion-ion chromatography was developed for determination of the composition and abundance of HOCs in marine sediments. The method showed high accuracy, precision and reproducibility in determining the content of adsorbable organic halogens (AOX), including fluorine, chlorine and bromine (AOF, AOCl, AOBr) and the corresponding insoluble organic halogens (IOF, IOCl, IOBr, IOX), as well as total organic halogen contents (TOX). Application of the method in coastal and deep-sea sediments revealed high ratios of organic halogens in the organic carbon pool of marine sediments, suggesting that organic halogen compounds represent an important yet previously overlooked stock of carbon and energy in marine sediments. Both the TOX and the proportion of organohalogens in organic carbon (X:C ratio) showed an increasing trend from the coast to the deep-sea sediments, indicating an increased significance of HOCs in deep-sea environments. The developed method and the findings of this study lay the foundation for further studies on biogeochemical cycling of HOCs in the ocean.


Asunto(s)
Monitoreo del Ambiente , Sedimentos Geológicos , Contaminantes Químicos del Agua , Sedimentos Geológicos/química , Sedimentos Geológicos/análisis , Monitoreo del Ambiente/métodos , Contaminantes Químicos del Agua/análisis , Halógenos/análisis , Halógenos/química , Hidrocarburos Halogenados/análisis , Cromatografía/métodos
4.
Artículo en Inglés | MEDLINE | ID: mdl-38913036

RESUMEN

A novel chemoheterotrophic iron-reducing micro-organism, designated as strain LSZ-M11000T, was isolated from sediment of the Marianas Trench. Phylogenetic analysis based on the 16S rRNA gene revealed that strain LSZ-M11000T belonged to genus Tepidibacillus, with 97 % identity to that of Tepidibacillus fermentans STGHT, a mesophilic bacterium isolated from the Severo-Stavropolskoye underground gas storage facility in Russia. The polar lipid profile of strain LSZ-M11000T consisted of diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, as well as other unidentified phospholipids and lipids. The major fatty acids were C16 : 0 (28.4 %), C18 : 0 (15.8 %), iso-C15 : 0 (12.9 %), and anteiso-C15 : 0 (12.0 %). Strain LSZ-M11000T had no menaquinone. Genome sequencing revealed that the genome size of strain LSZ-M11000T was 2.97 Mb and the DNA G+C content was 37.9 mol%. The average nucleotide identity values between strain LSZ-M11000T and its close phylogenetic relatives, Tepidibacillus fermentans STGHT and Tepidibacillus decaturensis Z9T, were 76.4 and 72.6 %, respectively. The corresponding DNA-DNA hybridization estimates were 20.9 and 23.4 %, respectively. Cells of strain LSZ-M11000T were rod-shaped (1.0-1.5×0.3-0.5 µm). Using pyruvate as an electron donor, it was capable of reducing KMnO4, MnO2, As(V), NaNO3, NaNO2, Na2SO4, Na2S2O3, and K2Cr2O7. Based on phenotypic, genotypic, and phylogenetic evidence, strain LSZ-M11000T is proposed to be a novel strain of the genus Tepidibacillus, for which the name Tepdibacillus marianensis is proposed. The type strain is LSZ-M11000T (=CCAM 1008T=JCM 39431T).


Asunto(s)
Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano , Ácidos Grasos , Sedimentos Geológicos , Hierro , Fosfolípidos , Filogenia , ARN Ribosómico 16S , Análisis de Secuencia de ADN , ARN Ribosómico 16S/genética , Sedimentos Geológicos/microbiología , ADN Bacteriano/genética , Federación de Rusia , Hierro/metabolismo , Procesos Heterotróficos , Hibridación de Ácido Nucleico , Bacillaceae/clasificación , Bacillaceae/genética , Bacillaceae/aislamiento & purificación , Secuenciación Completa del Genoma , Oxidación-Reducción
5.
Environ Sci Technol ; 58(9): 4392-4403, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38362876

