Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
J Environ Manage ; 357: 120783, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38579475

RESUMEN

The rapid development of the economy and society is causing an increase in the amount of municipal solid waste (MSW) produced by people's daily lives. With the strong support of the Chinese government, incineration power generation has steadily become the primary method of treating MSW, accounting for 79.86%. However, burning produces a significant amount of municipal solid waste incineration fly ash (MSWI-FA), which contains heavy metals, soluble chlorine salts, and dioxins. China's MSWI-FA yield increased by 8.23% annually to 7.80 million tons in 2022. Besides, the eastern region, especially the southeastern coastal region, has the highest yield of MSWI-FA. There are certain similarities in the chemical characteristics of MSWI-FA samples from Northeast, North, East, and South China. Zn and CaO have the largest amounts of metals and oxides, respectively. The Cl content is about 20 wt%. This study provides an overview of the techniques used in the thermal treatment method, solidification and stabilization, and separation and extraction of MSWI-FA and compares their benefits and drawbacks. In addition, the industrial applications and standard requirements of landfill treatment and resource utilization of MSWI-FA in China are analyzed. It is discovered that China's resource utilization of MSWI-FA is insufficient through the study on the fly ash disposal procedures at a few MSW incineration facilities located in the economically developed Guangdong Province and the traditional industrial city of Tianjin. Finally, the prospects for the disposal of MSWI-FA were discussed.


Asunto(s)
Metales Pesados , Eliminación de Residuos , Humanos , Ceniza del Carbón/química , Residuos Sólidos/análisis , Material Particulado/análisis , Carbono/análisis , Incineración , Metales Pesados/análisis , China
2.
Molecules ; 29(7)2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38611743

RESUMEN

Benzene is the typical volatile organic compound (VOC) of indoor and outdoor air pollution, which harms human health and the environment. Due to the stability of their aromatic structure, the catalytic oxidation of benzene rings in an environment without an external energy input is difficult. In this study, the efficient degradation of benzene at room temperature was achieved by constructing Ag and Ni bimetallic active site catalysts (AgNi/BCN) supported on boron-carbon-nitrogen aerogel. The atomic-scale Ag and Ni are uniformly dispersed on the catalyst surface and form Ag/Ni-C/N bonds with C and N, which were conducive to the catalytic oxidation of benzene at room temperature. Further catalytic reaction mechanisms indicate that benzene reacted with ·OH to produce R·, which reacted with O2 to regenerate ·OH. Under the strong oxidation of ·OH, benzene was oxidized to form alcohols, carboxylic acids, and eventually CO2 and H2O. This study not only significantly reduces the energy consumption of VOC catalytic oxidation, but also improves the safety of VOC treatment, providing new ideas for the low energy consumption and green development of VOC treatment.

3.
J Hazard Mater ; 460: 132520, 2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37703730

RESUMEN

Benzene and its aromatic derivatives are typical volatile organic compounds for indoor and outdoor air pollution, harmful to human health and the environment. It has been considered extremely difficult to break down benzene rings at ambient conditions without external energy input, due to the extraordinary stability of the aromatic structure. Here, we show one such solution that can thoroughly degrade benzene to basically water and carbon dioxide at 25 °C in air using atomically dispersed Fe in N-doped porous carbon, with almost 100% benzene conversion. Further experimental studies combined with molecular simulations reveal the mechanism of this catalytic reaction. Hydroxyl radicals (·OH) evolved on the atomically dispersed FeN4O2 catalytic centers were found responsible for initiating and completing the oxidation of benzene. This work provides a new chemistry to degrade aromatics at ambient conditions and also a pathway to generate active ·OH oxidant for generic remediation of organic pollutants.

