Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
1.
Brain Behav Immun ; 123: 193-210, 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39277023

RESUMEN

The long-term high-fat, high-sugar diet exacerbates type 2 diabetes mellitus (T2DM)-related cognitive impairments. Phlorizin, a well-studied natural compound found in apples and other plants, is recognized for its bioactive properties, including modulation of glucose and lipid metabolism. Despite its established role in mitigating metabolic disorders, the neuroprotective effects of phlorizin, particularly against diabetes-related cognitive dysfunction, have not been fully elucidated. Therefore, the present study aimed to investigate the effect of dietary supplementation of phlorizin on high-fat and high-fructose diet (HFFD)-induced cognitive dysfunction and evaluate the crucial role of the microbiota-gut-brain axis. We found that dietary supplementation of phlorizin for 14 weeks effectively prevented glucolipid metabolism disorder, spatial learning impairment, and memory impairment in HFFD mice. In addition, phlorizin improved the HFFD-induced decrease in synaptic plasticity, neuroinflammation, and excessive activation of microglia in the hippocampus. Transcriptomics analysis shows that the protective effect of phlorizin on cognitive impairment was associated with increased expression of neurotransmitters and synapse-related genes in the hippocampus. Phlorizin treatment alleviated colon microbiota disturbance, mainly manifested by an increase in gut microbiota diversity and the abundance of short-chain fatty acid (SCFA)-producing bacteria. The level of microbial metabolites, including SCFA, inosine 5'-monophosphate (IMP), and D (-)-beta-hydroxybutyric acid (BHB) were also significantly increased after phlorizin treatment. Integrating multiomics analysis observed tight connections between phlorizin-regulated genes, microbiota, and metabolites. Furthermore, removal of the gut microbiota via antibiotics treatment diminished the protective effect of phlorizin against HFFD-induced cognitive impairment, underscoring the critical role of the gut microbiota in mediating cognitive behavior. Importantly, supplementation with SCFA and BHB alone mimicked the regulatory effects of phlorizin on cognitive function. Therefore, phlorizin shows promise as a potential nutritional therapy for addressing cognitive impairment associated with metabolic disorders. Further research is needed to explore its effectiveness in preventing and alleviating neurodegenerative diseases.

2.
Int J Biol Macromol ; 280(Pt 1): 135552, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39288856

RESUMEN

Chlorogenic acid (CGA) displays various biological activities in preventing high-calorie diet-induced metabolic complications. The absorption efficiency of CGA in the stomach and small intestine is relatively low, with approximately 70 % of CGA being metabolized by colonic microorganisms before it enters the bloodstream. In this study, we successfully developed CGA-LMP (Low-methoxy-pectin) conjugates to improve the absorption rate of CGA. C57BL/6J mice were fed high-fat diets (HFD) supplemented with CGA, LMP, or CGA-LMP conjugates for a duration of eight weeks. The results demonstrated that the CGA, LMP, or CGA-LMP conjugates prevented HFD-induced hyperlipidemia, inflammation, liver steatosis, and adipocyte hypertrophy in obese mice. Notably, the CGA-LMP conjugates demonstrated superior efficacy in alleviating obesity compared to CGA or LMP alone. Further studies revealed that the primary mechanism of weight loss was the activation of the AMPK signaling pathway, which facilitates lipolysis and lipid ß-oxidation. These findings highlight that the enhanced the anti-obesity effectiveness of CGA-LMP conjugates, expanding their potential applications in the field of functional nutrition and foods.

3.
J Hepatocell Carcinoma ; 11: 1519-1539, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39139735

RESUMEN

Background: Hepatocellular carcinoma (HCC) remains a leading cause of cancer-related mortality, underscoring the need for novel therapeutic targets. This study aimed to elucidate the role of endoplasmic reticulum membrane protein complex subunit 1 (EMC1) in HCC progression and its therapeutic potential. Methods: Publicly available sequencing data and biopsy specimens were analyzed to assess EMC's clinical value and functions in HCC. In vitro experiments validated EMC functions, and multiplex immunofluorescence analysis examined EMC-associated sorafenib resistance mechanisms. EMC1 expression was knocked down in HCC cell lines, followed by cell viability, wound healing, and transwell migration assays. Tumor growth and response to sorafenib treatment were evaluated in mouse models. Metabolomic analysis assessed changes in the TCA cycle. Results: EMC genes were aberrantly expressed in HCC, and high EMC1 expression correlated with poorer survival rates. EMC1 disruption enhanced HCC cells' sensitivity to sorafenib, reducing cell viability, increasing apoptosis, and decreasing tumor size and weight. EMC1 maintained cancer cell stemness and promoted M2 macrophage infiltration. Metabolomic analysis revealed significant changes in the TCA cycle, indicating EMC1's role in HCC metabolic reprogramming. Importantly, EMC1 is highly associated with sorafenib resistance, potentially linked to CTNNB1 mutation or activation. Conclusion: EMC1 plays a critical role in regulating the sorafenib resistance in HCC. Targeting EMC1 may improve HCC treatment efficacy.