RESUMEN

Unraveling the mysterious pathways of pollutants to the deepest oceanic realms holds critical importance for assessing the integrity of remote marine ecosystems. This study tracks the transport of pollutants into the depths of the oceans, a key step in protecting the sanctity of these least explored ecosystems. By analyzing hadal trench samples from the Mariana, Mussau, and New Britain trenches, we found the widespread distribution of organophosphate ester (OPE) flame retardants but a complex transport pattern for the OPE in these regions. In the Mariana Trench seawater column, OPE concentrations range between 17.4 and 102 ng L-1, with peaks at depths of 500 and 4000 m, which may be linked to Equatorial Undercurrent and topographic Rossby waves, respectively. Sediments, particularly in Mariana (422 ng g-1 dw), showed high OPE affinity, likely due to organic matter serving as a transport medium, influenced by "solvent switching", "solvent depletion", and "filtering processes". Amphipods in the three trenches had consistent OPE levels (29.1-215 ng g-1 lipid weight), independent of the sediment pollution patterns. The OPEs in these amphipods appeared more linked to surface-dwelling organisms, suggesting the influence of "solvent depletion". This study highlights the need for an improved understanding of deep-sea pollutant sources and transport, urging the establishment of protective measures for these remote marine habitats.


Asunto(s)
Anfípodos , Contaminantes Ambientales , Retardadores de Llama , Animales , Ecosistema , Organofosfatos , Ésteres , Solventes
6.
Microbiome ; 12(1): 7, 2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-38191433

RESUMEN

BACKGROUND: The hadal sediment, found at an ocean depth of more than 6000 m, is geographically isolated and under extremely high hydrostatic pressure, resulting in a unique ecosystem. Thaumarchaeota are ubiquitous marine microorganisms predominantly present in hadal environments. While there have been several studies on Thaumarchaeota there, most of them have primarily focused on ammonia-oxidizing archaea (AOA). However, systematic metagenomic research specifically targeting heterotrophic non-AOA Thaumarchaeota is lacking. RESULTS: In this study, we explored the metagenomes of Challenger Deep hadal sediment, focusing on the Thaumarchaeota. Functional analysis of sequence reads revealed the potential contribution of Thaumarchaeota to recalcitrant dissolved organic matter degradation. Metagenome assembly binned one new group of hadal sediment-specific and ubiquitously distributed non-AOA Thaumarchaeota, named Group-3.unk. Pathway reconstruction of this new type of Thaumarchaeota also supports heterotrophic characteristics of Group-3.unk, along with ABC transporters for the uptake of amino acids and carbohydrates and catabolic utilization of these substrates. This new clade of Thaumarchaeota also contains aerobic oxidation of carbon monoxide-related genes. Complete glyoxylate cycle is a distinctive feature of this clade in supplying intermediates of anabolic pathways. The pan-genomic and metabolic analyses of metagenome-assembled genomes belonging to Group-3.unk Thaumarchaeota have highlighted distinctions, including the dihydroxy phthalate decarboxylase gene associated with the degradation of aromatic compounds and the absence of genes related to the synthesis of some types of vitamins compared to AOA. Notably, Group-3.unk shares a common feature with deep ocean AOA, characterized by their high hydrostatic pressure resistance, potentially associated with the presence of V-type ATP and di-myo-inositol phosphate syntheses-related genes. The enrichment of organic matter in hadal sediments might be attributed to the high recruitment of sequence reads of the Group-3.unk clade of heterotrophic Thaumarchaeota in the trench sediment. Evolutionary and genetic dynamic analyses suggest that Group-3 non-AOA consists of mesophilic Thaumarchaeota organisms. These results indicate a potential role in the transition from non-AOA to AOA Thaumarchaeota and from thermophilic to mesophilic Thaumarchaeota, shedding light on recent evolutionary pathways. CONCLUSIONS: One novel clade of heterotrophic non-AOA Thaumarchaeota was identified through metagenome analysis of sediments from Challenger Deep. Our study provides insight into the ecology and genomic characteristics of the new sub-group of heterotrophic non-AOA Thaumarchaeota, thereby extending the knowledge of the evolution of Thaumarchaeota. Video Abstract.