4.
Int J Mol Sci ; 23(22)2022 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-36430218

RESUMEN

As an important air pollutant, volatile organic compounds (VOCs) pose a serious threat to the ecological environment and human health. To achieve energy saving, carbon reduction, and safe and efficient degradation of VOCs, ambient temperature catalytic oxidation has become a hot topic for researchers. Firstly, this review systematically summarizes recent progress on the catalytic oxidation of VOCs with different types. Secondly, based on nanoparticle catalysts, cluster catalysts, and single-atom catalysts, we discuss the influence of structural regulation, such as adjustment of size and configuration, metal doping, defect engineering, and acid/base modification, on the structure-activity relationship in the process of catalytic oxidation at ambient temperature. Then, the effects of process conditions, such as initial concentration, space velocity, oxidation atmosphere, and humidity adjustment on catalytic activity, are summarized. It is further found that nanoparticle catalysts are most commonly used in ambient temperature catalytic oxidation. Additionally, ambient temperature catalytic oxidation is mainly applied in the removal of easily degradable pollutants, and focuses on ambient temperature catalytic ozonation. The activity, selectivity, and stability of catalysts need to be improved. Finally, according to the existing problems and limitations in the application of ambient temperature catalytic oxidation technology, new prospects and challenges are proposed.


Asunto(s)
Contaminantes Atmosféricos , Compuestos Orgánicos Volátiles , Humanos , Temperatura , Catálisis , Oxidación-Reducción
5.
Polymers (Basel) ; 14(18)2022 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-36146018

RESUMEN

Forward osmosis (FO) membranes have the advantages of low energy consumption, high water recovery rate, and low membrane pollution trend, and they have been widely studied in many fields. However, the internal concentration polarization (ICP) caused by the accumulation of solutes in the porous support layer will reduce permeation efficiency, which is currently unavoidable. In this paper, we doped Graphene oxide (GO) nanoparticles (50~150 nm) to a polyamide (PA) active layer and/or polysulfone (PSF) support layer, investigating the influence of GO on the morphology and properties of thin-film composite forward osmosis (TFC-FO) membranes. The results show that under the optimal doping amount, doping GO to the PA active layer and PSF support layer, respectively, is conducive to the formation of dense and uniform nano-scale water channels perpendicular to the membrane surface possessing a high salt rejection rate and low reverse solute flux without sacrificing high water flux. Moreover, the water channels formed by doping GO to the active layer possess preferable properties, which significantly improves the salt rejection and water permeability of the membrane, with a salt rejection rate higher than 99% and a water flux of 54.85 L·m-2·h-1 while the pure PSF-PA membrane water flux is 12.94 L·m-2·h-1. GO-doping modification is promising for improving the performance and structure of TFC-FO membranes.

6.
Int J Biol Macromol ; 211: 689-699, 2022 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-35577194

RESUMEN

Copper contamination of water is one of the most pressing environmental problems which has attracted extensive concern in recent decades. In this study, a series of magnetic adsorbents were synthesized by two-step modified cellulose with N-[3-(trimethoxysilyl)propyl]ethylenediamine (KH-792) and diethylenetriaminepentaacetic acid (DTPA) using for removal of Cu(II) from aqueous solutions. Adsorption performance of Cu(II) was systematically investigated under various treatment conditions as the effect of solution pH, contact time, initial concentration and temperature. The adsorption process was found to match better with the pseudo-second-order kinetics model, and the equilibrium adsorption data were well described by Langmuir model, which meant predominant governance of monolayer chemical adsorption. The analysis of FTIR and XPS confirmed the possible adsorption mechanism between Cu(II) and the synthesized adsorbents was electrostatic attraction and the chemical coordination. Compared with MCCs and APMC, DPMC showed higher adsorption capacity of Cu(II), reaching maximum adsorption capacity of 298.62 mg·g-1 at pH 6. Given this, ease of preparation, low cost and excellent reusability, DPMC will be promising adsorbent for application in Cu(II) removal from wastewater.