4.
Sensors (Basel) ; 24(14)2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39066064

RESUMEN

In response to the challenges of accurate identification and localization of garbage in intricate urban street environments, this paper proposes EcoDetect-YOLO, a garbage exposure detection algorithm based on the YOLOv5s framework, utilizing an intricate environment waste exposure detection dataset constructed in this study. Initially, a convolutional block attention module (CBAM) is integrated between the second level of the feature pyramid etwork (P2) and the third level of the feature pyramid network (P3) layers to optimize the extraction of relevant garbage features while mitigating background noise. Subsequently, a P2 small-target detection head enhances the model's efficacy in identifying small garbage targets. Lastly, a bidirectional feature pyramid network (BiFPN) is introduced to strengthen the model's capability for deep feature fusion. Experimental results demonstrate EcoDetect-YOLO's adaptability to urban environments and its superior small-target detection capabilities, effectively recognizing nine types of garbage, such as paper and plastic trash. Compared to the baseline YOLOv5s model, EcoDetect-YOLO achieved a 4.7% increase in mAP0.5, reaching 58.1%, with a compact model size of 15.7 MB and an FPS of 39.36. Notably, even in the presence of strong noise, the model maintained a mAP0.5 exceeding 50%, underscoring its robustness. In summary, EcoDetect-YOLO, as proposed in this paper, boasts high precision, efficiency, and compactness, rendering it suitable for deployment on mobile devices for real-time detection and management of urban garbage exposure, thereby advancing urban automation governance and digital economic development.

5.
Transl Oncol ; 46: 102009, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38833783

RESUMEN

BACKGROUND: Colorectal cancer (CRC) is the third most common cancer worldwide. Connexin is a transmembrane protein involved in gap junctions (GJs) formation. Our previous study found that connexin 37 (Cx37), encoded by gap junction protein alpha 4 (GJA4), expressed on fibroblasts acts as a promoter of CRC and is closely related to epithelial-mesenchymal transition (EMT) and tumor immune microenvironment. However, to date, the mechanism concerning the malignancy of GJA4 in tumor stroma has not been studied. METHODS: Hematoxylin-eosin (HE) and immunohistochemical (IHC) staining were used to validate the expression and localization of GJA4. Using single-cell analysis, enrichment analysis, spatial transcriptomics, immunofluorescence staining (IF), Sirius red staining, wound healing and transwell assays, western blotting (WB), Cell Counting Kit-8 (CCK8) assay and in vivo experiments, we investigated the possible mechanisms of GJA4 in promoting CRC. RESULTS: We discovered that in CRC, GJA4 on fibroblasts is involved in promoting fibroblast activation and promoting EMT through a fibroblast-dependent pathway. Furthermore, GJA4 may act synergistically with M2 macrophages to limit T cell infiltration by stimulating the formation of an immune-excluded desmoplasic barrier. Finally, we found a significantly correlation between GJA4 and pathological staging (P < 0.0001) or D2 dimer (R = 0.03, P < 0.05). CONCLUSION: We have identified GJA4 expressed on fibroblasts is actually a promoter of the tumor mesenchymal phenotype. Our findings suggest that the interaction between GJA4+ fibroblasts and M2 macrophages may be an effective target for enhancing tumor immunotherapy.

6.
J Transl Med ; 22(1): 580, 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38898490

RESUMEN

The importance of the immune microenvironment in poorly cohesive carcinoma (PCC) has been highlighted due to its limited response rate to conventional therapy and emerging treatment resistance. A combination of clinical cohorts, bioinformatics analyses, and functional/molecular experiments revealed that high infiltration of Interferon Induced Protein with Tetratricopeptide Repeats 1 (IFIT1) + tumor-associated neutrophils (TANs) is a distinguishing feature of PCC patients. Upregulation of IFIT1 + TANs promote migration and invasion of gastric cancer (GC) cell lines (MKN45 and MKN74) and stimulates the growth of cell-derived xenograft models. Besides, by promoting macrophage secreted phosphoprotein 1 (SPP1) expression and facilitating cancer-associated fibroblast and endothelial cell recruitment and activation through TANs, IFIT1 promotes a mesenchymal phenotype, which is associated with a poor prognosis. Importantly, compared to non-PCC (NPCC), PCC tumors is more immunosuppressive. Mechanistically, IFIT1 can be stimulated by IFN-γ and contributes to the expression of Programmed Cell Death 1 Ligand (PDL1) in TANs. We demonstrated in mouse models that IFIT1 + PDL1 + TANs can induce acquired resistance to anti-PD-1 immunotherapy, which may be responsible for the difficulty of PCC patients to benefit from immunotherapy. This work highlights the role of IFIT1 + TANs in mediating the remodeling of the tumor immune microenvironment and immunotherapeutic resistance and introduces IFIT1 + TANs as a promising target for precision therapy of PCC.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Neutrófilos , Proteínas de Unión al ARN , Humanos , Neutrófilos/inmunología , Neutrófilos/metabolismo , Animales , Proteínas de Unión al ARN/metabolismo , Línea Celular Tumoral , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Microambiente Tumoral/inmunología , Femenino , Antígeno B7-H1/metabolismo , Neoplasias Gástricas/patología , Neoplasias Gástricas/inmunología , Masculino , Ratones , Resistencia a Antineoplásicos , Movimiento Celular , Tolerancia Inmunológica , Terapia de Inmunosupresión , Regulación Neoplásica de la Expresión Génica , Invasividad Neoplásica , Ratones Desnudos , Inmunoterapia , Persona de Mediana Edad
7.
J Agric Food Chem ; 72(12): 6250-6264, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38491001