Asunto(s)
Amoníaco , Metagenoma , Metagenoma/genética , Ecosistema , Metagenómica , Archaea/genética
7.
Front Microbiol ; 14: 1236593, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37465022
8.
Sci Total Environ ; 880: 163323, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37030385

RESUMEN

The hadal trenches are "hot spots" for mineralization of organic matter in the deep ocean. Chloroflexi are one of the most dominant and active taxa in trench sediments, serving as important drivers of carbon cycles in hadal trenches. However, current understanding on hadal Chloroflexi is largely restricted to individual trench. This study systematically analyzed the diversity, biogeographic distribution, ecotype partitioning as well as environmental drivers of Chloroflexi in the sediments of hadal trenches, by reanalyzing 16S rRNA gene libraries of 372 samples from 6 trenches around the Pacific Ocean. The results showed that Chloroflexi averagely account for 10.10 % and up to 59.95 % of total microbial communities in the trench sediments. Positive correlations between relative abundance of Chloroflexi and depths down the vertical sediment profiles were observed in all of the sediment cores analyzed, suggesting the increasing significance of Chloroflexi in deeper sediment layers. Overall, trench sediment Chloroflexi were mainly composed of the classes Dehalococcidia, Anaerolineae and JG30-KF-CM66, and four orders i.e. SAR202, Anaerolineales, norank JG30-KF-CM66 and S085, were identified as core taxa that were dominant and prevalent in the hadal trench sediments. A total of 22 subclusters were identified within these core orders, and distinct patterns of ecotype partitioning related with depths down the vertical sediment profiles were observed, suggesting the great diversification of metabolic potentials and environment preference of different Chloroflexi lineages. The spatial distribution of hadal Chloroflexi were found to be significantly related with multiple environmental factors, while depths down the vertical sediment profiles explained the highest proportion of variations. These results provide valuable information for further exploring the roles of Chloroflexi in biogeochemical cycle of the hadal zone, and lay the foundation for understanding the adaptive mechanisms and evolutionary characteristics of microorganisms in hadal trenches.


Asunto(s)
Chloroflexi , Microbiota , Océano Pacífico , ARN Ribosómico 16S , Ecotipo
9.
Front Microbiol ; 13: 992034, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36532441

RESUMEN

Hydrothermal vent (HTV) systems are important habitats for understanding the biological processes of extremophiles on Earth and their relative contributions to material and energy cycles in the ocean. Current understanding on hydrothermal systems have been primarily focused on deep-sea HTVs, and little is known about the functions and metabolisms of microorganisms in shallow-water HTVs (SW-HTVs), which are distinguished from deep-sea HTVs by a depth limit of 200 m. In this study, we analyzed metagenomes of sulfur-rich sediment samples collected from a SW-HTV of Kueishan Island, located in a marginal sea of the western Pacific Ocean. Comparing with a previously published report of pelagic samples from the nearby sampling site, microbial communities in the SW-HTV sediments enriching with genes of both aerobic and anaerobic respiration inferred variable environments in the tested sediments. Abundant genes of energy metabolism encoding sulfur oxidation, H2 oxidation, and carbon fixation were detected from the sediment samples. Sixty-eight metagenome-assembled-genomes (MAGs) were reconstructed to further understand the metabolism and potential interactions between different microbial taxa in the SW-HTVs sediment. MAGs with the highest abundant were chemolithotrophic sulfur-oxidization bacteria, including Sulfurovum represented Campylobacteria involved sox multienzyme, sulfide oxidation genes and rTCA cycle, and Gammaproteobacteria involved dsr gene and CBB cycle. In addition, Desulfobacterota with the potential to participate in sulfur-disproportionating processes also had higher abundance than the sample's overall mean value. The interaction of these bacterial groups allows the microbial communities to efficiently metabolize a large variety of sulfur compounds. In addition, the potential to use simple organic carbon, such as acetate, was found in chemolithotrophic Campylobacterial MAGs. Collectively, our results revealed the complexity of environmental conditions of the vent sediment and highlight the interactive relationships of the dominant microbial populations in driving sulfur cycles in the SW-HTV sediments off Kueishan Island.