Asunto(s)
Cobre , Contaminantes Químicos del Agua , Adsorción , Celulosa , Cobre/análisis , Hidrogeles , Concentración de Iones de Hidrógeno , Iones , Cinética , Fenómenos Magnéticos , Ácido Pentético , Agua , Contaminantes Químicos del Agua/análisis
7.
Environ Technol ; 43(13): 2047-2058, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-33315528

RESUMEN

Normal temperature catalytic ozonation is an effective method for the removal of volatile organic compounds (VOCs). A series of TiO2-supported noble metal catalysts were synthesized by a facile impregnation method. The as-prepared catalysts were evaluated for the catalytic oxidation of toluene. It was determined that the 1 wt%Pt/TiO2 exhibited outstanding performance that 65% conversion of toluene was achieved with the space velocity of 30,000 h-1 even at room temperature (25°C). The structure-activity relationship of various catalysts was investigated via BET, XRD, SEM, TEM as well as XPS. The results indicated that the uniform dispersion of Pt nanoparticles, abundant surface adsorbed oxygen species as well as the strong interaction between Pt and TiO2 favoured toluene degradation at normal temperature. Based on FT-IR, a simplified reaction scheme was proposed: toluene was first oxidized to benzoate species then alcohol species, ketones, carboxyl acids, which was finally degraded into CO2 and H2O. The low activation energy of 1 wt%Pt/TiO2 determined to be 47 kJ mol-1 also benefited for toluene degradation at ambient temperature.

8.
J Environ Manage ; 302(Pt B): 114087, 2022 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-34773780

RESUMEN

Polymer materials have become one of the potential materials for remediation of heavy metal (HM) contamination in water and soil. However, the specific advantages of polymers are rarely studied. Water-soluble thiourea formaldehyde resin (WTF) is one of the effective polymer amendments. Through leaching experiments, WTF can stabilize 93.0% of Cd2+ and 99.7% of Cu2+. The results of HM morphology analysis show that after adding WTF, most of the HMs have been transformed into a relatively stable state. For example, in the process of remediation of 6 mg/kg Cd contaminated soil, the proportion of acid-soluble Cd decreased from 56.5% to 12.8%, and the residual state increased from 13.5% to 45.4%. Compared with the resin-free structure, the three-dimensional structure of the resin plays an important role, but the efficiency of precipitation with HMs is doubled. According to the simulation of the adsorption process by Materials Studio, the characterization of the scanning electron microscope-energy dispersive instrument and the results of the adsorption experiment, in the solution, the precipitate formed by WTF and Cd2+ has multilayer adsorption of HMs, and can further adsorb HM by -OH. Soil enzyme activity experiments proved that the risk of secondary pollution by adding WTF is rare, and even WTF can achieve the effect of slow-release nitrogen fertilizer. In the WTF remediation process, the biological toxicity reduction of HMs is result from, on the one hand, the complexation of functional group of WTF; on the other hand, the resin structure of WTF; in addition, multi-layer adsorption and adsorption of end groups in the precipitation formed by WTF and HM. This work provides a theoretical basis for the potential capabilities of water-soluble resins and is beneficial to the design and development of subsequent amendments.


Asunto(s)
Metales Pesados , Contaminantes del Suelo , Adsorción , Cadmio/análisis , Metales Pesados/análisis , Polímeros , Suelo , Contaminantes del Suelo/análisis , Agua
9.
Carbohydr Polym ; 274: 118555, 2021 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-34702488

RESUMEN

Chromium pollution is a serious environmental problem given that like most heavy metals, Cr tends to persist and accumulate in the environment. In this study, diethylenetriaminepentaacetic acid-thiourea-modified magnetic chitosan (DTCS-Fe3O4) was synthesized for use as an adsorbent for Cr(VI) removal from aqueous solutions. The effects of various treatment conditions on the Cr(VI) adsorption performance of DTCS-Fe3O4 composite as well as the kinetics were elucidated. Moreover, by observing the structure and morphology of DTCS-Fe3O4, the possible Cr(VI) adsorption mechanism was proposed. DTCS-Fe3O4 exhibited a maximum adsorption capacity of 321.3 ± 6.0 mg g-1. Further, the adsorption process, which followed the Langmuir model for monolayer adsorption, was predominantly governed by chemical adsorption, and could be fitted using the pseudo-second-order kinetics model. Furthermore, given its ease of preparation, low cost, and remarkable performance, it is expected that the DTCS-Fe3O4 composite would find wide practical application in the removal of toxic Cr(VI) from wastewater.