RESUMEN

Hydroxytyrosol (HT; 3,4-dihydroxyphenyl ethanol) is an important functional polyphenol in olive oil. Our study sought to evaluate the protective effects and underlying mechanisms of HT on obesity-induced cognitive impairment. A high-fat and high-fructose-diet-induced obese mice model was treated with HT for 14 weeks. The results show that HT improved the learning and memory abilities and enhanced the expressions of brain-derived neurotrophic factors (BDNFs) and postsynaptic density proteins, protecting neuronal and synaptic functions in obese mice. Transcriptomic results further confirmed that HT improved cognitive impairment by regulating gene expression in neural system development and synaptic function-related pathways. Moreover, HT treatment alleviated neuroinflammation in the brain of obese mice. To sum up, our results indicated that HT can alleviate obesity-induced cognitive dysfunction by enhancing BDNF expression and alleviating neuroinflammation in the brain, which also means that HT may become a potentially useful nutritional supplement to alleviate obesity-induced cognitive decline.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo , Disfunción Cognitiva , Alcohol Feniletílico/análogos & derivados , Ratones , Animales , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Ratones Obesos , Enfermedades Neuroinflamatorias , Obesidad/metabolismo , Encéfalo/metabolismo , Ratones Endogámicos C57BL , Dieta Alta en Grasa
8.
J Adv Res ; 2024 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-38295877

RESUMEN

INTRODUCTION: Dehydrocostus lactone (Dehy), a natural sesquiterpene lactone from Saussurea lappa Clarke, displays remarkable efficacy in treating cancer and gastrointestinal disorders. However, its anti-gastric cancer (GC) effect remains poorly understood. OBJECTIVES: Our study aimed to elucidate the anti-GC effect of Dehy and its putative mechanism. METHODS: The anti-GC effect was assessed with MTT, colony formation, wound healing and transwell invasion assays. Cell apoptosis rate was detected by Annexin V-FITC/PI binding assay. Network pharmacology analysis and XF substrate oxidation stress test explored the underlying mechanism and altered metabolic phenotype. Lipogenic enzyme expressions and neutral lipid pool were measured to evaluate cellular lipid synthesis and storage. Biolayer interferometry and molecular docking investigated the direct target of Dehy. Autophagosomes were observed by transmission electron microscopy and MDC staining, while the autophagic flux was detected by mRFP-GFP-LC3 transfection. The clinical significance of ACLY was confirmed by tissue microarrays. Patient-derived xenograft (PDX) models were adopted to detect the clinical therapeutic potential of Dehy. RESULTS: Dehy prominently suppressed GC progression both in vitro and in vivo. Mechanistically, Dehy down-regulated the lipogenic enzyme ACLY, thereby reducing fatty acid synthesis and lipid reservation. Moreover, IKKß was identified as the direct target of Dehy. Dehy inhibited the phosphorylation of IKKß, promoting the ubiquitination and degradation of ACLY, thereby resulting in lipid depletion. Subsequently, GC cells initiated autophagy to replenish the missing lipids, whereas Dehy impeded this cytoprotective mechanism by down-regulating LAMP1 and LAMP2 expressions, which disrupted lysosomal membrane functions, ultimately leading to apoptosis. Additionally, Dehy exhibited potential in GC clinical therapy as it enhanced the efficacy of 5-Fluorouracil in PDX models. CONCLUSIONS: Our work identified Dehy as a desirable agent for blunting abnormal lipid metabolism and highlighted its inhibitory effect on protective autophagy, suggesting the future development of Dehy as a novel therapeutic drug for GC.