10.
3 Biotech ; 12(9): 236, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35999911

RESUMEN

Halomonas piezotolerans NBT06E8T is a Gram-stain-negative, moderately halophilic, piezotolerant, H2O2 and heavy metal-resistant bacterium, isolated from a deep-sea sediment sample collected from the New Britain Trench at depth of 8900 m. Growth of the strain was observed at 4-45 °C (optimum 30 °C), at pH 5-11 (optimum 8-9) and in 0.5-21% (w/v) NaCl (optimum 3-7%). The optimum pressure for growth was 0.1-30 MPa (megapascal) with tolerance up to 60 MPa. Under optimum growth conditions, the strain could tolerant 15 mM H2O2. Here, we report the complete genome of H. piezotolerans NBT06E8T, which consists of 3,945,801 bp (G + C content of 57.93%) with a single chromosome, 3509 protein-coding genes, 60 tRNAs and 6 rRNA operons. Genomic analysis revealed the capability of utilizing various carbon and nitrogen sources, the presence of multiple toxin-antitoxin systems and strain-specific type VI secretion system benefitting its adaptation to the oligotrophic hadal environments. Multiple respiratory chain components, especially the strain-specific anaerobic enzymes, could allow its survival in both surficial and buried sediments with variable oxygen concentrations. Gene function and metabolic pathway analysis showed that strain NBT06E8T encodes a series of genes related to high hydrostatic pressure tolerance, antioxidative stress and heavy metal resistance, which could also contribute to its deep-sea adaptation strategies. The complete genome sequence of H. piezotolerans NBT06E8T provides further insights into the stress adaptation strategies of deep-sea bacteria and potential biotechnological application of Halomonas species. Supplementary Information: The online version contains supplementary material available at 10.1007/s13205-022-03283-3.

11.
Sci Total Environ ; 850: 157950, 2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-35961395

RESUMEN

Sulfated polysaccharides (SP) are widely used as industrial additives and pharmaceutical intermediates. As SP can only be extracted from sea algae, making them scarce raw materials. Recently, SP have been detected and extracted from the waste activated sludge of a saline secondary wastewater treatment plant, suggesting that there are alternative primary producers and synthesis pathways of the SP within the biological activated sludge. This study aimed to identify the primary SP producers, the SP biosynthesis pathways as well as the SP production rates in different types of activated sludges cultivated anoxically and/or anaerobically, with and without the presence of sufficient sulfate. The results showed that alternating anaerobic/anoxic conditions in sludge effectively produced the SP by the ordinary heterotrophic organisms (OHOs). The synthesis pathways for the three most common bioactive SP viz. fucoidan, carrageen, and heparin, were identified and elucidated at both the substrate and enzymatic levels. The Western Blot analyses revealed key enzymes for the SP synthesis (e.g., GDP-L-fucose-synthetase, GDP-fucose-pyrophosphorylase, ß-1,4-galactosyltransferase), when sulfate was sufficient (>170 mg S/L) under an alternating anaerobic/anoxic conditions. In contrast, the absence of sulfate suppressed the SP production during the initial step of the SP generation. The synthesis of the SP in the sulfate-reducing (anaerobic) sludge was suppressed by the enzymatic inhibition, when sulfide exceeded 160 mg S/L, due to the competition for energy between the SP synthesis and sulfide detoxification. However, in the case of the sulfide-oxidizing sludge both the organic carbon and metabolism energy deficiencies inhibited the SP production. The findings of this study expand the understandings of the SP synthesis in the activated sludge under different operating conditions, including different sulfate levels.