10.
J Hazard Mater ; 409: 124929, 2021 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-33421878

RESUMEN

It is very important to seek a heavy metal soil stabilization/solidification (S/S) agent that has less risk of secondary release and has less impact on the soil. This study explored the repair effect of a new resin repair agent water-soluble thiourea-formaldehyde (WTF), and its stability under indigenous biodegradation and compared the repair effect with sodium sulfide (Na2S) and hydroxyapatite (HAP). Diethylene triamine pentaacetic acid leaching experiments show that WTF can effectively solidify/stabilize 97.9-84.7% of Cu. At the same time, heavy metal speciation analysis experiments show that WTF does indeed convert the exchangeable Cu in the soil into a non-exchangeable form. Research on soil organic matter, biological carbon and enzyme activity after remediation shows that WTF has a more positive effect on soil function, compared with HAP and Na2S. Experiments using indigenous microorganisms to decompose the precipitation formed by WTF and Cu show that under the condition of less impact on soil microorganisms, the risk of secondary release of heavy metals caused by soil microorganisms after WTF remediation is less. These findings provide valuable experience for understanding the role of resin structure in preventing the secondary release of heavy metals and restoring soil function.

11.
Environ Pollut ; 272: 116025, 2021 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-33277061

RESUMEN

It is vital for the development and application of heavy metal stabilization/solidification (S/S) agents to reveal the mechanism of the reaction between water-soluble thiourea formaldehyde (WTF) resin and heavy metal and evaluate its repairing effect. Based on the density functional theory analysis of the WTF resin structure, the mechanism analysis and scanning electron microscope (SEM) showed that the three-dimensional network structure with thiocarbonyl and hydroxyl groups is very conducive to the capture of Cd2+. The reduction rate of Cd2+ in soil added WTF resin could reach 70.6%-86.0%. The result of BCR's sequential extraction also proved that the 86.4%-94.1% of Cd in the soil repaired by WTF resin changed from acid-soluble state to residue state. Enzyme activity analysis and 16sRNA sequencing experiments showed that such a structure does not harm soil health. The urease and phosphatase tests showed the nitrogen and phosphorus cycle of the soil added WTF resin was repaired. Even compared with the remediation agents Na2S and hydroxyapatite, WTF resin still performed better in repairing soil health. These findings provide valuable insights into the efficient causes of WTF resin and its harmless effects on soil. The results obtained provide a critical reference for the future application of practical and gentle heavy metal S/S agents.


Asunto(s)
Metales Pesados , Contaminantes del Suelo , Cadmio/análisis , Formaldehído , Metales Pesados/análisis , Suelo , Contaminantes del Suelo/análisis , Tiourea , Agua
12.
Environ Sci Technol ; 54(3): 1938-1945, 2020 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-31904227

RESUMEN

Normal temperature catalytic ozonation (NTCO) is a promising yet challenging method for the removal of volatile organic compounds (VOCs) because of limited activity of the catalysts at ambient temperature. Here, we report a series of Pt/FeOx catalysts prepared by the co-precipitation method for NTCO of gaseous methanol. All samples were found to be active and among them, the Pt/FeOx-400 (calcined at 400 °C) catalyst with a Pt cluster loading of 0.2% exhibited the highest activity, able to completely convert methanol into CO2 and H2O at 30 °C. Extensive experimental research suggested that the superior catalytic activity could be attributed to the highly dispersed Pt clusters and an appropriate molar ratio of Pt0/Pt2+. Furthermore, electron paramagnetic resonance and density functional theory computational studies revealed the mechanism that the Pt/FeOx-400 catalyst could activate O3 and water effectively to produce hydroxyl radicals responsible for the catalytic oxidation of methanol. The findings of this work may foster the development of technologies for normal temperature abatement of VOCs with low energy consumption.