9.
Int Immunopharmacol ; 127: 111352, 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38091833

RESUMEN

BACKGROUND: Neoadjuvant chemotherapy (NAC) is a frequently intervention for patients with locally advanced gastric cancer (GC). Nevertheless, its impact on the tumor immune microenvironment remains unclear. METHODS: We used immunohistochemistry to identify T-cell subpopulations, tumor-associated neutrophils (TANs), and tumor-associated macrophages (TAMs) in the GC microenvironment (GCME) among paired samples (pre-chemotherapy and post-chemotherapy) from 48 NAC-treated patients. Multiplex immunofluorescence (mIF) was performed to assess immune biomarkers, including CK, CD4, CD8, FOXP3, PD1, PD-L1, CD163, CD86, myeloperoxidase and Arginase-1 in paired samples from 6 GC patients whose response to NAC were rigorously defined. RESULTS: NAC was intricately linked to enhanced CD8+:CD4+ ratio, reduced CD163+ M2-like macrophages, augmented CD86+ M1: CD163+ M2-like macrophage ratio, and diminished FOXP3+ regulatory T cells (T-regs) and TANs density. Based on mIF, PD1+CD8+T-cells, FOXP3+T-regs, PD-L1+ TANs, and CD163+ M2-like macrophages exhibited marked reduction and greater co-localization with tumor cells following NAC. The pre-NAC FOXP3+ T-regs and CD163+ M2-like macrophages content was substantially elevated in the response cohort, whereas, the post-NAC CD8+:CD4+ and CD86+ M1: CD163+ M2-like macrophage ratios were intricately linked to the tumor pathologic response. We observed greater CD163+ M2-like macrophages and tumor cells co-localization following NAC, which was correlated with tumor pathologic response. Lastly, multivariate analysis revealed that post-NAC CD8+:CD4+ and CD86+ M1: CD163+ M2-like macrophage ratios were stand-alone indicators of positive patient prognosis. CONCLUSIONS: NAC converts the GCME to an anti-tumorigenic state that is conducive to enhanced patient outcome. These finding can significantly benefit the future planning of highly efficacious and personalized GC immunotherapy.


Asunto(s)
Neoplasias Gástricas , Humanos , Neoplasias Gástricas/tratamiento farmacológico , Antígeno B7-H1 , Terapia Neoadyuvante , Biomarcadores , Pronóstico , Carcinogénesis , Factores de Transcripción Forkhead , Microambiente Tumoral
10.
J Ethnopharmacol ; 319(Pt 3): 117342, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-37879505

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Sargentodoxa cuneata (Sargentodoxa cuneata (Oliv.) Rehder & E.H.Wilson, DXT)-Patrinia villosa(Patrinia villosa (Thunb.) Dufr, BJC) constitutes a commonly employed herb pair in Chinese medicine for colorectal cancer (CRC) treatment. Modern pharmacological investigations have revealed the anticancer activities of both Sargentodoxa cuneata and Patrinia villosa. Nevertheless, comprehensive studies are required to discern the specific antitumor active ingredients and mechanism of action when these two herbs are used in combination. AIM OF THE STUDY: Through the integration of network pharmacology, molecular docking techniques, experimental assays, and bioinformatics analysis, our study aims to forecast the active ingredients, potential targets, and molecular mechanisms underlying the therapeutic efficacy of this herb pair against CRC. MATERIALS AND METHODS: Plant names (1, Sargentodoxa cuneata (Oliv.) Rehder & E.H.Wilson; 2, Patrinia villosa (Thunb.) Dufr.) have been verified through WorldFloraOnline (www.worldFloraonline.org) and MPNs (http://mpns.kew.org). The Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP) were utilized for screening the active ingredients of the herb pair. The PharmMapper database was employed to predict the target proteins for each active ingredient. CRC-related targets were obtained from the Genecards database, Online Mendelian Inheritance in Man (OMIM) database, Disease Gene Network (DisGeNET) database, and Therapeutic Target Database (TTD). Common targets were identified by intersecting the target proteins of all active ingredients with CRC-related targets. Protein-protein interactions (PPI) for the common target proteins were constructed using the String database and Cytoscape 3.9.1 software. Network topology analysis facilitated the identification of core targets. These core targets were subjected to enrichment analysis of Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) using the Metascape database. Molecular docking was performed using Discovery Studio 2019 to investigate the interactions between the active ingredients and core target proteins. The core targets were validated through bioinformatics analysis using GEPIA, HPA, and the cBioPortal database. Finally, a series of experiments were conducted to further validate the results in vitro. RESULT: A total of 15 active ingredients and 255 herb targets were identified, resulting in 66 common targets in conjunction with 6113 disease targets. The PPI analysis highlighted AKT1, EGFR, CASP3, SRC, and ESR1 as core targets. KEGG enrichment analysis indicated significant enrichment in the PI3K-AKT signaling pathway, a pathway associated with cancer. Molecular docking experiments confirmed favorable interactions between dihydroguaiaretic acid and the core target proteins (AKT1, EGFR, CASP3, and ESR1). Bioinformatics analysis revealed differential expression of EGFR and CASP3 in normal and CRC tissues. Cellular experiments further verified that dihydroguaiaretic acid induces apoptosis in colorectal cancer cells through the PI3K-AKT signaling pathway. CONCLUSION: Our network pharmacology study has elucidated that the Sargentodoxa cuneata-Patrinia villosa herb pair exerts the negative regulation of the PI3K/AKT/mTOR signaling pathway, ultimately leading to the induction of apoptosis in colorectal cancer cells. This research has predicted and validated the active ingredients, potential targets, and molecular mechanisms of Sargentodoxa cuneata-Patrinia villosa in the treatment of CRC, providing scientific evidence for the use of traditional Chinese medicine in managing CRC.