Asunto(s)
Microbiota , Aguas del Alcantarillado , Anaerobiosis , Reactores Biológicos , Vías Biosintéticas , Carbono , Fucosa , Heparina , Ligasas , N-Acetil-Lactosamina Sintasa , Preparaciones Farmacéuticas , Polisacáridos , Aguas del Alcantarillado/química , Sulfatos , Sulfuros , Eliminación de Residuos Líquidos/métodos
12.
Microbiome ; 10(1): 75, 2022 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-35538590

RESUMEN

BACKGROUND: The deep sea harbors the majority of the microbial biomass in the ocean and is a key site for organic matter (OM) remineralization and storage in the biosphere. Microbial metabolism in the deep ocean is greatly controlled by the generally depleted but periodically fluctuating supply of OM. Currently, little is known about metabolic potentials of dominant deep-sea microbes to cope with the variable OM inputs, especially for those living in the hadal trenches-the deepest part of the ocean. RESULTS: In this study, we report the first extensive examination of the metabolic potentials of hadal sediment Chloroflexi, a dominant phylum in hadal trenches and the global deep ocean. In total, 62 metagenome-assembled-genomes (MAGs) were reconstructed from nine metagenomic datasets derived from sediments of the Mariana Trench. These MAGs represent six novel species, four novel genera, one novel family, and one novel order within the classes Anaerolineae and Dehalococcoidia. Fragment recruitment showed that these MAGs are globally distributed in deep-sea waters and surface sediments, and transcriptomic analysis indicated their in situ activities. Metabolic reconstruction showed that hadal Chloroflexi mainly had a heterotrophic lifestyle, with the potential to degrade a wide range of organic carbon, sulfur, and halogenated compounds. Our results revealed for the first time that hadal Chloroflexi harbor pathways for the complete hydrolytic or oxidative degradation of various recalcitrant OM, including aromatic compounds (e.g., benzoate), polyaromatic hydrocarbons (e.g., fluorene), polychlorobiphenyl (e.g., 4-chlorobiphenyl), and organochlorine compounds (e.g., chloroalkanes, chlorocyclohexane). Moreover, these organisms showed the potential to synthesize energy storage compounds (e.g., trehalose) and had regulatory modules to respond to changes in nutrient conditions. These metabolic traits suggest that Chloroflexi may follow a "feast-or-famine" metabolic strategy, i.e., preferentially consume labile OM and store the energy intracellularly under OM-rich conditions, and utilize the stored energy or degrade recalcitrant OM for survival under OM-limited condition. CONCLUSION: This study expands the current knowledge on metabolic strategies in deep-ocean Chlorolfexi and highlights their significance in deep-sea carbon, sulfur, and halogen cycles. The metabolic plasticity likely provides Chloroflexi with advantages for survival under variable and heterogenic OM inputs in the deep ocean. Video Abstract.


Asunto(s)
Chloroflexi , Carbono/metabolismo , Chloroflexi/genética , Ecosistema , Océanos y Mares , Azufre/metabolismo
13.
Microorganisms ; 10(3)2022 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-35336213