Asunto(s)
Metanol , Ozono , Catálisis , Platino (Metal) , Temperatura
13.
J Hazard Mater ; 346: 167-173, 2018 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-29274510

RESUMEN

Stabilization/Solidification (S/S) can be regarded as necessary for remediation of heavy metal contaminated soil. There is, however, solid agent is not very convenient to use. Water-soluble thiourea-formaldehyde (WTF) is a novel chelating agent, which has more practical applications. The process of WTF resin for S/S process of heavy metal contaminated soils was studied. Laboratory-prepared slurries, made of field soils spiked with Cd2+ and Cr6+ were treated with WTF resin. The toxicity characteristic leaching procedure (TCLP) showed that with 2 wt% WTF, in the neutral condition of soil after treatment for 7 d, the leaching concentrations of Cd2+ and Cr6+ in contaminated soil were decreased by 80.3% and 92.6% respectively. Moreover, Tessier sequence extraction procedure showed WTF resin reduced the leaching concentration by transforming heavy metal from exchange form to organic form. The structure of WTF is obtained according to elemental analysis result and reaction mechanism. Through analysis of the infrared spectrogram of WTF and WTF heavy mental chelating precipitation, WTF can form stable chelate with heavy mental through coordination. The significant groups are hydroxyl, nitrogen and sulphur function groups in WTF mainly. Toxicology test revealed that the WTF resin is nontoxic to microorganism in the soils.

14.
Environ Sci Pollut Res Int ; 24(34): 26615-26622, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28956245

RESUMEN

Tetrachloroethylene (PCE) is among the most ubiquitous chlorinated compounds found in groundwater contamination. Its chlorinated degradation by-products remain highly toxic. In this study, an anaerobic/aerobic permeable reactive barrier system consisting of four different functional layers was designed to remediate PCE-contaminated groundwater. The first (oxygen capture) layer maintained the dissolved oxygen (DO) concentration at < 1.35 mg/L in influent supplied to the second (anaerobic) layer. The third (oxygen-releasing) layer maintained DO concentration at > 11.3 mg/L within influent supplied to the fourth (aerobic) layer. The results show that 99% of PCE was removed, mostly within the second layer (anaerobic). Furthermore, the toxic by-products trichloroethylene (TCE), dichloroethylene (DCE), and vinyl chloride (VC) were further degraded by 98, 90, and 92%, respectively, in layer 4 (aerobic). Thus, the designed anaerobic/aerobic permeable reactive barrier system could control both PCE and its degradation by-products, showing great potential as an efficient remediation alternative for the in situ treatment of PCE-contaminated groundwater.


Asunto(s)
Bacterias Aerobias/crecimiento & desarrollo , Bacterias Anaerobias/crecimiento & desarrollo , Agua Subterránea/química , Tetracloroetileno/análisis , Contaminantes Químicos del Agua/análisis , Purificación del Agua/métodos , Aerobiosis , Anaerobiosis , Biodegradación Ambiental , China , Modelos Teóricos , Oxígeno/química , Tricloroetileno/análisis , Cloruro de Vinilo/análisis
15.
Food Chem ; 218: 152-158, 2017 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-27719892

RESUMEN

A large-scale process to extract flavonoids from Moringa oleifera leaf by subcritical ethanol was developed and HPLC-MS analysis was conducted to qualitatively identify the compounds in the extracts. To optimize the effects of process parameters on the yield of flavonoids, a Box-Behnken design combined with response surface methodology was conducted in the present work. The results indicated that the highest extraction yield of flavonoids by subcritical ethanol extraction could reach 2.60% using 70% ethanol at 126.6°C for 2.05h extraction. Under the optimized conditions, flavonoids yield was substantially improved by 26.7% compared with the traditional ethanol reflux method while the extraction time was only 2h, and obvious energy saving was observed. FRAP and DPPH assays showed that the extracts had strong antioxidant and free radical scavenging activities.


Asunto(s)
Antioxidantes/aislamiento & purificación , Etanol , Flavonoides/aislamiento & purificación , Moringa oleifera , Extractos Vegetales/aislamiento & purificación , Hojas de la Planta , Antioxidantes/química , Antioxidantes/metabolismo , Etanol/química , Flavonoides/química , Flavonoides/metabolismo , Moringa oleifera/química , Oxidación-Reducción , Extractos Vegetales/química , Extractos Vegetales/metabolismo , Hojas de la Planta/química
16.
J Environ Manage ; 182: 328-334, 2016 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-27497309