Asunto(s)
Neoplasias Colorrectales , Medicamentos Herbarios Chinos , Patrinia , Humanos , Caspasa 3 , Farmacología en Red , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Simulación del Acoplamiento Molecular , Serina-Treonina Quinasas TOR , Transducción de Señal , Neoplasias Colorrectales/tratamiento farmacológico , Receptores ErbB
11.
Aging (Albany NY) ; 15(19): 10105-10116, 2023 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-37751586

RESUMEN

LncRNA has been shown to play an important role in tumors, but the functions of most lncRNAs in colorectal cancer is not clear. By analyzing the transcriptome data of tumor tissues and adjacent tissues, we identified the lncRNA profiles that were abnormally expressed in colorectal cancer and selected the abnormally highly expressed lncRNA SNHG25 for further study. The functional assays showed that after knocking down SNHG25, the metastatic ability of colorectal cancer cells was significantly reduced. Western blot and immunofluorescence assays showed that inhibiting SNHG25 would affect the expression of Vimentin and E-Cadherin. In terms of mechanism, the results of RNA pull down assays, RNA immunoprecipitation (RIP) assays and dual luciferase reporter assays showed that SNHG25 could promote MMP2 expression by adsorbing miR-296-3p. In addition, chromatin immunoprecipitation (ChIP) assays and promoter luciferase reporter assays revealed that PAX5 could activate the transcription of SNHG25 in colorectal cancer cells. Our study proved that SNHG25 acts a pro-metastasis role in colorectal cancer, enriching the theory of the functions of lncRNA in colorectal cancer.


Asunto(s)
Neoplasias Colorrectales , MicroARNs , ARN Largo no Codificante , Humanos , MicroARNs/metabolismo , Línea Celular Tumoral , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Metaloproteinasa 2 de la Matriz/genética , Metaloproteinasa 2 de la Matriz/metabolismo , Proliferación Celular/genética , Neoplasias Colorrectales/patología , Luciferasas/metabolismo , Regulación Neoplásica de la Expresión Génica , Movimiento Celular/genética
12.
Front Pharmacol ; 14: 1159829, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37601051

RESUMEN

Jianpi Yangzheng Xiaozheng decoction (JPYZXZ) is an empirical traditional Chinese medicine formula that has been reported to significantly prolong the survival of patients with advanced gastric cancer (GC). However, its underlying mechanism have not been fully elucidated. The present work aims to explore the possible mechanism of JPYZXZ on regulating GC progression. We firstly confirmed the inhibitory effect of JPYZXZ in GC MKN74 cells and 615-strain mice, which was possibly mediated with IL-6/JAK2/STAT3 pathway dependent PD-L1 expression. Moreover, we showed that JPYZXZ diminished the expression levels of GC-derived exosomal PD-L1 in MFC murine cells and xenograft GC model, as well as stage IIA-IIIB GC patients. We further found that in different types of tumor-infiltrating immune cells, PD-L1 expression was most positively correlated with myeloid-derived suppressor cells (MDSCs) in GC in the TISIDB database. We isolated exosomes derived from supernatants of MFC cells and co-cultured with bone marrow cells derived from C57BL/6 mice, and further revealed that the expansion of MDSCs was mediated by GC-derived exosomal PD-L1. Meanwhile, our results indicated that JPYZXZ inhibited the delivery of exosomal PD-L1 from GC cells to bone marrow cells, thereby alleviating exosomal PD-L1-induced differentiation and expansion of MDSCs in the tumor microenvironment. This led to a decrease in the levels of several immunosuppressive factors, including iNOS, Arg-1, TGF-ß, IL-10, and IL-6, in 615-strain mice. Moreover, clinical data also revealed a significant positive relationship between exosomal PD-L1 and polymorphonuclear MDSCs under the JPYZXZ treatment in stage IIA-IIIB GC patients. In conclusion, our study confirmed that exosomal PD-L1 could be a key factor in controlling MDSCs differentiation in GC. JPYZXZ alleviated GC progression via suppressing exosomal PD-L1 mediated expansion of MDSCs, thereby remodeling the immunosuppressive tumor microenvironment, which provided the experimental evidence for the clinical application of JPYZXZ in the treatment of GC via PD-L1.