RESUMEN

Microbial-mediated utilization of particulate organic matter (POM) during its downward transport from the surface to the deep ocean constitutes a critical component of the global ocean carbon cycle. However, it remains unclear as to how high hydrostatic pressure (HHP) and low temperature (LT) with the sinking particles affects community structure and network interactions of the particle-attached microorganisms (PAM) and those free-living microorganisms (FLM) in the surrounding water. In this study, we investigated microbial succession and network interactions in experiments simulating POM sinking in the ocean. Diatom-derived 13C- and 12C-labeled POM were used to incubate surface water microbial communities from the East China Sea (ECS) under pressure (temperature) of 0.1 (25 °C), 20 (4 °C), and 40 (4 °C) MPa (megapascal). Our results show that the diversity and species richness of the PAM and FLM communities decreased significantly with HHP and LT. Microbial community analysis indicated an increase in the relative abundance of Bacteroidetes at high pressure (40 MPa), mostly at the expense of Gammaproteobacteria, Alphaproteobacteria, and Gracilibacteria at atmospheric pressure. Hydrostatic pressure and temperature affected lifestyle preferences between particle-attached (PA) and free-living (FL) microbes. Ecological network analysis showed that HHP and LT enhanced microbial network interactions and resulted in higher vulnerability to networks of the PAM communities and more resilience of those of the FLM communities. Most interestingly, the PAM communities occupied most of the module hubs of the networks, whereas the FLM communities mainly served as connectors of the modules, suggesting their different ecological roles of the two groups of microbes. These results provided novel insights into how HHP and LT affected microbial community dynamics, ecological networks during POM sinking, and the implications for carbon cycling in the ocean.

14.
Mar Life Sci Technol ; 4(1): 150-161, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37073355

RESUMEN

Hadal trenches are the least explored marine habitat on earth. Archaea has been shown to be the dominant group in trench sediments. However, the activity potentials and detailed diversity of these communities as well as their inter-trench variations are still not known. In this study, we combined datasets from two pairs of primers to investigate at high resolution the structure and activity potentials of the archaeal communities in vertically sectioned sediment cores taken from the deepest points of the Mariana (10,853 m) and Mussau (7011 m) trenches. The compositions of the potentially active communities revealed, via 16S ribosomal RNA gene (rDNA) and RNA (rRNA), significant differences between samples. Marine Group I (MGI), with nine identified subgroups, was the most dominant class in the active archaeal communities of the two trenches. Significantly different species composition and vertical variations were observed between the two trenches. Vertical transitions from aerobic MGI α to anaerobic MGI η and υ subgroups were observed in MST but not in MT sediments, which might be related to the faster microbial oxygen consumption in MST. These results provide a better understanding on archaeal activity and diversity in trench sediments. Supplementary Information: The online version contains supplementary material available at 10.1007/s42995-021-00105-y.

15.
Front Microbiol ; 13: 1085063, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36713225

RESUMEN

Antarctic microbes are important agents for evolutionary adaptation and natural resource of bioactive compounds, harboring the particular metabolic pathways to biosynthesize natural products. However, not much is known on symbiotic microbiomes of fish in the Antarctic zone. In the present study, the culture method and whole-genome sequencing were performed. Natural product analyses were carried out to determine the biosynthetic potential. We report the isolation and identification of a symbiotic bacterium Serratia myotis L7-1, that is highly adaptive and resides within Antarctic fish, Trematomus bernacchii. As revealed by genomic analyses, Antarctic strain S. myotis L7-1 possesses carbohydrate-active enzymes (CAZymes), biosynthetic gene clusters (BGCs), stress response genes, antibiotic resistant genes (ARGs), and a complete type IV secretion system which could facilitate competition and colonization in the extreme Antarctic environment. The identification of microbiome gene clusters indicates the biosynthetic potential of bioactive compounds. Based on bioactivity-guided fractionation, serranticin was purified and identified as the bioactive compound, showing significant antibacterial and antitumor activity. The serranticin gene cluster was identified and located on the chrome. Furthermore, the multidrug resistance and strong bacterial antagonism contribute competitive advantages in ecological niches. Our results highlight the existence of a symbiotic bacterium in Antarctic fish largely represented by bioactive natural products and the adaptability to survive in the fish living in Antarctic oceans.