RESUMEN

Because of the high concentrations of heavy metals, municipal solid waste incineration (MSWI) fly ash is classified as a hazardous waste, which need to be treated to avoid damaging the environment. A novel water-soluble thiourea-formaldehyde (WTF) resin was synthesized by two step reactions (hydroxymethylation reaction and condensation reaction) in the laboratory. Synthetic conditions, removal of free formaldehyde in the resin and the ability of immobilization heavy metals in the MSWI fly ash were studied. The possible molecular structure of the resin was also discussed by elemental analysis and FTIR spectra. Experimental results showed that the synthesis conditions of WTF resin were the formaldehyde/thiourea (T/F) mole ratio of 2.5:1, hydroxymethylation at pH 7.0-8.0 and 60 °C for 30min, and condensation of at pH 4.5-5.0 and 80 °C. In addition, the end point of condensation reaction was measured by turbidity point method. The result of elemental analysis and FTIR spectra indicated that thiourea functional group in the WTF resin chelated the heavy metal ions. Melamine can efficiently reduce the free formaldehyde content in the resin from 8.5% to 2%. The leaching test showed that the immobilization rates of Cr, Pb and Cd were 96.5%, 92.0% and 85.8%, respectively. Leaching concentrations of Cr, Pb and Cd in the treated fly ash were decreased to 0.08 mg/L, 2.44 mg/L and 0.23 mg/L, respectively. The MSWI fly ash treated by WTF resin has no harm to the environment.


Asunto(s)
Ceniza del Carbón/química , Formaldehído/química , Metales Pesados/química , Tiourea/química , Humanos , Incineración/métodos , Eliminación de Residuos/métodos
17.
Environ Sci Pollut Res Int ; 23(3): 2487-94, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26423284

RESUMEN

Lanthanum-modified bentonite has potential for wide application in eutrophication control. We investigated P adsorption on a lanthanum-modified bentonite by analysis of adsorption kinetics, equilibrium, and the effect of environmental factors. P adsorption closely followed the pseudo-second-order kinetic model, and the isotherm was well described by the Langmuir model. This adsorbent could effectively immobilize P into the sediment, but the adsorption process was strongly dependent on pH, anions, and low molecular weight organic acids (LMWOAs). P adsorption increased with increasing pH from 0.52 mg P/g at pH 3.0 to 0.93 mg P/g at pH 7.0 with no adsorption at pH 11. P adsorption was strongly inhibited in the presence of anions and three LMWOAs, with P even re-released at high concentrations. These environmental factors should be given significant attention when considering the application of lanthanum-modified bentonite in eutrophication control.


Asunto(s)
Bentonita/química , Lantano/química , Fósforo/química , Adsorción , Aniones/química , Eutrofización , Concentración de Iones de Hidrógeno , Agua , Contaminantes Químicos del Agua/análisis , Purificación del Agua
18.
J Hazard Mater ; 285: 336-45, 2015 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-25528232

RESUMEN

The harmfulness of carcinogenic hexavalent chromium (Cr(VI)) is dramatically decreased when Cr(VI) is reduced to trivalent chromium (Cr(III)). Rutin, a natural flavonoid, exhibits excellent antioxidant activity by coordinating metal ions. In this study, a complex containing rutin and Cr(III) (rutin-Cr(III)) was synthesized and characterized. The rutin-Cr(III) complex was much easier to reduce than rutin. The reduction of the rutin-Cr(III) complex was highly pH-dependent, with 90% of the Cr(VI) being reduced to Cr(III) in 2h under optimal conditions. A biodegradable, sustained-release system encapsulating the rutin-Cr(III) complex in a alginate-chitosan microcapsule (rutin-Cr(III) ACMS) was also evaluated, and the reduction of Cr(VI) was assessed. This study also demonstrated that low-pH solutions increased the reduction rate of Cr(VI). The environmentally friendly microcapsules can reduce Cr(VI) for prolonged periods of time and can easily biodegrade after releasing the rutin-Cr(III) complex. Given the excellent performance of rutin-Cr(III) ACMS, the microcapsule system represents an effective system for the remediation of Cr(VI) pollution.