13.
Int J Oncol ; 63(2)2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37449524

RESUMEN

Despite advances in diagnosis and treatment, gastric cancer (GC) remains a refractory disease, which limits overall survival. Therefore, it is key to identify novel targets to develop more effective and precise treatment. Circular RNAs (circRNAs) serve essential roles in the process of various human cancers. Through analyzing GSE83521 dataset, the present study identified a novel circRNA derived from ribosomal protein S19 (circRPS19), which was considered a potential treatment target for GC. Results of RT­qPCR indicated that circRPS19 was upregulated in GC compared with normal gastric epithelial cells. Loss­of function assays revealed that silencing of circRPS19 suppressed proliferation and aerobic glycolysis but increased apoptosis of GC cells. circRPS19 upregulated ubiquitin­specific processing protease 7 (USP7) expression by sponging microRNA (miR)­125a­5p. circRPS19 stabilized hexokinase 2 (HK2) protein by USP7­mediated deubiquitination of HK2. In vivo experiments confirmed that circRPS19 promoted GC progression and aerobic glycolysis. Taken together, circRPS19 induced aerobic glycolysis of GC cells by stabilizing HK2 protein via the miR­125a­5p/USP7 axis and thus promoting the progression of GC. These findings suggested that circRPS19 served a critical role in the progression of GC and may be a novel therapeutic target for GC.


Asunto(s)
MicroARNs , Neoplasias Gástricas , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Neoplasias Gástricas/genética , Hexoquinasa/genética , Hexoquinasa/metabolismo , Supervivencia Celular/genética , Peptidasa Específica de Ubiquitina 7 , Glucólisis/genética , Proliferación Celular/genética , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica
14.
J Ethnopharmacol ; 311: 116450, 2023 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-37023839

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Developing complementary and effective drugs with less toxicity is urgent for gastric cancer (GC) therapy. Jianpi Yangzheng Decoction (JPYZ) is a curative medical plants formula against GC in clinic while its molecular mechanism remains to be further elucidated. AIM OF THE STUDY: To evaluate the in vitro and in vivo anticancer efficacy of JPYZ against GC and its potential mechanisms. MATERIALS AND METHODS: The effect of JPYZ on regulating the candidate targets were screened and examined by RNA-Seq, qRT-PCR, luciferase reporter assay, and immunoblotting. Rescue experiment was conducted to authenticate the regulation of JPYZ on the target gene. Molecular interaction, intracellular localization and function of target genes were elucidated via Co-IP and cytoplasmic-nuclear fractionation. The impact of JPYZ on the abundance of target gene in clinical specimens of GC patients was evaluated by IHC. RESULTS: JPYZ treatment suppressed the proliferation and metastasis of GC cells. RNA seq revealed JPYZ significantly downregulated miR-448. A reporter plasmid containing CLDN18 3'-UTR WT exhibited significant decrease in luciferase activity when co-transfected with miR-448 mimic in GC cells. CLDN18.2 deficiency promoted the proliferation and metastasis of GC cells in vitro, as well as intensified the growth of GC xenograft in mice. JPYZ reduced the proliferation and metastasis of GC cells with CLDN18.2 abrogation. Mechanically, suppressed activities of transcriptional coactivator YAP/TAZ and its downstream targets were observed in GC cells with CLDN18.2 overexpression and those under JPYZ treatment, leading to cytoplasmic retention of phosphorylated YAP at site Ser-127. High abundance of CLDN18.2 was detected in more GC patients who received chemotherapy combined with JPYZ. CONCLUSION: JPYZ has an inhibitory effect on GC growth and metastasis partly by elevating CLDN18.2 abundance in GC cells, indicating more patients may benefit from combination therapy of JPYZ and the upcoming CLDN18.2 target agents.


Asunto(s)
MicroARNs , Neoplasias Gástricas , Humanos , Animales , Ratones , Neoplasias Gástricas/tratamiento farmacológico , Neoplasias Gástricas/genética , Neoplasias Gástricas/patología , Transducción de Señal , Factores de Transcripción/genética , Línea Celular Tumoral , MicroARNs/genética , Proliferación Celular , Regulación Neoplásica de la Expresión Génica , Claudinas/genética , Claudinas/metabolismo
15.
Int Immunopharmacol ; 117: 109886, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36805200

RESUMEN

The tumor microenvironment (TME) contains complex components, of which the most well-known one is the tumor-associated fibroblast (CAF) that participates in the development and progression of tumors. A high abundance of CAFs implies that tumor stroma is also abundant and often predicts a poor prognosis, especially in terms of immunotherapeutic resistance. In this study, DAZ interacting zinc finger protein 1 (DZIP1) was identified to be upregulated in CAFs and malignant epithelial cells based on single-cell sequencing. Furthermore, results from The Cancer Genome Atlas database showed that this gene was highly positively associated with the mesenchymal phenotype in gastric cancer (GC). In addition, molecular experiments verified that DZIP1 directly promoted the proliferation of CAFs and enhanced the epithelial-mesenchymal transition (EMT) of GC cells to drive angiogenesis. Also, the upregulated DZIP1 in GC cells was found to directly promote invasion and metastasis. Finally, multiplex immunofluorescence and immunohistochemistry showed that DZIP1 was correlated with the immunosuppressive microenvironment of GC and resulted in a poor response to immunotherapy. Overall, our findings suggest that DZIP1 is expressed in both tumor parenchyma and mesenchyme and that it is involved in shaping the immunosuppressive microenvironment and inducing EMT by participating in tumor-stromal signaling crosstalk.


Asunto(s)
Fibroblastos Asociados al Cáncer , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/patología , Fibroblastos/metabolismo , Fibroblastos Asociados al Cáncer/metabolismo , Tolerancia Inmunológica , Terapia de Inmunosupresión , Microambiente Tumoral/fisiología , Proteínas Adaptadoras Transductoras de Señales/metabolismo
16.
Pharmacol Res ; 188: 106644, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36603607

RESUMEN

poorly cohesive (PC) gastric cancer (GC) (PC-GC) is a distinct histological subtype of GC and is defined as a tumor consisting of isolated or small clusters of tumor cells with poorly differentiated and metastatic characteristics. According to multiple studies, PC-GC is intrinsically heterogeneous, with mesenchymal variants being the most aggressive. However, to date, the molecular mechanisms associated with PC-GC are still not fully understood. This study investigated the role of the USP51/ZEB1/ACTA2 axis in promoting GC metastasis. Single-cell sequencing revealed that E-box binding homeobox 1 (ZEB1) expression was significantly increased in a subpopulation of low-adherent cells and was an independent prognostic factor in GC patients. Furthermore, the bulk transcriptome analysis revealed a significant positive correlation between Ubiquitin Specific Peptidase 51 (USP51), ZEB1, and Actin Alpha 2 (ACTA2), and our data further confirmed that all three were highly co-localized in PC-GC tissues. According to the findings of in vitro and in vivo experiments, USP51 was able to maintain ZEB1 expression to promote ACTA2 transcription, thereby activating the mesenchymal phenotype of GC cells and promoting tumor metastasis. Moreover, USP51 could recruit and activate stromal cells, including M2-like macrophages and fibroblasts, through cancer cells. Clinical data suggested that overexpression of USP51 predicts that patients have difficulty benefiting from immunotherapy and is associated with immune-exclusion tumor characteristics. Collectively, the findings of this study shed light on a key mechanism by which elevated USP51 expression induces Epithelial-mesenchymal transition (EMT) in GC cells, hence facilitating GC cell proliferation, survival, and dissemination. In this view, USP51/ZEB1/ACTA2 may serve as a candidate therapeutic target against GC metastasis.


Asunto(s)
Neoplasias Gástricas , Humanos , Neoplasias Gástricas/patología , Actinas/metabolismo , Línea Celular Tumoral , Homeobox 1 de Unión a la E-Box con Dedos de Zinc/genética , Homeobox 1 de Unión a la E-Box con Dedos de Zinc/metabolismo , Proliferación Celular/genética , Movimiento Celular/genética , Transición Epitelial-Mesenquimal , Regulación Neoplásica de la Expresión Génica , Proteasas Ubiquitina-Específicas/genética , Proteasas Ubiquitina-Específicas/metabolismo
17.
Cancers (Basel) ; 14(19)2022 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-36230863

RESUMEN

Gastric cancer is the most common malignancy of the human digestive system. Long noncoding RNAs (lncRNAs) influence the occurrence and development of gastric cancer in multiple ways. However, the function and mechanism of LINC01526 in gastric cancer remain unknown. Herein, we investigated the function of LINC01526 with respect to the malignant progression of gastric cancer. We found that LINC01526 was upregulated in gastric cancer cells and tissues. The function experiments in vitro and the Xenograft mouse model in vivo proved that LINC01526 could promote gastric cancer cell proliferation and migration. Furthermore, LINC01526 interacted with TAR (HIV-1) RNA-binding protein 2 (TARBP2) and decreased the mRNA stability of G protein gamma 7 (GNG7) through TARBP2. Finally, the rescue assay showed that downregulating GNG7 partially rescued the cell proliferation inhibited by LINC01526 or TARBP2 silencing. In summary, LINC01526 promoted gastric cancer progression by interacting with TARBP2, which subsequently degraded GNG7 mRNA. This study not only explores the role of LINC01526 in gastric cancer, but also provides a laboratory basis for its use as a new biomarker for diagnosis and therapeutic targets.

18.
Sci Rep ; 12(1): 13245, 2022 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-35918393

RESUMEN

The TBC (Tre-2/Bub2/Cdc16, TBC) structural domain is now considered as one of the factors potentially regulating tumor progression. However, to date, studies on the relationship between TBC structural domains and tumors are limited. In this study, we identified the role of TBC1 domain family member 8 (TBC1D8) as an oncogene in colorectal cancer (CRC) by least absolute shrinkage and selection operator (LASSO) and Cox regression analysis, showing that TBC1D8 may independently predict CRC outcome. Functional enrichment and single-cell analysis showed that TBC1D8 levels were associated with hypoxia. TBC1D8 levels were also positively correlated with M2 macrophage infiltration, which may have a complex association with hypoxia. Taken together, these results show that the TBC1D8 gene is involved in colorectal carcinogenesis, and the underlying molecular mechanisms may include hypoxia and immune cell infiltration.


Asunto(s)
Neoplasias Colorrectales , Proteínas Activadoras de GTPasa , Centers for Disease Control and Prevention, U.S. , Neoplasias Colorrectales/genética , Proteínas Activadoras de GTPasa/metabolismo , Humanos , Hipoxia/genética , Estados Unidos , Proteínas de Unión al GTP rab/metabolismo
19.
Front Oncol ; 12: 904911, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35837105

RESUMEN

Colon adenocarcinoma (COAD) accounts for 95% of colon cancer cases, with the 5-year survival rate significantly affected by local or distant metastases. Yiqi Jianpi Huayu Jiedu decoction (YJHJD), based on the theory of "nourish qi, invigorate the spleen, remove blood stasis, and detoxify", has long been applied and shown to be remarkable in the prevention and treatment of gastrointestinal tumors. However, the underlying therapeutic mechanisms of YJHJD have not been fully elucidated. Herein, we first confirmed hsa-miR-374a-3p as a tumor suppressor based on its lower expression in the plasma of patients with COAD with liver metastasis and association with more advanced local progression. We also verified WNT3 as a potential target of hsa-miR-374a-3p and observed its increased expression in COAD tissues. Furthermore, we showed that the hsa-miR-374a-3p/Wnt3/ß-catenin axis was responsible for epithelial-mesenchymal transition (EMT) and cellular plasticity in COAD, as well as poorer patient prognosis. Our results showed that YJHJD inhibited motility and colony potential in vitro, as well as liver metastasis of COAD in vivo. Moreover, YJHJD induced a reversal of EMT and cellular plasticity-related molecular expression, increased hsa-miR-374a-3p, and decreased Wnt3 and ß-catenin levels. In addition, silencing of hsa-miR-374a-3p weakened YJHJD inhibition, whereas the ß-catenin inhibitor XAV939 partially repaired it. Taken together, these results demonstrated that YJHJD suppressed the EMT and cellular plasticity of COAD by regulating hsa-miR-374a-3p/Wnt3/ß-catenin signaling.

20.
J Gastrointest Oncol ; 13(3): 912-922, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35837168

RESUMEN

Background: The goal of the current research was to investigate circATXN7 expression in esophageal cancer (EC) and its impact on the proliferation, migration, and invasion of EC cells. Methods: Determination of circATXN7 expression in esophageal cancer tissues and adjacent tissueswas carried out using quantitative reverse transcription polymerase chain reaction (qRT-PCR), and we further analyzed the correlation between patients' clinical characteristics and circATXN7 expression. EC cell lines (EC-9706, Eca-109, TE-1, KYSE-30, and KYSE-150) and normal esophageal cell line (HET-1A) were cultured, and circATXN7 expression was detected by qRT-PCR. The lowest circATXN7-containing Eca-109 cells were selected to be transfected with an overexpressing lentiviral vector (circATXN7). EC-9706 cells with the highest expression of circATXN7 were selected for transfection with knockdown vectors [short hairpin RNA (shRNA)#1 and shRNA#2] of the circATXN7 sequence. Cell proliferation was determined via MTT assay. The formation of cell clones was investigated via colony formation assay. Transwell migration assay was utilized to determine cell migration and invasion ability. Results: Significantly higher levels of circATXN7 were observed in EC tissues compared with paracancerous tissues (P<0.01), and circATXN7 expression level showed a significant correlation with the tumor/lymph nodes/metastasis (TNM) stage and metastasis of lymph nodes (P<0.05). Among all esophageal cell lines, EC-9706 had the highest expression level and Eca-109 had the lowest expression level. The MTT assay revealed that circATXN7 overexpression could significantly promote the proliferation of Eca-109 cells, while circATXN7 knockdown was capable of significantly inhibiting EC cell proliferation. The colony formation experiments revealed a significant increase in the number of clones in the circATXN7 overexpression model and a significant decrease in the circATXN7 knockdown model. The results of transwell migration experiments suggested that circATXN7 overexpression could promote EC cell invasion and migration, while knockdown of circATXN7 expression was associated with significant inhibition of the invasion and migration of these cells. Conclusions: CircATXN7 exerted a critical role in the incidence and progression of EC. This study identified a novel molecular target and established a theoretical basis for the early detection and treatment of EC.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...