16.
Environ Sci Technol ; 55(22): 15136-15148, 2021 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-34739205

RESUMEN

Knowledge of the distribution and dissemination of antibiotic resistance genes (ARGs) is essential for understanding anthropogenic impacts on natural ecosystems. The transportation of ARGs via aquatic environments is significant and has received great attention, but whether there has been anthropogenic ARG pollution to the hadal ocean ecosystem has not been well explored. For investigating ecological health concerns, we profiled the ARG occurrence in sediments of the Mariana Trench (MT) (10 890 m), the deepest region of the ocean. Metagenomic-based ARG profiles showed a sudden increase of abundance and diversity in the surface layer of MT sediments reaching 2.73 × 10-2 copy/cell and 81 subtypes, and a high percentage of ∼63.6% anthropogenic pollution sources was predicted by the Bayesian-modeling classification method. These together suggested that ARG accumulation and anthropogenic impacts have already permeated into the bottom of the deepest corner on the earth. Moreover, six ARG-carrying draft genomes were retrieved using a metagenomic binning strategy, one of which assigned as Streptococcus was identified as a potential bacterial host to contribute to the ARG accumulation in MT, carrying ermF, tetM, tetQ, cfxA2, PBP-2X, and PBP-1A. We propose that the MT ecosystem needs further long-term monitoring for the assessment of human impacts, and our identified three biomarkers (cfxA2, ermF, and mefA) could be used for the rapid monitoring of anthropogenic pollution. Together our findings imply that anthropogenic pollution has penetrated into the deepest region of the ocean and urge for better pollution control to reduce the risk of ARG dissemination to prevent the consistent accumulation and potential threat to the natural environment.


Asunto(s)
Antibacterianos , Ecosistema , Antibacterianos/farmacología , Teorema de Bayes , Farmacorresistencia Microbiana/genética , Genes Bacterianos , Humanos
17.
FEMS Microbiol Lett ; 368(13)2021 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-34160584

RESUMEN

Microbial degradation of organic matter along the vertical profile of the water column is a major process driving the carbon cycle in the ocean. Pseudoalteromonas has been identified as a dominant genus in pelagic marine environments worldwide, playing important roles in the remineralization of organic carbon. However, the current understanding of Pseudoalteromonas was mainly based on shallow water populations or cultivated species. This study analyzed for the first time the structure, activity potential and ecotypes differentiation of Pseudoalteromonas in the water column of the New Britain Trench (NBT) down to 6000 m. Analysis on diversities of the 16S rRNA gene and their transcripts showed that Pseudoalteromonas was greatly enriched in deep-sea waters and showed high activity potentials. The deep-sea Pseudoalteromonas were significantly different from their shallow-water counterparts, suggesting an obvious ecotype division along with the vertical profile. Phylogenetic analysis on the 16S rRNA gene and hsp60 gene of 219 Pseudoalteromonas strains isolated from different depths further showed that the vertical ecotype division could even occur at the strain level, which might be a result of long-term adaptation to environmental conditions at different depths. The discovered depth-specific strains provide valuable models for further studies on adaptation, evolution and functions of the deep-sea Pseudoalteromonas.


Asunto(s)
Ecotipo , Pseudoalteromonas/aislamiento & purificación , Agua de Mar/microbiología , ADN Bacteriano/genética , Filogenia , Pseudoalteromonas/clasificación , Pseudoalteromonas/genética , Pseudoalteromonas/metabolismo , ARN Ribosómico 16S/genética , Agua de Mar/análisis , Reino Unido
18.
Mar Genomics ; 56: 100807, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33632424

RESUMEN

Salinimonas sediminis N102T is a cold-adapted, slightly halophilic piezophile isolated from deep-sea sediment (4700 m) of the New Britain Trench. In this study, we report the complete genome sequence of S. sediminis N102T, which is comprised of 4,440,293 base pairs with a mean G + C content of 48.2 mol%. The complete genome harbors 3851 predicted protein-coding genes, 70 tRNA genes and 15 rRNA genes. Abundant genes in the genome were predicted to be linked to bacterial deep-sea lifestyle. The complete genome sequence of S. sediminis N102T provides insights into the microbial adaptation strategies to the deep-sea environment.


Asunto(s)
Alteromonadaceae/genética , Genoma Bacteriano , Sedimentos Geológicos/microbiología , Océano Pacífico , Secuenciación Completa del Genoma
19.
Front Microbiol ; 11: 1521, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32765444

RESUMEN

Surprisingly high rates of microbial respiration have recently been reported in hadal trench sediment, yet the potentially active microorganisms and specific microbe-microbe relationships in trench sediment are largely unknown. We investigated the bulk and active prokaryotic communities and co-occurrence interactions of different lineages in vertically sectioned sediment cores taken from the deepest points of the Mariana and Mussau Trenches. Analysis on species novelty revealed for the first time the high rate of novel lineages in the microbial communities of the hadal trenches. Using 95, 97, and 99% similarity as thresholds, averagely 22.29, 32.3, and 64.1% of total OTUs retrieved from sediments of the two trenches were identified as the potentially novel lineages, respectively. The compositions of the potentially active communities, revealed via ribosomal RNA (rRNA), were significantly different from those of bulk communities (rDNA) in all samples from both trenches. The dominant taxa in bulk communities generally accounted for low proportions in the rRNA libraries, signifying that the abundance was not necessarily related to community functions in the hadal sediments. The potentially active communities showed high diversity and composed primarily of heterotrophic lineages, supporting their potential contributions in organic carbon consumption. Network analysis revealed high modularity and non-random co-occurrence of phylogenetically unrelated taxa, indicating highly specified micro-niches and close microbial interactions in the hadal sediments tested. Combined analysis of activity potentials and network keystone scores revealed significance of phyla Chloroflexi and Gemmatimonadetes, as well as several potentially alkane-degrading taxa in maintaining microbial interactions and functions of the trench communities. Overall, our results demonstrate that the hadal trenches harbor diverse, closely interacting, and active microorganisms, despite the extreme environmental conditions.

20.
Int J Syst Evol Microbiol ; 70(7): 4315-4320, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32579094

RESUMEN

A novel marine Gram-stain-negative, non-motile, aerobic and rod-shaped bacterium, designated as strain MT-229T, was isolated from the deep seawater in the Mariana Trench and characterized phylogenetically and phenotypically. Bacterial optimal growth occurred at 30 °C (ranging 10-40 °C), pH 6 (ranging 3-11) and with 11 % (w/v) NaCl (ranging 0-17 %). Strain MT-229T was a piezophile, growing optimally at 20 MPa (range 0.1-70 MPa). The nearest phylogenetic neighbours were Muricauda antarctica CGMCC 1.2174T and Muricauda taeanensis JCM 17757T with 16S rRNA gene similarity of 98.7 %. The sole respiratory quinone was menaquinone-6 (MK-6). The major polar lipids were phosphatidylethanolamine (PE), two unidentified aminolipids (AL) and ten unidentified lipids. The major fatty acids of strain MT-229T were iso-C15 : 0, iso-C17 : 0 3-OH and iso-C15 : 1 G. The G+C content of the genomic DNA was 45.6 mol%. The combined genotypic and phenotypic data indicated that strain MT-229T represents a novel species of the genus Muricauda, for which the name Muricauda hadalis sp. nov. is proposed, with the type strain MT-229T (=DSM 109894T=MCCC 1K04201T). In addition, the whole-genome-based comparisons revealed that the type strains of Muricauda antarctica and Muricauda teanensis belong to a single species. It is, therefore, proposed that M. antarctica be recognized as a heterotypic synonym of M. teanensis.


Asunto(s)
Flavobacteriaceae/clasificación , Filogenia , Agua de Mar/microbiología , Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano/genética , Ácidos Grasos/química , Flavobacteriaceae/aislamiento & purificación , Océano Pacífico , Fosfatidiletanolaminas/química , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Vitamina K 2/análogos & derivados , Vitamina K 2/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...