Asunto(s)
Cromo/química , Rutina/química , Contaminantes Químicos del Agua/química , Cápsulas , Oxidación-Reducción , Eliminación de Residuos Líquidos/métodos , Aguas Residuales/química
19.
Water Res ; 47(16): 5977-85, 2013 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-24064548

RESUMEN

In this paper, an anaerobic two-layer permeable reactive biobarrier system consisting of an oxygen-capturing layer followed by a biodegradation layer was designed firstly for evaluating the remediation effectiveness of nitrate-contaminated groundwater. The first layer filling with granular oxygen-capturing materials is used to capture dissolved oxygen (DO) in groundwater in order to create an anaerobic condition for the microbial denitrification. Furthermore, it can also provide nutrition, such as carbon and phosphorus, for the normal metabolism of immobilized denitrifying bacteria filled in the second layer. The second layer using granular activated carbon as microbial carrier is able to biodegrade nitrate entering the barrier system. Batch experiments were conducted to identify the effect of DO on microbial denitrification, oxygen-capturing performance of zero valent iron (ZVI) powder and the characteristics of the prepared oxygen-capturing materials used to stimulate growth of denitrifying bacteria. A laboratory-scale experiment using two continuous upflow stainless-steel columns was then performed to evaluate the feasibility of this designed system. The first column was filled with granular oxygen-capturing materials prepared by ZVI powder, sodium citrate as well as other inorganic salts, etc. The second column was filled with activated carbon immobilizing denitrifying microbial consortium. Simulated nitrate-contaminated groundwater (40 mg NO3-N/L, pH 7.0) with 6 mg/L of DO content was pumped into this system at a flow rate of 235 mL/d. Samples from the second column were analyzed for nitrate and its major degradation byproduct. Results showed that nitrate could be removed more than 94%, and its metabolic intermediate, nitrite, could also be biodegraded further in this passive system. Further study is necessary in order to evaluate performance of its field application.


Asunto(s)
Agua Subterránea/análisis , Nitratos/química , Purificación del Agua/métodos , Anaerobiosis , Biodegradación Ambiental , Contaminantes Químicos del Agua/metabolismo
20.
Water Res ; 40(18): 3401-8, 2006 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-16962157

RESUMEN

In this study, an in situ biological two-layer permeable reactive barrier system consisting of an oxygen-releasing material layer followed by a biodegradation layer was designed to evaluate the remediation effectiveness of MTBE-contaminated groundwater. The first layer containing calcium peroxide (CaO(2)) and other inorganic salts is to provide oxygen and nutrients for the immobilized microbes in the second layer in order to keep them in aerobic condition and maintain their normal metabolism. Furthermore, inorganic salts such as potassium dihydrogen phosphate (KH(2)PO(4)) and ammonium sulphate ((NH(4))(2)SO(4)) can also decrease the high pH caused by the alkali salt degraded from CaO(2). The second layer using granular expanded perlite as microbial carrier is able to biodegrade MTBE entering the barrier system. Batch experiments were conducted to identify the appropriate components of oxygen-releasing materials and the optimum pH value for the biodegradation of MTBE. At pH=8.0, the biodegradation efficiency of MTBE is the maximum and approximately 48.9%. A laboratory-scale experiment using two continuous upflow stainless-steel columns was then performed to evaluate the feasibility of this designed system. The fist column was filled with oxygen-releasing materials at certain ratio by weight. The second column was filled with expanded perlite granules immobilizing MTBE-degrading microbial consortium. Simulated MTBE-contaminated groundwater, in which dissolved oxygen (DO) content was 0mg/L, was pumped into this system at a flow rate of 500mL/d. Samples from the second column were analyzed for MTBE and its major degradation byproduct. Results showed that MTBE could be removed, and its metabolic intermediate, tert-butyl alcohol (TBA), could also be further degraded in this passive system.


Asunto(s)
Bacterias Aerobias/crecimiento & desarrollo , Biodegradación Ambiental , Éteres Metílicos/química , Contaminantes Químicos del Agua/química , Células Inmovilizadas/metabolismo , Filtración/métodos , Concentración de Iones de Hidrógeno , Purificación del Agua/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA